
PHYSICAL REVIE% D VOLUME 15, NUMBER 4 15 FEBRUARY 1977

Line sources in general relativity*

sterner Israel~
8'. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125

(Received 26 October 1976)

This paper is a preliminary study of how the field of a thin massive "wire" can be characterized in general

relativity. For a class of "simple" line sources, a linear stress-energy-momentum tensor can be defined in

terms of the extrinsic curvature of a tube of constant geodesic radius centered on the wire, in the limit when

the radius shrinks to zero. A number of examples are considered, including the ring singularity of the Kerr
metric. The Kerr ring is composed of dustlike material circulating about it with the speed of light. The mass

distribution in a cross section is proportional to cos(P/2), where P is the angle of rotation about the ring in a
plane normal to it. The "half-pole" structure is compatible with single-valuedness because of the two-sheeted

character of the Kerr manifold.

I. INTRODUCTION

The nature of the singularities which, according
to general relativity, arise inevitably in gravita-
tional collapse and cosmology is probably the most
difficult unsolved problem facing the theory today.
The simpler problem which will be our concern
in this paper is to interpret physically certain
types of singularity whose geometrical character-
istics are assumed to be known. Such singularities
may arise as convenient idealizations of realistic
matter distributions (e.g. , thin shells or wires),
or as barriers to the analytic extension of known
vacuum solutions (e.g. , the ring singularity of the
Kerr metric}. To achieve a. rudimentary under-
standing and control of such singularities, one
seeks a way to infer the physical characteristics
(e.g. , mass, angular momentum, internal stress-
es) of the source from the nature of the geometry
near the singularity.

In the case of thin shells or surface layers the
singularity is so mild that a complete answer to
this problem is easily given and is well known. '
A timelike hypersurface Z represents the history
of a thin shell if its extrinsic curvature K,' suffers
a discontinuity [K,] 0 0 when Z is crossed (in the
positive sense of the normal}. The quantity

Sb (&,)-I[K~ —~P:l (1)

is called the surface energy-momentum-stress
tensor of the layer and has the expected physical
interpretation. For a surface layer in a vacuum
one has the conservation law S,'.,=0, in which the
covariant derivative refers to the intrinsic three-
llletl'lc of Z ~ Tile pl'escl'Ipiloll [Eq. (1)l tII'cake
down for null surface layers, which require spe-
cial consideration.

Surface layers are easy to handle because the
space-time metric remains nonsingular and in
fact continuous at the singularity. This simplify-

ing feature is already lost when we come to the
next grade of singularity, line sources or thin
wires, the subject of this paper. The general con-
clusion of the present work is that the classifica-
tion of line singularities is a problem of some
complexity. There exists no simple, general
prescription, analogous to Eq. (1), for obtaining
the physical characteristics of an arbitrary line
source. Our work must be considered a prelimi-
nary reconnaissance rather than a systematic
study, and no serious attempt is made at rigor or
maximum generality.

In Sec. III we isolate a class of "simple" line
sources for which a "line energy-momentum-
stress tensor" is obtainable from the extrinsic
curvature of a tube of constant geodesic radius
enclosing the source in the limit when the radius
shrinks to zero. Many of the line singularities
that occur in the standard exact solutions (e.g. ,
infinite rods, uniform circular rings, "Weyl
struts") are "simple, " and their internal struc-
ture can be inferred from our prescription (Sec.
VI). However, the Kerr ring does not belong to
this class. In Sec. VIII we plausibly infer its in-
ternal structure by considering it as the limit of
a thin toroidal shell.

II. GENERAL CHARACTERIZATION OF LINE SOURCES

It seems reasonable to postulate, as a partial
characterization, that a line source is a singu-
larity which can be enclosed in a tube of arbitrar-
ily small geodesic radius and circumference. In
this section we attempt to formalize this idea.

A singular boundary L of space-time will be
called a "line singularity" if the following three
conditions hold:

(i) Each point P in a, neighborhood of I, can be
connected to J by a spacelike curve of bounded
arc length.

Copyright 1977 by The American Physical Society



936 STERNER ISRAEL l5

ds' =dp'+g„(p, x')dx'dx'. (2)

(Greek and lower-case Latin indices have the
range 1-4 and 2-4, respectively. } The extrinsic
curvature R„of the cylinders p = const and the
corresponding density X,' are defined by

Bg,~/Bp =2K,~, X~= ~gE~. (3)

The field equations G ~=-8m' ~, projected onto
and perpendicular to the cylinders, decompose
into

BX,'/8 p + v'-g "'R,' = -8w v'-g (T,' ——,'6,'T ),

K,P'~ -Z —~ 'R = —16mT,'.

(4)

(6)

(6)

Here K=A'„and "'8, and the semicolon denote
the Ricci tensor and covariant derivative associ-
ated with the three-metric g,~.

III. SIMPLE LINE SOURCES

The class of line singularities isolated by the
criteria (i)-(iii) of Sec. II still includes many ob-
jects which cannot be considered as plausible
analogs of Newtonian line sources or thin wires.
It includes, for example, the (timelike) singularity
at r = 0 of the Schwarzschild solution with m & 0,
which one would normally consider as having a
"pointlike" rather than "linelike" structure. The
additional criteria to be imposed in this section
pick out a subclass which in some respects is still
too wide (the negative-mass Schwarzschild singu-
larity is still included) and in other respects too
narrow. One interesting and eligible source which

Remark. The spacelike curve through p which
gives the arc length pL a. stationary value p(p) (a
minimum under spacelike deformations and a max-
imum under timelike deformations) is necessarily
a geodesic. We refer to this as a radial geodesic
and to p as geodesic radius. A simple local
argument shows that radial geodesics are ortho-
gonal to the spaces p= const.

(ii) The spaces p=const are timelike three-
cylinders with topology S' && M', or (for closed
ringlike sources) S' && S' && M', where M" is Min-
kowski n-space.

(iii) Each three-cylinder p =const is encircled
by a congruence of simple, nonreducible closed
spacelike curves C whose circumference tends to
zero as they are Lie-transported inward to L along
radial geodesics.

We introduce coordinates x'= (z, p, t), Lie-
transported along radial geodesics, such that the
closed curves C are parametric curves of qr (0—
y &2m). In terms of x =(p, z, p, t) the metric takes
the Gaussian form

Iimz„'=- e.'(e) .
p» 0

(8)

(v) Asymptotic axial symmetry and parity invari-
ance: The closed curves of condition (iii) can be
chosen so that

se'/sq =0, e, =e,"=0.

(vi) e,"has no null eigenvectors.
Condition (iv) characterizes a simple line source

as a "normal-dominated" singularity, ' a timelike
analog of the "velocity-dominated" spacelike cos-
mological singularities studied by Eardley, Liang,
and Sachs. '

Condition (v) expresses the assumption that the
wire has uniform, circular cross sections and no
angular momentum corresponding to spin about its
axis (compare end of Sec. VI).

Condition (vi) excludes "lightlike" sources which
(like null surface layers) require specia, l treat-
ment.

It follows from (v) and (vi) that e', is diagonaliz-
able by appropriate choice of the coordinates z, t.
Let the diagonalized form be

e,'(z, I) = diag(o'. , p, y) .

Equation (6) in the limit p-0 yields

ng+Py+yo. =0.

(10)

Integration of Eq. (3) then gives the asymptotic
form of the three-metric as p- 0:

2a 25 2c5g.,=diag y22p, y33p y«p r. (12)

Here the diagonal "tensor" y„(z, t) is arbitrary up
to constant scale transformations (which can be
different along the three axes), and assigns a
"metric structure" to the singularity L (Note.
that this structure is three-dimensional, which
belies the intuitive conception of the source his-
tory L as a two-dimensional object. ) The expo-
nents a, b, c are functions of z, t, defined by

~ =c/(~+S+r), b =S/(~+S+r),
c = r/(o'+ S + r),

is omitted is the Kerr ring singularity (treated
separately in Sec. VIII).

This subclass of "simple" line sources is defined
by the following additional conditions:

(iv) The intrinsic curvature density of the cylin-
ders p= const diverges less rapidly than p '.

limp'"'~g"'R, =O (6&0) .
p 0

According to Eq. (4} with vanishing or finite T
(assuming the wire to be surrounded by vacuum or
material of finite density), this implies existence of
the limit
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and satisfy

g+b+p =g2+b2+p2 =]

by virtue of Eq. (11).

(14)

IV. ENERGY-MOMENTUM TENSOR OF SIMPLE LINE
SOURCE

It is straightforward to assign a "line energy-
momentum tensor" density Rb(z, t) to a simple line
source. We have to consider two cases.

(a) Generic case: Ct,8~b&e0. We define

4gb( t) =6 b bbtcc (15)

Then Eq. (5) gives, for a line source in a vacuum,
the conservation law

v 2'=0
a (16)

lim'R = 0, BB/sz =sB/st =0.
p~0

(18)

Thus, B is a constant, and p=0 is a quasiregular
conelike singularity in the classification scheme
of Ellis and Schmidt. ' The tensor density L', (z, t)
is now appropriately defined by

&', =0, 4Z" AC(B —1)6" (m, n =2, 4), (19)

and again satisfies the conservation law, Eq. (16),
in a, vacuum by virtue of Eq. (5), with 37 referring
to the metric y„=diag(A, B, C).

Under certain conditions it is possible to inter-
pret Zb, defined by Eqs. (15) or (19), as the inte-
gral

dp' dye -g r,'
0 0

(20)

for a thin tube of material of geodesic radius p'
= E in the limit E -0, when T,' becomes a distribu-
tion with support at p' =0. The following argument
makes this plausible; with some effort it can be
made more rigorous.

where the covariant derivative V' refers to the
metric y, b. Equation (16) is invariant under con-
stant scale transformations of y„.

(b) Conical case: et,~~&=0. In this case two of
the functions a, b, c must vanish. Since our as-
sumption (iii) of "thinness" of the source forbids
b to vanish, the only nongeneric case is a =c =0,
b =1. The asymptotic form of the metric as p-0
ls

ds'= dp'+A'(z, t)dz3+Bbpbdcpb —C'(z, t) dt'.

(17)

Asymptotically, the extrinsic curvature of the cy-
linders p= const has only one nonvanishing com-
ponent: Kcc = p '. From Eqs. (6) and (5) we deduce,
for a line source in a vacuum,

We consider a cylindrical tube of material with
geodesic radius E. The history of the axis is a
regular two-space L. Let p', z, y, t be Gaussian
coordinates with L represented by p' =0. As E -0
and the concentration of material increases, the
geometry inside and near the tube is determined
more and more exclusively by the local matter
distribution. We choose a material filling T such
that ST3/Sct3=0. Then the metric inside and near
the tube will be "locally axisymmetric" (Sg 3/Sy =0
for 0 & p' & e) to an increasingly good approxima. -
tion as E- 0, even though the tube is not in general
straight and the geometry not axisymmetric at a
finite distance from the source.

At the tube surface Z: p'=E, the interior geo-
metry joins (for sufficiently small e) to the asymp-
totic exterior geometry (12) with continuity of
metric and extrinsic curvature. The interior
Gaussian coordinates z, y, t are most naturally
fixed by Lie-transporting the exterior coordinates
inward along radial geodesics. Thus, z, y, t are
continuous. However, the exterior and interior
radial coordinates p, p' do not agree on Z; the
relation between their values p=p, (b:), p'=e is
found from continuity of the induced three-metric.

Let the interior metric be

sc ic =3b4(gb bbgc) 3t g (3)Rbdpt (22)

with Zb defined by Eq. (20). The last integral can
be neglected in the limit E-0 if a condition of
normal dominance analogous to Eq. (7) is satisfied
throughout the interior. We shall assume this to
be so for a reasonable material filling, since it is
certainly satisfied (by hypothesis) near the surface
and also near the axis, where we have "'R,

(p'l) ', 4 -g '"Rb- l '
(l is the radius of curvature

of the tube axis).
Some care is required in the evaluation of X, at

p' =0. We have

X"
i .. .= 0 (m, n = 2, 4) (22)

ds'=dp" +g„„dx dx" +gb+93' (0(p'~ «), (21)

where g„are functions of p', x, and nz, n take the
values 2 and 4. Near the axis, regularity requires
g33= p

The radial stresses and momentum T' must
vanish at the surface of a tube in a vacuum.
Sources for which the definitions (15) or (19) are
appropriate have the property that the ratio T', /
(m aixT i) -0 uniformly throughout the interior as

0, so that we may neglect T —T; =T,'. This
means, for example, that a static tube of this type
is supported, primarily by hoop stresses rather
than a steep gradient of radial stress.

Integration of Eq. (4) then yields
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since K" -/ ' is finite. On Z, we obtain from Eq.
s (["'gj'"X )dx'dx'dx'

K,'= ~2[- (detK") —"'R+16vT'j/K" (25)

This shows that in general K cannot vanish for
0&p' && if the cylinders p'=const are regular. It
then follows from Eq. (3) that (-detg „)'~' is an
increasing function of p'. Hence

X,'f.. .=(-detg „)'"f, ,
&(—detg „)'"f.. .=p, ' '(-dety„„)'".

(26)

For b &1, this vanishes in the limit E —0, since
p, (e) tends to zero with e. Thus, in the generic
case b 0 1, Eq. (22) leads to the definition (15).

We now treat the conical case a =c =0, b =1.
The exterior metric is given by Eqs. (17) and (18).
The simplest interior metric which joins smoothly
to this, and which is regular at p' =0, is

ds'=dp" +2'(z, t)dz'+p"dp' —C'(z, t)dt'. (27)

X', f', ;='=8 —1, limX" f', , =O=O,
6~0

and Eq. {22) yields the definition (19).

(28)

V. SIMPLE LINE SOURCES IN STATIONARY SPACE-TIMES

We consider any stationary asymptotically flat
space-time containing a stationary simple line
source I.. Introduce "stationary coordinates"
x', x', x', t in which the timelike Killing vector has
components 6„so that 84g z = 0. Let Z2 denote an
instantaneous section t =const of the geodesic cy-
linder Z: p = ~ with axis on I, and V, the three-
space t = const exterior to Z2. We may assume
that the unit normal n to Z is also the three-nor-
mal to Z2 in V„ i.e., that V, intersects 2 ortho-
go nally:

n s.if, ,=o.

A =(1 —b)/p &0 (b&1).

Positivity of K must be maintained in the interior,
because Eq. (6) yields

X n~dS — X n Z2. 30
OCI C2

If Z is parametrized by the Gaussian coordinates
x' =z, y, t of Sec. II,

dZ, =E g f~& fdzdV, (31

where
f
~t

f

=(-g'4)'~' is the gradient of f, and
~g refers to the Gaussian metric.

We choose X = —
f
vt

f
'$ ', where $ is a Kill-

ing vector. Then

s.(["'gj'~X ) =s.(-v'-gt ')

(32)

with the aid of the Ricci commutation relations,
where v-g now refers to the metric associated
with the stationary coordinates. Also, $ n =0
on Z„since a Killing vector of the four-space is
necessarily a generator of Z. Hence

X n. f, = f~f f-'g n'= fVff-'gf~'

where K~ is the extrinsic curvature of Z. Substi-
tuting Eqs. (31)-(33) into Eq. (30), and using the
Einstein field equations and the definition (8) in
the limit &-0, we obtain the expression

(33)

C = —8~ T4 ——,'&4T~ $ 4-gd3x
V3

+ 6,('dz dy,

for the value C of the surface integral at infinity.
For the timelike Killing vector ( =6, the surface

integral is C =4m', assuming asymptotic flatness
with g44= —(1 —2m/r) For a field. with axial sym-
metry there is a second Killing vector ($«&-5,
with the obvious choice of axial coordinate x'= t)t)

and C = —BvL if g,~= —(2L/r) sin'e in quasispheri-
cal coordinates.

Using now the definitions (15) and (19), we find
for any stationary field containing a simple line
source I., the gravitational mass

This can alwa. ys be achieved by the (admissible)
transformation t-f+ f (x', x', x', 5) with a suitable
choice of f. According to Eq. (29), t is constant
along radial geodesics in an infinitesimal neighbor-
hood of Z, and hence can be made to agree locally
with the Gaussian coordinate t introduced in Sec.
II.

If X are any functions such that &+'=X'=0,
Gauss's divergence theorem applied to V, yields

yn = — T44- Tll- T22- T33 -gdxldx2dx3
V3

44—Z', -S,'dZ,

and for a stationary field with axial symmetry,
the angular momentum

I = T3~ -gd x+ q$(g)dz ~

V3 I

{35)

(36)
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These formulas, which generalize the well-known
integrals of Tolman, ' confirm the interpretation
(20) by an argument which is independent of the
one in Sec. IV. The integrals in Eqs. (35) and (36)
may thus be identified as densities of "effective"
gravitational mass and angular momentum for a
stationary simple line source. For a source of
conical type, Eq. (17) or Eq. (19) shows that both
effective densities vanish.

VI. SOME EXAMPLES

The Kasner vacuum metric

static axisymmetric vacuum metrics can be re-
duced to the Weyl canonical form'

ds'=e"" '(dp'+dz')+ p'e ' dy' e' -dt' (41)

in which the functions V(p, z), v(p, z) satisfy

V VVpp+pVp+Vgg0

v, = p(V,' —V, ), v, = 2 pV, V, .
(42}

(43)

The geometry is regular on the axis if the condi-
tion of "elementary flatness, " v(0, z}=0, is satis-
fied. From Eq. (43) it follows that the difference
of the values of v at two points of the axis connected
by a curve C lying entirely in a vacuum is

s'=dp'+ p'~dz'+ p' dy' —p'~dt'

in which the constants a, b, c satisfy

(37)
1 &V

v —v = —4 —V'V ——(2vpdpdz),
4~

(44)

a+b+c =a'+b'+c'=1, (38)

is static, axially symmetric, and cylindrically
symmetric. It represents the field of an infinite
rod. The line energy-momentum tensor density is
obtained from Eq. (15) for b & 1:

2~ = —,
'

diag (1 —a, 1 —b, 1 —c) .

Thus, all components are non-negative, indicating
that the source has positive pressures and a nega-
tive energy density. However, the effective gravi-
tational mass per unit (coordinate) length is, ac-
cording to Eq. (35),

(40)

and will be positive if c & 0, in which case Eq. (37)
shows that the source is infinitely red-shifted.

Asymptotically flat fields which have simple line
sources with a structure similar to Eq. (39) in-
clude the Weyl axisymmetric field of a uniform
finite rod and the Weyl field of a uniform circular
ring recently given by Thorne. ' In both cases the
metric close to the source approaches the form
(37) asymptotically. On the other hand, the "uni-
form ring" solution of Bach and Weyl' appears highly
anisotropic close to the source and the source is
not simple.

Our assumption that the source be "thin" re-
quires that b &0. In that case ac & 0, so there is a
correlation between infinite or zero proper length
and infinite red-shift or blue-shift of the source.
For sources with b &0, so that the circumference
of a tube p =const diverges as p-0, the limit (8)
still exists in many cases, and Eqs. {15), {16),
(35), and (36) remain valid. However, we shall
not pursue further the question of what physical
interpretation is to be given to ~ in this case.

Familiar examples of conical-type simple line
sources are the "Weyl struts" which maintain
equilibrium in static, axisymmetric two-body
solutions of the field equations. We recall that all

where the integral is to be taken over the volume
enclosed by the surface of revolution S generated
by C. Formally, v, —v, is (—4) times the gravita-
tional force acting on the material enclosed by S
in the analogous Newtonian problem with potential
V. Hence, in a static two-body solution which is
asymptotically flat and regular, the segment of the
axis between the two bodies will have a constant
but nonvanishing value of v = v„equal to (-4)
times the Newtonian force between them. This
singular segment of the axis was interpreted by
Bach and Weyl' as a strut which holds the two
bodies apart.

A Weyl strut is a simple line source of conical
type. Equations (19) give

(45)

ds' = U 'dr'+ (r'+a')(d6'+ sin'6 drp')

—U[dt+ 4a sin'(28) dy]',

U=1 —2(mr+a')/(r'+a') .
(46)

If the space is considered to be asymptotically
Minkowskian, there is a singularity along the half-
axis 0 =m. Misner" showed how this singularity
could be removed by reidentifying t as a periodic
coordinate. Bonnor" has considered the alterna-
tive of retaining the singularity and a casual struc-
ture for t, and has suggested that 8 =m be inter-

as the only nonvanishing components of , '. The
strut therefore contains a pressure R22(which re-
duces in the weak-field limit to the Newtonian
value ——,vo) and a negative energy density numeri-
cally equal to it. The effective gravitational mass
of the strut vanishes; this "explains" why the strut
makes no contribution to the gravitational poten-
tial V.

Another well-known metric sometimes associated
with an axial. singularity is Newman-Unti-Tam-
burino (NUT) space:



preted as a "massless source of angular momen-
tum. " The only point to be made here is that the
Bonnor singularity is not a line souxce in our
sense of the term, since its circumference
4naU' ' is different from zero, so that condition
(iii) of Sec. II is not satisfied. Presumably it is
this which makes a nonvanishing angular momen-
tum possible for this source.

VII. A NONSIMPLE LINE SOURCE

As a preliminary to the discussion of the Kerr
ring source, it is useful to consider the metric

ds2=dp2+ p2dp'+ V(p, y)dz +2dzdt, (47)

which is stationary and cylindrically symmetric,
though not axially symmetric. The substitution

For all finite po, and hence also in the limit
p0-0, the source is composed of dustlike material
with a 2"-pole mass distribution, streaming along
the axis with the speed of light. In the limit p, -0
we may identify

&,'= 2vp, & -gS,'= C(cosnp)t, f'

as the line energy-momentum tensor density of
the source.

VIII. THE KERR RING

Finally, we examine the remaxkable source
structure of the ring singularity in the Kerr
metric. In terms of Boyer-I indquist coordinates,
the Kerr metric is

ds' = Z(& 'dr'+d8')+ (r'+a'+ 2ma'r Z ' sin28)dp'

s =2 't'(Z-T) t=2 ' '(T+Z)

converts Eq. (47) to a manifestly Kerr-Schild
fo I'm

(4S) —4marZ ' sin'8 dydt —(1 —2mrZ ')dt',

Z =z'+ c' cos'8, 4 =x' —2mx+ a' . (57)
ds'=dp'+ p'dy'+dZ' dT'+ 2V(-p, p)(dZ -dT)',

showing that the curvature is of Petrov type D.
The condition for Eq. (47) to satisfy the vacuum
equations is

7' V=—V,+ p 'V, +p V„„=O. (50)

The extrinsic curvature density of the cylinders
p = const is

The singularity is located on the ring r=0, 8 =v/2.
Introduce new coordinates p, g defined by

a+ p cosg = (r'+ )a'~' sin8, p sing =r cos8 .

Close to the ring (p-0), p and l( become plane
polar coordinates in a plane perpendicular to the
ring. For p-0, we have

X„"=1, X'= —pV, all other X~=0. (51)
r =(2ap)'~' cos-,'P,

Solutions of Eq. (50) which are singular at p=0
do not have simple line sources, since ~X,'~-~
as p-0; also the condition of asymptotic axial
symmetry is not in general satisfied.

To elicit the source structure of Eq. (47) we
first construct a thin-shell source. We consider
an exterior (p&p, ) and an interior (p&p, ) vacuum
metric, both of the form (47), which. join contin-
uously at p =po. Let us choose specifically

I'=- (I', I ", I') = (-.
' n)"'p, -""(0, 0, I), (54)

which is a principal null vector of the type D Hie-
mann tensor.

V(p, y) =C coen' &

(p/p, ")" (p&p,),
where C and n &0 are constants. The boundary

p = po is the site of a thin shell whose surface en-
ergy tensor can be found from Eq. (51) and the
jump conditions (1):

2mS "=Cp, '(cosnp)I'I'.

We have introduced the null vector

2mrZ '= m [2/(ap)]'~' cos2$ =- V(p, |t),

and the asymptotic form of the metric is

ds dp +p dtt) +a dy dt

+ V(p, tt)(ady -dt)'. (50)

This agrees with the metric (49) we have already
studied, with the change of notation y -g, Z -ay,

We infex' that the Kerr x'ing has a line energy-
momentum tensor of the form

&.'= C(cos-,'q)I.P,

where /, is a principal null vector of the Kerr geo-
metry and is tangential to the history of the ring.
Dustlike material circulates about the ring with
the speed of light and with angular speed dye/dt
=a '. The mass distribution in the ring has a
"demipole" structure (~ cos2lt). Such a structure
is, of course, not possible in Newtonian theory
since it is not single-valued in a Euclidean topolo-
gy. However, it fits in with the two-sheeted
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structure of the Kerr geometry (sheets of positive
and negative x, linked at the disk r =0, which
serves as a branch cut). A complete circuit
-n ~ P&m of the ring in the x&0 sheet reveals only
positive-mass densities; in the subsequent circuit
~ —g & Sm in the r & 0 sheet the mass is negative.
These properties of the source provide an intui-
tive explanation for some of the peculiarities of
test-particle behavior in the Kerr geometry, such
as the repulsive gravitational force in the r &0
sheet„and the fact that test particles in the plane

of the disk x=0 are unaccelerated. (Compare also
Ref. 13.)
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