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We examine the possibility of generalizing the Low soft-photon theorem in a model-independent way and

conclude that meaningful hard-photon theorems do not exist.

I. INTRODUCTION

A =a(k)/k+& (k}, (1.2)

which is valid to all orders in k. According to the
hard-photon theorem, a(k) and b(k) can again be
computed exactly from the on-shell nonradiative
amplitude. ' Only separately gauge-invariant con-
tributions involving internal radiation are sup-
posedly unaccounted for in (1.2). Consequently,
disagreement between experiment and the predic-
tions of (1.2) could be interpreted as evidence for
internal structure radiation, ' for example, as being
due to the magnetic moment of the a"(1236) in
radiative n'P scattering. ' "

Our intention is to show that such hard-photon
theorems do not exist, a conclusion reached more
than ten years ago by Feshbach and Yennie. " What
follows is, in fact, little more than a translation

Soft-photon techniques have been used extensive-
ly in the study of radiative processes. ' In such an
approach, the radiative amplitude is assumed to
be smooth enough to expand in powers of the pho-
ton momentum, k

A =a/k+5+ok+ ~ ~ ~

for k small. Then, according to the theorem of
Low,"the coefficients a and 5 can be calculated
exactly from the on-shell nonradiative amplitude
and its derivatives and the static electromagnetic
properties of the external particles. Model de-
pendence appears only in the term ck and higher
orders. Thus on the one hand, Low's theorem pro-
vides a model-independent method for calculating
the dominant contributions to a soft-photon radia-
tive amplitude. On the other hand, it assures us
that the radiative process provides no new infor-
mation about the underlying dynamics, at least in
the soft-photon regime.

Attempts to generalize Low's theorem to avoid
the soft-photon limitation have resulted in so-
called hard-photon theorems. " The intention is
to forego expansion of the radiative amplitude by
employing finite different techniques; the result-
ing form is then

of the Feshbach-Yennie arguments to the present-
day language. ""'" Basically, once it is clear
how soft-photon theorems can be derived, it should
be obvious why hard-photon theorems cannot be.
Accordingly, in Sec. II a. Low-type theorem is con-
structed; in Sec. III the corresponding hard-photon
theorem is obtained by the conventional arguments;
and finally the fallacy involved in obtaining this
generalized Low theorem is explicated.

~$2 p2 (2.2)

This amplitude will be referred to as 6'(s, 5, 5'),
while its on-shell value will be abbreviated V(s)-=K(s, 0, 0).

The structure of graphs contributing to the ra-
diative amplitude m'N'-m'N y is indicated in Fig.
2, where the photon has momentum k„and polar-
ization &„ with z - k =k'=0. First we will discuss
radiation by the final external pion, Fig. 2(a).
Even though one pion leg of the electromagnetic
vertex is off-shell by an amount

5'=(q'+k)' —p, '=2k q' (2.2)

that vertex is unchanged from one with 5'=0 owing
to the Ward-Takahashi identity. '3 " Then this
part of the amplitude can be written in terms of the
off-shell nonradiative amplitude as

e ~ E&=, g (s&, 0, 5')
8~ k'Q'

where e~ is defined to be a product of the pion

II. SOFT-PHOTON THEOREM

The essential features of the Low theorem can
be illustrated by considering the scattering of a
charged pion from a neutral target as shown in
Fig. 1.. The nonradiative amplitude, m'No- m'No,

is a, function of several variables: the square of
the c.m. scattering energy s = (v +P)', the momen-
tum transfer f = (P —P')', which we take to be
fixed, and the masses of the external pion legs
which are off-shell by the amounts

(2.1}
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FIQ. 1. Kinematic labeling of graphs for scattering
of a charged pion from a neutral target, 7('N —z'N .

charge and whatever normalization factors are ap-
propriate. For sufficiently small k we can expand
(2.3) about 5' =0 to get

1 eq'—e .EI=, q (s,) + 2e q ', q'(s, , 0, 5')
e„ f k q' g5'

+ O(k) (2 5)

where we have only kept terms to order k. The
dominant contribution to (2.5) in this limit is from
the infrared-divergent O(k ') term; that part in-
volving the virtual-mass derivative is entirely in-
dependent of k.

The amplitude for radiation from the initial-pion
line, Fig. 2(b), can be treated similarly except
that the wN scattering energy is now shifted to a
value s~ = (p'+q')'=s, —2k (p +q), so that

—e E; = — g (s&, 5, 0).1 g ~ Q (2.8)

The small-k expansion can be taken about 5 =0 and

Sf =Sq,

FIG. 2. Structure of graphs contributing to the
radiative amplitude 7,

"No —~'Noy: (a} radiation by final
external pion, (b) radiation by initial external pion, (c)
internal radiation. The extent to which the pion legs are
off-shell is indicated by the quantities p and 6'.

1 q q 8E = — g(s)+2& q —q(s. 5 0)km' 95 (6- ()

2k (p+q) sX(si)
k 'q Bsy

(2.7)

where the k dependence of the first two terms is
that of the corresponding terms in Eq. (2.5). The
energy-variation term is of order (k)' as distin-
quished from k-independent. For later convenience
we will rewrite E(l. (2.V) by adding and subtracting
a term independent of @,

D (, )
(E"D"- "II")

D (D )
DT(DJ)

)8f =8 ~

+2e ~ (p+q) ~ +2e ~ q —g(s;, 5, 0) +O(k)
s &(sy) 8

Bsf f f
a&

(2.8)

the term in question is the one proportional to
~"k".

That part of the radi3tive amplitude describing
internal emisssion of a photon, e ~ I(k), is as yet
undetermined. %e will not consider the ease
where I(k) has pathological contributions of order
A

' or order k', but rather assume that in the soft-

E '7 =6 'E; +e 'Ey +e 'I(k) (2.9)

can now be written in expanded form, using Eqs.
(2.5) and (2.8), as

photon limit, I(k) can be decomposed into a part
independent of k, Iio&(0), and a part of order k and
higher, It' )(k)."'"'" The full radiative amplitude

(e"k"-e'k")e„k-g k".Q' Q. q
&(*)+ DD (D D). '

) ~ 2 ~ V(D) O(D) .
s v'(s~)

~f s=s

The four-vector

P„(0)= q'„, (s&, 0, 5') +q„—(s, , 5, 0)
BV BV

(2.11)

is just a collection of all the k-independent terms
which occur in (2.9).

The requirement of electromagnetic-current con-
servation, k 7.

' =6, is adequate to completely de-
termine the internal radiation, e ~ I'. The first
two terms in (2.10) vanish identically for e„-k&,
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lea,ving

k T.=O = k V(0) (2.12)

1 g.qE, = —. 7'(s,.) +2e qD, 7(s&, 5, 0)

As a constant vector cannot be orthogonal to all

k&, V&(0) must be null to satisfy (2.12).
The radiative amplitude is thus simply

—e ' T =e " — " F(s()'
e, kq' kq

Sy S.

2k (P+q)+e q D, g(sf) .k"q
(3.5}

qll—e ~ T =e" ", — " r(s)e„kq' k q

+ „[2q (P +k)„D, r(sz}]
(e "k" —e "k")

We combine these with the internal-radiation con-
tribution to obtain the full amplitude

+O(k), (2.13) + 2e ~ V(k) (3.6)

III. HARD-PHOTON THEOREM

As mentioned earlier, only hard-photon emission
provides new dynamical information; soft-photon
amplitudes are model independent. The following
generalization of the Low theorem to account for
high-energy photon emission has been suggested
as a model-independent procedure for extracting
the interesting part of the internal radiation from
experimental data, that is, for subtracting the
contribution of external radiation, etc. ' The read-
er should note that the derivation given here is de-
signed to elucidate the fallacious aspect of the
argument, rather than obscure it as in the original
work. "

The essential new ingredient is the finite-differ-
ence ratio; those we will need are defined as

D~ 7'(s, , 5, 0) = [&(s, , 5, 0) —7'(s, )]/5, (3.1)

D, v (s, , 0, 5') = [&(s„0,5 ') —T(s, )]/5 ', (3.2)

D, 7'(sz) = [q(sf) —q(s, )]/(sz —s, ) .

Each difference ratio becomes the corresponding
derivative in the limit k„-0 [e.g. , D~- (d/d5)~=, ].
The procedure is then to mimic the steps of Sec.
II, replacing all derivatives by finite-difference
ratios. The power-series expansion is thereby
avoided, so that the result is no longer restricted
to soft yhotons.

The amplitude for radiation from the final-pion
line, Eq. (2.5), becomes

(3.3)

1 & q'—e ~ E& ——,q'(s,.) +2e q'D, .q (s„0,5'),
e ~ kq'

which depends only on the nonxadiative amplitude
T(s) and its derivative. No off-mass-shell depen-
dence appears to order k. This is the Low soft-
photon theorem for the particular process we have
considered.

which is exact to all orders in k. The four-vector

V (k) = q„' D,.&(s~, 0, 5') + q„D, r(s;, 5, 0)

(u q)„D. ~(s, ) 1„(k)P S~

contains, among other things, the internal radia-
tion contribution.

Imposition of current conservation yields

(3.7)

k ~ T =0=k V(k)

whereby it is concluded [sic] that

VA (k) =0

(3.6)

(3 9)

in analogy with Sec. II." The resulting hard-pho-
ton theorem

e ~ T =e",— 7'(s, )k"e q' k.q

+
k [2q„(P+q).D.,q(s&)] (3.1o)(e "k"-e'k")

IV. THE CRITICISM

would appear to have the following properties:

(a} It is exact to all orders in k and is thus valid
for hard photons.

(b) The off-mass-shell dependence cancels to all
orders. '

(c) Only separately-gauge-invariant contributions
from the intevnal structure, such as rnagnetic-
moment radiation, are not accounted for in Eq.
(3.10).

Any disagreement between the predictions of Eq.
(3.10) and experimental data could then be inter-
preted as evidence for internal structure.

We note here that if the finite-difference ratios
are applied in reverse order in arriving at Eq.
(3.5), the final result (3.10) will acquire off-shell
dependence. This ambiguity was pointed out in

Ref. 7; its origin will be clear momenta, rily.

while that for initial radiation, Eq. (2.7), is

(3.4)
The very crux of the Low soft-photon theorem

lies in our ability to determine the internal radia-
tion by imposing current conservation, that is, to
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conclude that V„(0) =0 from Eq. (2.12). It is at
precisely the corresponding point, Eq. (3.9), that
the derivation of the generalized Low theorem
fails. Of course, the constant part V„(0) will still
vanish as in the derivation of the soft-photon theo-
rem; however, this is simply not true of those
parts of V„(k) which are of order k and higher.
Thus it is clear that there is an approximation in-
volved in arriving at a hard-photon theorem.
Whether or not it is a reasonable one we will now

d1scuss.
The hard-photon theorem becomes approximate

in order k, the order in which it is intended to im-
prove on the Low theorem. Can one argue that the
O(k) terms being dropped are smaller than those
retained7 One might hope that if V(k) is smooth
in k it would remain relatively small even for hard
photons. For example, in Ref. 5 the finite-differ-
ence technique is alleged to improve the expansion
parameter from k/I' in the vicinity of an s-channel
resonance of mass M„and width I' to k/Ms by tak-

ing into account some of the rapid energy variation
of the amplitude. However, one can easily see
from the structure of V&(k) in Eq. (3.7) that it has
contributions of the same origin as each of the
higher-order terms retained in the hard-photon
theorem, and can thus be expected to be just as
large. It has off-shell contributions, energy-vari-
ation terms, as well as internal-radiation effects.

To the extent that order-k contributions are im-
portant in a radiative amplitude, there appears to
be no way to justify neglect of V„(k). Accordingly,
hard-photon theorems of this type do not exist.
That one should expect different results in order k
for different parametrizations of the strong am-
plitude should now be clear. '"
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