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The neutrino-nucleon structure functions suggested by source theory are used to test Adler’s sum rule; the
numerical result argues for its correctness. An independent source-theoretic derivation is then produced, with
the emphasis transferred from hadronic currents to the vector field of a partially U,-invariant unified theory of

electromagnetic and weak interactions.

The equal-time commutation relations of current
algebra provide a ready supply of sum rules, as
in the deep-inelastic form of Adler’s neutrino sum
rule!
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but offer no detailed information about the values
of the individual scaling functions Fy"(x), Fy¥(x).
Source theory,? in contrast, has been prolific in
producing quantitative accounts of just such func-
tions,® but has had relatively little to say about sum
rules. (A gratifying exception is the new sum rule
encountered for the scattering of polarized parti-
cles.*) A useful overlap of the two approaches ap-
pears on applying the physical functions suggested
by source-theoretic considerations to test the sum
rules proclaimed by current algebra, particularly
for the situation of the Adler neutrino sum rule,
where experimental data are not yet of high ac-
curacy. The specific forms used are®'®
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and the numerical result obtained is
1=0.97, (3)

which is more than sufficiently near unity to pro-
mote a bias in favor of the correctness of Adler’s
sum rule. Here, then, is a challenge to source
theory: Supply a physical basis for Adler’s sum
rule without using the inapplicable machinery of
operator-valued field and currents.

The hadronic system is not the principal charac-
ter in our response. That role is played by the
vector field of a unified electromagnetic-weak in-
teraction theory, for which we use a partially U,-
symmetric version® that is related to, but quite

distinct from, Weinberg’s conception.” The start-
ing point is a mixed action expression involving
nucleon fields ¥ and vector fields Ak (A, W*, Z),
where ¢ unites the incoming and outgoing plane-
wave fields of physical nucleons, while the A%,
obey the nonlinear inhomogeneous field equations
that are implied by this (incompletely stated) ac-
tion:
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+ fe%zpy"A“GwA”w. (4)

Here, the jj are the nucleonic currents appro-
priate to electromagnetic and weak interactions.
£(A) is the non-Abelian Lagrange function that,
without the indicated physical mass term, is in-
variant under the infinitesimal gauge transforma-
tion (matrix notation)

BA,=08,01 —ie[A,,B0], (5)

while the last term of (4) symbolizes the physical
process of Compton scattering. The stationary ac-
tion property implies that (omitting terms more
than bilinear in A and 5X)

0= f{_eauj‘b‘aékab —iezjga[Au7 OA]ab"' G)tjwzauAu}
+fe%zpy°(A“Gwa"67\+ 8% OAG,, , A . (6)

In the following we apply this relation to forward
Compton scattering of a virtual vector particle of
momentum ¢ by a nucleon with momentum p.

Since the nucleon momentum does not change, we
have

8,75.=0, (M

without reference to detailed conservation. In ad-
dition, the vectorial aspect of j* is fixed by the
momentum p, which we convey by writing

Jha=2p dw, Ty, , (8)

where
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is an invariant momentum measure and T,, rep-
resents the appropriate numerical magnitude.

(In our application, all that enters is T,,-T,, =57,
with 7,=+1 and -1 for proton and neutron, re-
spectively.) We further specialize to the charged
W sector, picking out the coefficient of 5X ,(¢) and
A} (-q), where ab=12 or 21, to get

0=2p"37,t,+2G**p,q)q, , (10)

in which ¢, =+1 is the W charge and G**(p, ¢) is
also a linear function of 37,/,. The M? contribu-
tion, proportional to ¢*, has been omitted in
(10), in anticipation of our preoccupation solely
with the coefficients of the vector p*. The latter
constraint also means, with regard to the tensor

J

structure of G*¥(p,q),

G*"(p,q) =p"p*"Blgp, ¢°) +p*q"Clqp,q®) +*+ +,
(11)

that only the indicated terms need be considered.
We thus infer the scalar relation

~374l3=qp Blap, 4°) + ¢°Clqp, ¢?) - (12)

Concerning the crossing symmetry of G*¥(p, q),
which is invariant under the substitutions g~ -¢,
w=v, and {;~ ~1,, we learn from (11) that the
scalar function B is invariant under gp - —gp and
t,~ —t,, while (12) informs us that C must then
change sign.

The functions B(gp, ¢?) and C(gp, ¢?) will be rep-
resented by single spectral forms of the type
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where the upper and lower signs are appropriate to B and C, respectively. We now observe that
1 1
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Accordingly, Eq. (12) yields the relations 11
ely, Eq. (12)y ImB:E—z——fz(w,qz), (20)
%(q2+M2—m"')Bl'z(Mz,qz)=q2C1,2(Mz,q2) (15) mv
and also where
f 2 2mvg® ImHy(qp, q%) = fw, %) , (21)
— | dM*B,(M?,¢%) =1 16
2( ’q) ’ ( ) 2my:wq2=[bfz—n12+q2.
which is the desired sum rule, or, rather, its The sum rule (16) then reads
more general form that holds for arbitrary ¢®. -
One immediately identifies the integrand of (16) 1 iiﬁ(f;" ) (w,q)=1, (22)
in terms of the spectral form for B as 2l w

~BM%, %) =2 Im(B"(ap, ¢*) - B*ap, )],
(1)
(p+q)2+ M2=0.

A comparison of the forward scattering amplitude
implied by (4),

1+ie*dw,2A%(-4)G,,(p,9)AYq) , (18)

with that presented by DeRaad, Milton, and Tsai®
yields the relation

(2/¢*)Blqp,q®) =H,(qp,q?) , (19)

or

and, in the ideal deep-inelastic limit where the ¢?
dependence disappears from the integrand of (22),
we do indeed recover (1), with

Fy(x)=(1/mMfw), x=1w. (23)

I am grateful to Wu-Yang Tsai for his indepen-
dent numerical evaluation of the integral.

Note added in proof. Although the validity of the
sum rule is not affected, this derivation is in-
complete in one important respect. It was over-
looked that the quantity M?3, A", as it enters in
Eq. (6), is also dynamically determined, and thus
has a contribution of the form
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M?o,A¥~ fezézpy"A“Gpd) .
This adds to (10) a vector structure of the type
p" Dap, ¢*) +q"E(ap, 4°)

so that Eq. (12) acquires the additional term

3 D(gp, ¢°). The right-hand side of (15) is then
supplemented by 3 D, ,(M?, ¢?), but the sum rule
emerges as before.
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