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Adler's sum rule in source theory
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The neutrino-nucleon structure functions suggested by source theory are used to test Adler's sum rule; the

numerical result argues for its correctness. An independent source-theoretic derivation is then produced, with

the emphasis transferred from hadronic currents to the vector field of a partially U2-invariant unified theory of
electromagnetic and weak interactions.

The equal-time commutation relations of current
algebra provide a ready supply of sum rules, as
in the deep-inelastic form of Adler's neutrino sum
rule'

but offer no detailed information about the values
of the individual scaling functions E;"(x),E;~(x).
Source theory, ' in contrast, has been prolific in
producing quantitative accounts of just such func-
tions, ' but has had relatively little to say about sum
rules. (A gratifying exception is the new sum rule
encountered for the scattering of polarized parti-
cles.4) A useful overlap of the two approaches ap-
pears on applying the physical functions suggested
by source-theoretic considerations to test the sum
rules proclaimed by current algebra, particularly
for the situation of the Adler neutrino sum rule,
where experimental data are not yet of high ac-
curacy. The specific forms used are"

E,""(x) E,"'(x) = l—, ,q, E,(x),

2 (1-x)'
x (1+0.2x)'

1+4.52x, i,), 1+0.2x
1 —0.75' I —0.1x

and the numerical result obtained is

I = 0.97,
which is more than sufficiently near unity to pro-
mote a bias in favor of the correctness of Adler's
sum rule. Here, then, is a challenge to source
theory: Supply a physical basis for Adler's sum
rule without using the inapplicable machinery of
operator-valued field and currents.

The hadronic system is not the principal charac-
ter in our response. That role is played by the
vector field of a unified electromagnetic-weak in-
teraction theory, for which we use a partially U, —

symmetric version' that is related to, but quite

distinct from, Vfeinberg's conception. ' The start-
ing point is a mixed action expression involving
nucleon fields g and vector fields A,",(A, W', Z),
where P unites the incoming and outgoing plane-
wave fields of physical nucleons, while the A„
obey the nonlinear inhomogeneous field equations
that are implied by this (incompletely stated) ac-
tion:

W= [ej;,(t))A„„+Z(A) --,A'M'A, j

+ e'&~I)y'2 "6 „A"g.

Here, the j"„are the nucleonic currents appro-
priate to electromagnetic and weak interactions.
Z(A) is the non-Abelian Lagrange function that,
without the indicated physical mass term, is in-
variant under the infinitesimal gauge transforma-
tion (matrix notation)

5A„= s 5x re[A, , 5xj, - (5)

0= -ee j",5X,&
—ie2j", A.„,5x,&+ elf'a„g"

+ e~2gy'(A'G „8"D.+ 9"D.G „A')p.

In the following we apply this relation to forward
Compton scattering of a virtual vector particle of
momentum q by a nucleon with momentum p.
Since the nucleon momentum does not change, we
have

without reference to detailed conservation. In ad-
dition, the vectorial aspect of j" is fixed by the
momentum p, which we convey by writing

where

while the last term of (4) symbolizes the physical
process of Compton scattering. The stationary ac-
tion property implies that (omitting terms more
than bilinear in A and 5X)
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(dp)
(2v)' 2p' (9)

structure of G~ "(p, q),

0= 2 p~
—27t, + 2G~ "(p, q)q„, (10)

in which t, = +I is the W charge a.nd G~"(p, q) is
also a linear function of &7,t, . The M' contribu-
tion, proportional to q", has been omitted in
(10}, in anticipation of our preoccupation solely
with the coefficients of the vector p". The latter
constraint also means, with regard to the tensor

is an invariant momentum measure and T„rep-
resents the appropriate numerical magnitude.
(In our application, all that enters is T»-T»-- —,r„
with v, =+ 1 and -1 for proton and neutron, re-
spectively. } We further specialize to the charged
W sector, picking out the coefficient of 6&,~(q) and

A~~, (-q), where ah= 12 or 21, to get

G'"(p q} = p"t "B(qp, q') + p'q "C(qp, q') +

that only the indicated terms need be considered.
We thus infer the scalar relation

--,' 7,t, = q p B(qp, q') + q'C(qp, q') . (12)

Concerning the crossing symmetry of G""(p, q),
which is invariant under the substitutions q- -q,
p —v, and t, — t„we-learn from (ll) that the
scalar function B is invariant under qp- -qp and
t, — t„whi-le (12) informs us that C must then
change sign.

The functions B(qp, q') and C(qp, q') will be rep
resented by single spectral forms of the type

where the upper and lower signs are appropriate to B and C, respectively. We now observe that

, 7,t, dM'—, „2+, ,2, 2(q'+M' —m')B, (M', q')+27', t, dM'B, (M', q') .

(14)

Accordingly, Eq. (12) yields the relations

z (q + M' —m')B, ,(M', q') = q'C, ,(M', q')

and also

dM'B, (M', q') = 1, (16)

which is the desired sum rule, or, rather, its
more general form that holds for arbitrary q'.

One immediately identifies the integrand of (16)
in terms of the spectral form for B as

1 1
ImB = — f,(~, q'),

2 2mv

where

2mvq'ImH, (qp, q') =f,(v, q'),

2m' —~q2 M2 m2+ q2

The sum rule (16) then reads

(f,""-f."'}(~,q'} = 1,

(20)

(21)

(22)

1-B2(M, q ) = —Im[B""(qp, q2) B"&(qp, q2) j,
(17)

(P+ q)'+ M'= 0.
A comparison of the forward scattering amplitude
implied by (4),

1+ie2d(uq2A ( q)G „(p,q}A"(q—), (18)

with that presented by DeRaad, Milton, and Tsai'
yields the relation

(2/q'}B(qP, q') = It,(qP q'}

or

and, in the ideal deep-inelastic limit where the q'
dependence disappears from the integrand of (22),
we do indeed recover (1), with

F,(x) = (I/m) f2((u), x = I/(u . (23)

I am grateful to Wu-Yang Tsai for his indepen-
dent numerical evaluation of the integral.

Note added in proof Although the .validity of the
sum rule is not affected, this derivation is in-
complete in one important respect. It was over-
looked that the quantity M'B„A.", as it enters in

Eq. (6), is also dynamically determined, and thus
has a contribution of the form
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M'B„A"- e'~ gy'A. "
G~ P .

This adds to (10) a vector structure of the type

P"D(qf, q') + q"E(qP, q')

so that Eq (.12) acquires the additional term
, D(q—fp, q'). The right-hand side of (15) is then
supplemented by —,D, ,(M', q'), but the sum rule
emerges as before.
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