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The various versions of a simple P-conserving extension of the Weinberg-Salam model are reviewed. It is

pointed out that only one version, discussed previously by the author, allows for both spontaneous parity and

spontaneous CP violation. It is shown how the CP violation, and the mass of one Higgs boson, can be
generated together in the one-loop approximation. The CP violation does not arise in the tree approximation
as asserted by the author in earlier work.

I. INTRODUCTION

The lea.st reworking of the SU(2) x U(1) Wein-
berg-Salam (W-S) model" which accommodates
spontaneous parity violation requires fermion
SU(2)-weak doublets with both helicities present,
not just left-handed ones as in the W-S model, and
companion singlets with both helicities present,
not just right-handed ones. A pseudoscalar doub-
let, in addition to the scala, r of the W-S model,
is also needed to support the spontaneous parity
violation. A version of this kind of scheme was
first presented by Fayet. ' McKay and Munczek'
studied a different version in which neutral Higgs
particles couple to e'e and in which charged heavy
leptons are present, in contrast with Fayet's
scheme. Herbert4 analyzed a variation which has
the same electron- and muon-multiplet choice a.s
Ref. 3, but a more complicated Higgs structure
and a different quark structure. Subsequently, I
pointed out that CP could also be violated spon-
taneously in this kind of extended Weinberg-Salam
model, ' since the necessary minimum of two com-
plex neutral spin-zero fields is present, ' a,nd I
pointed out that in the McKay-Munczek version a
small ratio of electron mass to heavy-electron
mass requires that the CP-violation parameter be
sma, ll.

In this comment I point out that the variant stu-
died by McKay and Munczek is the only one which
accommodates bo/h spontaneous P and CP viola-
tion with the simplest spinless-field choices. The
spontaneous CP violation is shown to emerge at
the one-loop level, from fermion loops, rather
than in the tree approximation as I claimed in Ap-
pendix A of Ref. 5. It is interesting that one of
the Higgs particles acquires mass at this one-loop
level as well.

II. FOUR VERSIONS OF THE SU(2) X U(1)
PARITY-CON SERVING SCHEME

The transformations of left- and right-handed
components of the fermion fields can be displayed
separately as

DL=e ' DL, D~=e' DR (1b)
SL=e ' SL, S~= e"S~ ~

Given the same gauge-group-transformation as-
signments a,s in the usual W-S model, all the
versions which include spontaneous parity viola-
tion and massless neutrinos can be characterized
by the choices of n, P, y, 6.

As in the W-S model, one has an SU(2)-weak
fermion doublet, D, and singlet, S, associated
with the electron and its neutrino, and likewise
for the muon and its neutrino. Every field under-
goes the gauged U(l) phase transformation. Yuka-
wa couplings of the fermions to the spin-zero fields
provide, after sponta. neous breakdown, the masses
for fermions. These couplings can be restricted
to prevent the neutrinos from acquiring mass by
imposition of a global y, symmetry.

In addition to the fermions and the usual gauge
fields, we need two spin-zero doublets, denoted

pL and @„,where under the parity transformation,
P,

~L ~R'

At least two doublets are needed in order to sup-
port spontaneous parity violation.

The global transformations on the fermions and
spin-zero fields are designated as follows:

D' = e' "5D S' = e'+5S
7 7
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TABLE I. Summary of the different cases of global-y5-symmetry assignments. The corre-
sponding multiplet assignments and allowed Yukawa couplings to the spin-zero doublets are
indicated.

Case

ng y&0

Yukawa

~, (S,y,'D, + S,y,'D~)+ H.c.

II P p&0 &rr~~z&I'Dz. + ~z @zDz)+ H c

III: G. , y&0 A«&(S~ QI.Dz. + SI,Q~D~) + H.c MsSS

IV: ~,P &0 zv(Szpl, DI. + SL d zD~)+ Ef.c

+IV ~~R 4DI ~L ~I DR ) + H c

Consider the parity- and gauge-symmetric Yu-
kawa coupling

I. (Yukawa) =A(Sazt&~~D~+ Sz PzaDa)+ H. c.

Under the global transformation, these terms be-
come

quences of including the one-loop terms in the ef-
fective potential in Sec. III B.

A look a,t the spinless-field potential, U, for
cases I, II, and III,

(S yzD )I ez(8+ad&(S y~t )

Invariance requires that

Keeping in mind that either n+ 0 or P c 0 is neces-
sary to ensure massless neutrinos, one of the de-
fining features of the model, one can allow the
four cases

I: o. 40, P/0, z= n+P;
II: o =0, pc 0, y=+ p (Fa,yet);

III: u 40, P=O, y=+ z;
IV: n = -pc0, y=0 (McKay and Munczek) .

In cases II and III, mass terms for the doublet
and singlet, respectively, can be added to Eq.
(2). In case IY, an additional Yukawa coupling
with P~ and Q„switched is allowed. The situation
is summarized in Table I.

III. THE EFFECTIVE POTENTIALS
A, Tree approximation

The minima of the effective potential determine
the possible broken-symmetry vacuums of each
case. Finding the absolute minimum of the spin-
less fields potential in the tree approximation does

ot alway& settle the question of CP violation V, s, 9

This is what happens in the models under consid-
eration here, as discussed below, and I will sub-
sequently turn to a brief discussion of the conse-

reveals that there is no possibility of spontaneous-
Cp-violation support in the tree approximation. "
One can see this most simply by noting that U does
not depend upon the relative phase, 9, between

(p~), and (p )„ the vacuum expectation values of
the spinless fields. Following Lee' s' triangular-
molecule analogy, the triangle energy is degene-
rate not only under rotation of the whole system,
but also under rotation of the individual sides in-
dependently. There is no relative orientation
"spring constant" of the sides. Qne can express
this trivially in terms of the minimum of the
potential (5), namely,

8U ~'U—=0 and =0.
90 89~ (6)

The extra zero-mass mode is a true Qoldstone
mode associated with the global y, symmetry,
about which I will say more in considering the
one-loop contributions. Therefore, the stable-
symmetry-breaking solution is the type discussed
by Fayet, ' where either (p~), =0 or (Pa), =0, and
no spontaneous CI' violation emerges in cases I,
II, and III. In other words, spontaneous CP viola-
tion would require (y~) w 0 zzzzd (@a)s 0 in order that
a vacuum phase be defined, but such a solution is
not the stable vacuum in cases I, II, and III since
it is a point of inflection, or Goldstone mode. The
(parity violating) zzzizzzmzzm occurs when (p~)0= 0
or (pa) =0.

In case IV, the spinless fields do not transform
under the global group and the less-restricted po-
tential can depend on the relative phase between

p~ and p~, so there may be the possibility of spon-
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taneous breakdown of CP in this case. The poten
tial reads

&zv- ff(4r ~ @~)+A (4g4z+ 4eAz)

+ f3'[(@i'm)'+(OR~i)'1

+&[(0'4,)(e'0 )+(0'0 )(e', 0 )]

+*[(@.'@.)(v,'y. ) (y', e,)(e.'y, )], (7)

where ff(y, g ) was defined in Eq. (5)." Explicit
T invariance requires that E=E*. The analysis
is simplified if U,v is expressed in terms of s and
t fields which have definite C, T, and P assign-
ments, since then one field can be chosen to have
a real vacuum expectation value and the CP-vio-
lating phase can be ascribed to the other. %e

U, v(s, f) =A,sts+A, ttt+ B,(s ts)'+ J3 (f'f)'

+ C(ttt)(sos) + D(t~s)(sit)

+ F[(s'f)'+ (f's)'], (8

where (s), =- X, and (t,) -=&,e", with X, and X, real.
To ensure 7 invariance, E is assumed real in
Eq. (8). The value of the relative s —f phase, 5,
for which U, v is a minimum is determined by the
condition

BU = 0= 1 'A. 'Es~n28. (9s t

The restriction has three obvious solutions and
corresponding consequences:

(a.) X, =O (or X, =O)

(b) 9= 0

(c) F=O

No CP violation, degenerate Eemas-ses, A, & 0 (or A, & 0) .
No CP violation at this level

An extra zero-mass scalar and no CP violation apparent at this level.

(10)

A summary of the CP possibilities for the four
cases is given in Table II.

In case IV, as in cases I, II, and III, no spon-
taneous CP violation emerges in tree approxima-
tion. The CP issue must be settled in higher or-
der, and I next consider the one-loop modifica-
tions to the effective potential.

8. One-loop corrections

In cases I, II, and III, the tree-approximation
mlllimum at (y~)o 4 0, (Ebs)o 0 0 introduces a zero
mass field which is a true Goldstone boson asso-
ciated with the global y, transformation. This
field, therefore, remains massless to all orders.
It is easy to verify that the one-loop effective po-
tential generated by the fermion, vector-meson,
and spin-zero self-interactions contains no de-
pendence on the relative phase between p~ and

gz, which ensures that Eq. (6) remains valid in

loop approximation as it must. The model with

y, -transformation cases I, II, and III can never
acquire a CP-violating phase in any order. '

The situation in case IV, studied in Refs. 3 and

5, is different because the spinless fields do not
transform under the y, group, and the Goldstone
phenomenon does not occur for this group. As
pointed out in discussion of the tree approximation,
the extremum condition with respect to the rela-
tive s —f. field phases can be satisfied by: (a)
(Pz), =0, no CP violation, which is uninteresting
because of the degeneracy between left- and right-
handed fermion field components; (b) (@~),c 0,

TABLE II, Summary of possibilities for spontaneous
CP violation arising in tree or 1oop approximation. The
"'?"means undetermined in the sense of Ref. 7 and 9.

CP violation I II III IVa IVb IVc

T ree approximation No No No No No

Loop approximation No No No No Yes No

(Pz), o0, and m)=0 in tree approximation; and (c)
P = 0, but (p~), 4 0, (p~),0 0, and 9 undetermined
in tree approximation. Of the interesting possi-
bilities (b) and (c), the later allows the simpler
treatment in the one-loop correction to the effec-
tive potential. "'

I wish to consider the consequences of setting
E=0 in the potential U, v(s, f). This restriction is
not natural in the general or technical sense, "
but makes the one-loop CP effects transparent and
leads to an interesting consequence. %ith E=0,
Uiv "as a symmetry under independent phase
transformations on the s and k fields, whose ki-
netic-energy terms in the Lagrangian also have
this symmetry. The Yukawa couplings do not
share the invariance just mentioned, and it is the
Yukawa couplings whose loop contributions to the
effective potential support the CP-violating phase
and the mass of the Higgs field -Ret, sin0
+Imf, cos0, which is massless in the tree approxi-
mation owing to the artificial symmetry imposed
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on U«. The extra global symmetry shared by the
potential U» and the kinetic-energy term
(D, s)~D's+ (D, t)~D" t ensures that loops involving

spinless fields and gauge fields contribute neither
to the mass of the —Ret, sin0+Imt, cos0 field com-
bination nor to the CP-violating phase.

The one-loop effective-potential contribution of
the electron part of the fermion section is"

1 ~ M, 2 M
V&(s, f) = —,M, 'ln ', +M 'ln

0 0

where M, is an arbitrary renormalization mass,
and

M,(s, t) =A, 's's+ B,'ttt + 2A„B,(stt+ t~s), (12a)

M,((s)„(f},) = M, '

=A@,'+ B,Xt'+ 2AeB,~,~t cos0,
(12b)

M ((s}„(f},) =M, '

=A~X, + Bekt —2A,Be~s~t

(12c)
with

L (Yukawa) =A,S,s'D, +B,S,t'y, D, + H. c.

The heavy- and light-electron-mass conventions
are those of Ref. 5. As I mentioned above, Vgs, t)
is the only loop term which can depend upon the
relative s —t phase 0. Therefore I restrict my
attention to the minimization of V& with respect
to 0. We have

&Vf =0
(s )=As& {t )=*te i8

M'
ME'2 ln 2

—M, '2 ln '2 +/ME' —M, 4A B 1 A. t sin0 (13)

as a necessary condition. Clearly sin0 =0 is one
solution, but there is the more interesting solu-
tion

M ~ M

0 0

which can be satisfied if

(14)

and

0« ~e
Mo

e-3/2 ( E ( ~ 1/2M

Mo

The solutions with M, /M~ «1 correspond to 8 «1
as discussed in Ref. 5. One can readily verify
that O'V~/e8'&0 for M~, M, values which satisfy
(15), so that the solution is indeed a minimum
of the effective potential and a mass develops for
the field which "lost" its mass by my restriction

F=O. This minimum can be chosen to be lower
than the symmetric minimum, V=O, so long as
the lepton masses are small compared to gauge-
boson masses.

IV. DISCUSSION

There have been two points made in this com-
ment. The first is that for the simplest extension
of the steinberg-Salam' scheme which allows P
violation to arise spontaneously, there is only one
transformation on the spinless fields under the
global y, group which ensures a massless neutrino
to all orders (a ground rule of the W-S model) and
which a,iso admits a spontaneous CP violation.
The second, related, point is that this CP viola-
tion must arise through loop corrections to the
effective potential. An example of how this can oc-
cur was presented with a slightly restricted poten-
tial. The CP violation and the mass of one of the
Higgs particles both developed from the one-ferm-
ion-loop term in the effective potential.
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