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ge(958) or p(1420): Which one in broken SU(3) and SU(2) symmetry?
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General nonet mass relations are derived for bosons in broken SU(3) plus SU(2) symmetry. The formulas

predict the mass of the ninth pseudoscalar meson to be very close to E(1420).

In agreement with the qq description, bosons
seem to appear always as nonets in SU(3), i.e. ,

0 '(w, K, ri, q'), 1 (p, K*, q, u), etc. We denote
them as n„(w„, K„,q„, q,') where r stands for J Pc.

The 1, 2", etc. , are known to follow approxi-
mately the ideal" nonet pattern, whereas the 0 '
deviates significantly from the ideal structure.

It has been noted' that one can study the hadron
mass spectra and interactions in a purely algebra-
ic way, using neither the notion of exact SU(3) nor
SU(6). The theoretical frameworks are (i) asymp-
totic SU(3), (ii) chiral SU(3)S SU(3) algebra of the

charges V and A~(n =s, K, 8), (iii) the simple
mechanism of symmetry breaking expressed al-

gebraicallyy

by the presenc e of the exotic com-
mutation relations (C.R. 's) involving the time de-
rivative of the SU(3) charge, i.e., [V, V8] =0 and

[V~,As]=0, where (n, , P) stands for the exotic com-
bination of SU(3) indices such as (K, K ), (K', v ),
etc. , and (iv) the hypothesis" of level realization
of asymptotic SU(3) in the C. R. , [A,AB] =if 8&V&.
We then find" the following: (a) The quadratic
Gell-Mann-Okubo (GMO) mass formula involving
the ti, —ql mixing is an exact constraint. (b) The
quadratic mass spacing K„' —w„' is universal. (c)
An intimate (intermultiplet as well as intramulti-
plet) interplay among the masses, mixing angles,
and axial-vector matrix elements is inherent.
This interplay permits the existence of particular
nonets called ideal nonets which satisfy the ideal
nonet constraints' or Okubo's nonet ansatz. ' (d)

Every nonet, ideal or not, satisfies the general
nonet mass relation

(3q„"+v„' —4K„')(3ti, ' +v„' —4K„') = -8(K„'—v„')'

Equation (1) is found to coincide with the nonet
formulas first introduced by Schwinger' and often
rediscovered in various different approaches. The
possible general nature of Eq. (1) is demonstra. ted

by the fact that the approximately ideal 1 and
2" nonets satisfy Eq. (1) better than the ideal
nonet mass constraints, m„' = q„" and g„' —K„'
=K„'—w, '. However, for the 0 ' nonet Eq. (1)
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predicts the ninth meson mass to be around 1600
MeV in contrast with the possible candidates
X(958) and E(1420).

In this paper we consider the effect of SU(2)
breaking and derive general sum rules valid in
broken SU(3) plus SU(2} symmetry. Contrary to
the usual expectation, the effect is significant:
First, for an ideal nonet r a selection rule for the
axial-vector matrix elements involving q„arises,
i.e. , (ti, (A„-~w„'(k)) =0 for k-~ and u is arbitrary
provided CrC„=1. In the ideal configuration, the
g„becomes a pure ss state. Thus, in dealing with
an approximately ideal nonet r, the neglect of the
G forbidden -axial-vector matrix element
(v„'~A, -~v„'(k}) introduces an appreciable error,
since the G-allowed matrix element (7i„~A „-~v„')

(which vanishes in the ideal limit) is of the same
order of magnitude. Second, for a nonideal nonet
such as the 0 ', the m„' -g„and m„' -q„' mixings
arising through the SU(2} breakings cannot be neg-
lected, since the ri„-tl,' mixing arising from SU(3)
breaking is small.

We find, in particular for the 0 ' nonet, that the
inclusion of SU(2) breaking in our theoretical
framework" brings the mass of g' very close to
Z(1420). Therefore, the assignment rl' =Z(1420)
is strongly favored. Our other results obtained
for the 0 ', 1, and 2" also agree with present
experiment reasonably well.

In broken SU(3) plus SU(2), the m„', rl„, and ri„'

can mix. According to asymptotic SU(3), the crea-
tion and annihilation operators of physical parti-
cles transform linearly under SU(3) [including
SU(2)] but only in the limit of infinite momentum.
Thus the mixing parameters are defined among
the annihilation operators a,o(k), a„(k}, andr ' r
a„~(k) and the hypothetical representation opera-

r
tors a~, a~, and a~ in the limit k ~ by (sup-
pressing the helicity indices)
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We can also parametrize' A, „, g„, etc. , in terms
of the Euler angles (~, , 8„$,). Now imposing the
C. R. 's [V, Vs] =if„8&vr and [V,As] =if„s„Ar and
realizing them in the k-~ limit using asymptotic
SU(3) and SU(2), significant simplifications arise
for the vector and axial-vector matrix elements
evaluated at k-~. Namely, f/=(ct, lvr lP„(k)& and

(n„lP,&—= (o lA„ lPt(k)& with k-~, can be param-
etrized in broken SU(3) [and SU(2)] by the usual
prescription of exact SU(3) and SU(2) pfus mixing.
Here n, p =w, K, t), tt'. The ft't] 's involving the mix-
ing angles (&u„, 8„,p„) a,re given, for example, by'

I. CONSTRAINTS FROM [V, Vp] =0

With SU(2) breaking (including the possible u,
terms), we need to consider the exotic C.R.'s with

( , P) = (w'w'), (K', w ), (K', w'), {K',K'), etc.
The asymptotic realization of these C.H. 's yields'
three independent exact mass-mixing angle con-
straints with the help of Eq. (3):

[V...V,.] =0- ~„'w„"+~„"t)„'+X,"'q„"=w„", (4)

[Vwo Vwo] 0

2~0 2 + g I 2g 2 + g II 2~I 2

= --', w„"+', (K,"+K,"),-(5)
0

[Vw» V.-] =0

whereas the f's which are independent of mixing
angles are, according to our sign convention,
ft",~, =ft;~ =-f~",~ + =1, etc. , for any r. Depend-
ing on whether C,C, =1 or -1, (tw, lP) become the
so-called D type or F type coupling and they can
be expressed in terms of a few reduced matrix
elements and mixing parameters. Then the impo-
sition of our theoretical constraints (iii), [V„,V s]
=0 and [V,A 8] =0, and (iv) lead to several mass-
mixing angle sum rules, after we eliminate the
axial-vector couplings involved. Upon eliminating
further the mixing angles, we obtain tgglo nonet
mass relations together with the simple intermul-
tiplet mass relations.

procedure used is convenient for deriving other
sum rules later. Equation (6) is obtained from

g (Ko 2 )of(r) f(r) &K+ +o)f(r) f(r)

=-(K,"-w,") . (7)

With Eqs. (3) and (4), Eq. (7) reduces to Eq. (6).
We can solve Eqs. (4), (5), and (6) for ~„, 8„, and

Q„ in terms of the masses of w„', w„', q„, tt„', K„',
and K„'. In general, we obtain 16 formal solutions
of which only 2 will satisfy all of the constraints
we will impose later. Precisely which of the 16
possibilities are solutions is determined by the
mass spectrum of the s nonet under consideration.

II. INTERMULTIPLET MASS RELATIONS
FROM [V,dpi=0

We assume that [V,AB] =0 together with [V~, Vs]
=0. We now prove that in broken SU(3) plus SU(2)
symmetry the following simple intermultiplet mass
relations are valid:

K„"-w„"=K,"—w,
" (r and t are arbitrary)

K,'' —w„"=K, '-w", {r and t are arbitrary),

which also implies'K„' ' —K„"=Kot ' —K~+'. (Ko '
—K"= K 0 2 —K ' is not in contradiction with ex-
periment. ) The simplestway toderive Eq. (6) isper-
haps as follows. From [Vwo, A, „-]=0,

with k-~, i.e. ,

=&K„'lA „-lK,'&(K',
l V,.lw,'(k))

K„V~o n„z„V - m„k

= &K„'l V, -lK„'&&K„'lV,olw,'(k))

with k-~ and o. =m, qo, q'0. This yields

=K,"—K„'' . (6)

Equations (5) and (6) are the generalization of the
GMQ and the q-m' transition mass formulas, re-
spectively, in the presence of the ti„' and the SU(2)
breaking. Although usually overlooked, Eq. (4)
should be treated on an equal footing with Eqs. (5)
and (6). We give a derivation of Eq (6), since t. he

where n =n', g, g'. The important point to note is
that if C„C,=-1, (ct„lw,'& and(K„'lK,'&»e E-type
couplings and

&N, lw;&Ifd: =&K,'IK;)If'",',,
Then compared with Eq. (7), the above equation
yields K„+' —w,

"=K", —w+,
' [(C,C,) = -1]. By using

this result in a hybrid way we arrive at Eq. (6).
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In exactly the same way we obtain Eq. (9) from
[Vs+124 +] =0.

III. NONET MASS RELATION PROM t V, A
p I

= 0

Consider (K„I[V+2 (and V220), 24„-]I2t,'(K)& =0 with
k- ~. With z =m', q, q' and e -=C„C, we obtain

&K„'IK', & +elf'„"&„&a„'Iv;&=0, (12)

(K„"-2t„"-)&K„'IK'2&+ep (K„" a, ')f',",'—&a„'Iv', &
=0 .

a
(13)

In Eqs. (11) and (13) we have replaced (K,"-2t22)
and (K, ' —2t2") by (K„"—2t„") and (K„'' 2t+')-, re-
spectively, thanks to Eqs. (6) and (9)—a crucial
step. Equations (10) and (12) are nothing but the
asymptotic SU(3) plus SU(2) parametrization of
axial-vector matrix elements. However, Eq. (1)
(obtained from [Vro, A2-] =0) now demands an inti-
mate interplay among the masses, mixing angles,
and the axial-vector matrix elements. From Eqs.
(10), (ll), and (12) we can express the axial-vec-
tor matrix element (a„IP,) under consideration in
terms of (2i„l2t', &, i.e.,

&K„'IK', &

&2i, 12t2&

(14)

where M, (2=1, 2, 3, 4) depends only on s (once e
=C„C, is fixed) and is given by

M, =-(f',".'.)(f',".', ) '[(K -K") ("' v")]

[(K+2 K02) (v+2 l2t)i] 1

I,= -(f',".'„)(f'".'„.) '[(K,"—K")—(v" —n, ')j

x [(K"-K") —(v''--q")]-'

We stress the general nature of Eq. (14), i.e. , 2'

and f are arbitrary. In exact SU(2) the second

(K„"-2t„")(K„'IK;& g(K„' —a„')ft",' &a„'Iv;& =0

(11)

and similarly from &K„'I[Vs+ (and Vx+), g +]I2t, (k))
=0,

equation of Eq. (14) recovers the SU(3) result"

&ti„lv,'&/(tl,'I2t2'& = tan~(tl„" 2t„—')(tl„'-2t, ') '

for C„C, =1, where m is the SU(3) 2I„-2t,' mixing
angle. For the ideal nonet r satisfying the mass
constraint q„"=m„', the remarkable selection rule
&2I„I2t,'& =0 thus follows. Substituting Eq. (14) into
Eq. (13) we obtain a nonet mass relation,

M (K"-v")+ft"~ (K"

(15)

which is a genuine broken-SU(2) nonet mass form-
ula when combined with Eqs. (4), (5), and (6) [it
reduces to an identity in exact SU(2)], and is,
therefore, sensitive to the accuracy of input SU(2)
mass differences.

IV. MODIFIED SCHWINGER'S NONET MASS FORMULA

Another nonet mass relation is obtained by using
the hypothesis" of level realization of asymptotic
SU(3) ill the C. R. , [/2, A2] = f 2~2V2g. Insert this
C. R. between the states &a„(k, A) I

and Ip„(k, lt)& be-
longing to the same nonet x with helicity A. and k

Then the right-hand side of this equation pro-
duces a definite pure number g'z according to
asymptotic SU(3) and SU(2) and the ratios of g~s's
(for different a, P, and g) are fixed. Write the
left-hand side as the sum over the single-particle
inter mediate state X &

inserted between the char ge s
A. and A ~0. We now assume that hadrons consti-
tute levels (such as the levels of I = 0, 1, . . . of the
quark model) R2, R„.. . and among the interme-
diate states X, each level R; separately realizes
the ratios of g~ &'s. Actually the states X, with

C„C,-1 automatically realize the ratios under con-
sideration so that our realization procedure yields
constxaints only for the matrix elements

alA„ly, &, etc. , with C„C, =1. This hypothesis
opens a way to repla. ce (with the introduction of
the concept of levels) the usual brute-force impo-
sition of higher symmetry which is significantly
broken and is able to produce' the good results of
SU(6) without producing the bad ones. We now, for
example, choose o.„=P„=m„' and o.„=p„=K„'for
the C. R. , [A,+,21„-]=2V„2. Then the y, will be

and K&. For our present purpose, con-
sideration of the realization by the ground state
Il, (i.e., f =0 ' and 1 and A. =O or X=+1) is suf-
fic ient and the r eal ization condition becomes,

l&v: lv2& I'+ &2t: I2I2& I'+l&v: 12IG I' —2l«: IK2& I' =0

where t =0 + for C„=1 and t =1™e~for C„=-1. By
using Eq. (14) this equation provides another mass-
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mixing angle constraint valid for any nonet x

M, 2 + 1+(M,M, + M,)' —2M~' = 0; (16)

Eq. (16) is a modified Schwinger's nonet mass
formula when combined with Eqs. (4), (5), and (6)
in broken SU(3) plus SU(2) and reduces to Eq. (1),
if SU(2) is exact.

V. NUMERICAL RESULTS

We now have five mass-mixing angle constraints,
i.e., Eqs. (4), (5), (6), (15), and (16). Expressing
the mixing angles (m„8„,P„) in terms of the mass-
es from Eqs. (4), (5), and (6), Eqs. (15) and (16)
become the two genuine nonet mass formulas.
Therefore, out of the six masses
(v,', v„', K~+, KD, q„, t)„') four will be predicted from
Eqs. (8), (9), (15), and (16) once the other two are
input (for r =0 ', four masses must be input).
However, Eq. (15) especially requires an accurate
input SU(2) mass differences as mentioned before.
In fact, for the 0 ' Eq. (15) is sensitive even to the
errors of the ma. sses of m+, m', K', E' as listed by
the Particle 13ata Group. However, the experi-
mental value of g is certainly in the range of the
solution of Eq. (15) and the adoption of the experi-
mental value of g predicts the mass of g' at g'
=1413.49 MeV. We obtain two solutions which dif-
fer only by the signs of the mixing angles and both
predict the same mass for q'. Therefore, E(1420)
is strongly favored as the ninth 0 ' meson. The
mixing angles are given by u =+ 6.2280, B

= -0.6249, and Q =+1.4285 and they may be re-
garded as the SU(3), SU(3)-SU(2) interference, and

SU(2) mixing angles, respectively. , The importance
of SU(2) mixing is indicated by the magnitude of Q.
Our solution, in fact, automatically singles out the
favored solutions' (which can explain the violation
of the ~sl~ =2 rule in the E» decays) out of 16 pos-
sibilities obtained when we consider only the con-
straints from [V~, V8] =0, i.e., Eqs. (4), (5), and

(6).
Since the widths of 1 mesons are broad and

the center mass values are not well known, we
proceed as follows. We input only the relatively
better known masses of &u and Q (we take u
= 782.66 MeV and Q = 1019.69 MeV) and predict the
others from Eqs. (4), (5), (6), (8), (9), (15), and
(16). We again obtain only two solutions which dif-
fer essentially only in the signs of the mixing
angles. The predicted masses are the same for
both solutions. They are p' =751.79, p'=751.76,
K*' =888.52, and K*'=890.74 MeV. The SU(3),
SU(3)-SU(2) interference, and SU(2) mixing angles
are given by ~ =y39.5148, B =+0.4458, and P
=+1.0687, respectively. We also find (p'~ p')
=0.259(p( p') which implies that the consistent

neglect of the 6-forbidden axial-vector matrix ele-
ment (p'~ p') as compared with (Q~ p') (which is
usually assumed to vanish by the quark-line rule)
may lead to erroneous results. For the suppres-
sion of (p~ p') we predict (p~ p')/(~~ p') = 0.074,
without invoking any assumption, which is con-
sistent with the observed rate of Q- 3m decay. '

It is interesting to note that our predicted values
for the p+ and p (only a, 30-keV ma. ss difference)
are some 20 MeV lower than the Particle Data
Group values. We feel that this is in line with the
observation by l,ichtenberg and others' that the
mass of a broad resonance and its width as de-
termined by the position of the pole are smaller
than the mass of the resonance and the width which
enter the phenomenological Breit-Wigner param-
etrization. A simila, r situation is, in fact, experi-
enced''0 for the a(1232).

The interplay between masses, mixing angles,
and axial-vector matrix elements given by Eq. (14)
enables us to compute many important branching
ratios using partial conservation of axial- vector
current for A, . For example, with s = 1 and t
= 0; (&u/v')/( p' ~v') =M "+M,'"'/M. ,'"' = —0.019.

We then predict I'(&u- v'v )/I'( p'- v'v ) =4.00
x 10 ' [experimental value = (8.64+ 2.10) && 10 '].
For s = 0 ' and f =2" we predict (K' ~K'**)/(q ~A;)
=M,'"' = —1.068 which yields I'(K'**-(Kv)')/
I'(A; - q w') = 2.75 (experimental value = 3.62
+0.61). If t)'=E, then the two-body decay I'(E
-K*K) is small, = 1 MeV, and E-KK should take
place through virtual processes like E-5(0")+v,
«(0 ')+K, K**+K, etc. -KKv. If q':—X, the ratio
B = I'(A, -Xv)/I'(A, —q v) is appreciable' (even
from the naive quark-counting argument), whereas
present experiment indicates R & 7%.

VI. OUTLOOK IN SU(4)

In the framework of SU(4), the implication of the
assignment q' -=E has been discussed by many au-
thors ""

As to the question of whether SU(4) preserves
our present result (especially the assignment g'

E) obtained in SU(3) o—r not, we hold a rather op-
timistic expectation. First, in the similar theo-
retical framework extended to SU(4) [i.e. , in the
framework of asymptotic SU(4) and the chiral SU(4)
&& SU(4) charge algebra plus exotic C.R. 's, but
without in~Posing the hypothesis of level realization
of SU(4) in the C.R. , [A, ,A„]=if„,V,], Takasugi
and 0neda have demonstrated" that the Schw inge r's
nonet mass relation emerges, for nonet mesons
belonging to any 16-piet of SU(4), in the interesting
limit g,„' ~ and y„-0 but g,„'y„-0. g,„denotes
the mass of the heaviest member (predominantly
a ec state) of a 16-pl.et x and y„essentially rep-
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resents the coupling between the g,„and the
octet members of the 16-piet x. Therefore, if
this limit is close to reality [which is suggested
by the heavy mass of g,„and the narrow widths
of the decays of r),„ into old SU(3) particles]
Schwinger's nonet formula again emerges as a no-
net mass relation even in the charm scheme of
SU(4), favoring the assignment r)' = E. Se—cond, if
we input 7i'= E=1-.416 GeV and q, —=X(2.8) =2.8 GeV
in the pseudoscalar intramultiplet mass equation
obtained" in this theoretical framework [which,
however, neglects the SU(2) breaking], a D mass of
1.91 GeV is predicted, "while the choice of q'
—= X(958) yields a. D mass of 2.18 GeV. Therefore,
the recently established value" of the D mass
=1.865 GeV also seems to favor the assignment of
q': Ein SU-(4). The effect of SU(2) breaking —ne-
glected in the results (masses and decay rates) of
Ref. 11—will be significant, especially for the 16-
piet whose structure is close to ideal. This is be-
cause of the presence of the selection rules as-

sociated with the ideal structure. For example,
the value of the G-forbidden axial-vector matrix
element of ( p ~

p') obtained in this paper implies

g~«, „sg„„since the rate of J/P-pv is ex-
trernely small. This demonstrates that for the
sum rules involving the 1 16-piet the G-forbidden
axial-vector matrix elements cannot be neglec-
ted '4

If q' =-E, the simplest possible assignment" of
X(958) [if X(958) is really a 0 ' meson] will be the
lightest member of the radially excited 0 ' 16-piet
of SU(4).

Note Added. We have recently received anunpub-
lished report by G. J. Gounaris and S. B. Saranta-
kos. These authors also found that the SU(4) sym-
metry partner of g is forced to lie in the mass
region of E(1420) rather than of q'(958).
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