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Pseudoscalar-meson mixing problem, spectral-function sum rules, and chiral symmetry
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The pseudoscalar-meson spectrum is first discussed in connection with SU(4) extended spectral-function sure

rules. The spectrum can be fitted into the sum rule to within a well-known ambiguity in assigning the 7l'

particle. In order to remove this ambiguity, the g' decay width as well as its mass are next investigated in

the effective-chiral-Lagrangian approach. Experimental data seem to favor the assignment of g' = X(958).

I. INTRODUCTION

Since the discovery of the new resonances g and

g', an enormous number of theoretical proposals'
as well as experimental searches' have been made
in order to understand the possible mechanism.
Among many theoretical attempts the simplest and

probably the most successful one is a charm mod-
el based on SU(4) symmetry. ' As a way of under-
standing the new resonances, Weioberg's first and

second spectral-function sum rules4 have recently
been extended to SU(4) symmetry. "' It has been
found that the vector-meson mass spectrum can be
fitted nicely into the sum rules constructed from
the conserved vector currents. '

Although the vector-meson spectrum has been
fitted into the Gell-Mann —Okubo mass formula by
many people, "' there are several advantages in
using spectral-function sum rules. In the spectral-
function approach once an SU(4)-breaking term is
fixed, the mass spectrum comes out uniquely.
This is not so in the group-theoretical approach.
The question of whether one should use the quad-
ratic or the linear mass formula is an old prob-
lem. ' Our approach is independent of details of
mixing models ~ The traditional way relies on the
mass-mixing model, while there are other mixing
models. '

Our approach has fewer ambiguities and param-
eters than a group-theoretical one. Matrix ele-
ments of vector currents, sandwiched between the
vacuum state and a one-vector-meson state, are
directly related to vector-meson masses, and
hence SU(4)-breaking effects are automatically
taken into account. Therefore, we do not have to
assume a specific mass dependence of vector-meson-
lepton- lepton coupling constants, for instance.
This point has caused a serious theoretical ambi-
guity in other approaches. ' It should also be ob-
served that, since conserved vector currents can
reproduce the vector-meson spectrum well, scalar
mesons play a negligible role or none at all.

After the discovery of g, the pseudoscalar-me-

son system has been reinvestigated. The system
needs a larger amount of mixing' which might
critically depend upon the mixing scheme. For
this reason we have decided to investigate the
pseudoscalar-meson system using the spectral-
function sum-rule approach. ' Unfortunately, the
pseudoscalar-meson system is more complicated
than the vector-meson one, owing to the possible
existence of axial-vector mesons. Since the ex-
perimental situation of axial-vector mesons is not
clear at present, we ignore them entirely, thus
avoiding the increase of unknown parameters. ' In
effect, we concentrate on the divergence of axial-
vector currents rather than on the currents them-
selves.

In common with other approaches, ' the following
two assignments of the neutral member of the
pseudoscalar meson are possible:

I. q(549), q' =X(958) and q,

II. q(549}, q' =E(1420) and q, .

If we insist that the q„pseudoscalar counterpart
of ~t), should be close to the pure cc state, the a,s-
signrnent II might be preferable. '" Since these
two assignments predict a different mass value for
q„ the matter will be settled experimentally.

In order to remove the theoretical ambiguity, we
should investigate not only the mass but also the
decay width. Contrary to X(958) decay, the fol-
lowing process is energetically possible:

E(1420}-K+K+ w .

In fact, through this decay mode the E meson was
first observed. "

In this paper we are going to calculate the pro-
cess (1.1) within the linear chiral-SU(3)x SU(3)
Lagrangian approach" assuming that E is a neutral
rnernber of 0 mesons. In the limit of infinitely
large scalar-meson masses, the obtained ampli-
tude does not contain any free parameters and is
found to be negligibly small. This certainly con-
tradicts the present experiments. On the other
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hand, if we choose the assignment q' =X within
the same scheme" we can account for a process
such as

(1.2)

reasonably well. Therefore we conclude that the
assignment of z)' =X(958) should be preferred.

II. THE SPECTRAL-FUNCTION SUM RULES

axial-vector current) constants by

(0 iA (0)
i

z& (q)) 1I2 1'q 5z&&

(j,k=1, . . . , 3),
(2.5)

(0 ~A& )(0) IX&&)(q)) =,/
r zq 5

We start from the covariant propagator for axial-
vector currents A'" (i =0, 1, . . . , 15; p, =1,2, 3,4),

n''z = —i d xe "'"(0~T2'(A'"(x)A„'z'(0)] ~0)

= —i dm'
2 2 qqp~(z)(mz)q'+ m',

and

F(k)
(0IA'."(0)IP(q)) =

2

(j,k=4, . . . , 7),
(2.6}

+ 5 +q"q" p""(m')
pp ~2 A

(2.1)

(k = 0, 8, 15; P = z), z)', z),} .

(2 'f)

where pz((z)(mz) [and p„'"'(m'}] are the spectral
functions for pseudoscalar (and axial-vector} me-
sons, respectively. Ignoring possible contributions
of axial-vector mesons, we restrict ourselves to
the following object:

Substituting an expression like

F 2
p'"'(m') = r 5(m' —m ')5

2
(z,j =4, . . . , V)

(2.8)

( ) "»(m')
q q n(*"(q)=-i dm'

V fitz
Cf + PR

Assuming that q„q„n(,'„z)(q)/q' becomes SU(4)
symmetric as q'-~, we write

(2.2)

in E(ls. (2.3) and (2.4), we obtain

2A =F 2 =F 2 = g (F&»)2 = g (F&»&)2 = (F«&)21
z x

(2.9)

pa~~ =A 5'y+ '5&05 0 O ~ F(8)F( ) ~ F(8)F(0) ~ F(1 )F(0) (2.10)

(z,j=0, 1, . . . , 15),
(2.3)

which yields an extension of Weinberg's4 first sum
rule. Concerning an extension of Weinberg's
second sum rule, we adopt the following form:

dm'P" (zm')m' =A[N5($+ Y5(56zo

+ C(d, z+ Pd„;z)] . (2.4)

(where i = &), z) ', and z),), and

m, 'F,' =2A[N+ C(1/1&3 +P/v 6 )] )

nz, 'Fr ——2A{N+ C[-1/(2v 3)+ P/v 6 ]),

Q m '(F"')' = 2A [N+ C(- 1/M3 + P/v 6 )],
(2.11)

P m '(F'."}'=2A[N+Y],
Here A, X, C, N, and p are some constants in-
dependent of SU(4) suffix i."

Exactly the same form was investigated for the
vector-meson case.~ The explicit symmetry-
breaking term (C term) is added in the spirit of
Das, Mathur, and Okubo. '

We saturate only the low-lying pseudoscalar-
meson states m, K, g, g', and q, which are sup-
posed to belong to the 15+1 representation of
SU(4). As discussed in the introduction, there
are two possible candidates for q', and g, has
yet to be observed.

Let us introduce PCAC (partial conservation of

g m; (F; ) =2A[N- (-', )' ')3C]

m 2F(5&F(o) C
t

g m 2F(5)F(15) C
t t f ~6

p m 2F(15)F(o) CP
t t t ~6t

Here we note that C and N are expressible in

(2.12)
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terms of P and masses only

C = (m,' m, '),2

v3
(2.13)

(2.14)

Equation (2.15) can be rewritten

o'(m, ' —E"")+e'(m,'X —. E"')+X'(m,' —E"')+2eoA

=(m ' —E'"')(m ' —E"')(m 'X —E"')

(&=0 'fl' n, ) .
First we observe that Eqs. (2.9) and (2.10) are
trivially satisfied when F "/(2A. )' ' F "'/(2A)'i'
and F~~"/(2/IX)'i' are regarded as three unit
orthogonal vectors. On this basis, however, the
mass matrix is not diagonal, as seen from Eqs.
(2.12) and (2.11). In order to identify m& to be
physical, the mass matrix must be diagonalized.
Thus, independent of PCAC constants, we must
have the following mass relation:

E&8& —m '
t

(2.17)

We note that the mass relation for pseudoscalar
mesons has a form identical to the vector-meson
one. ' For given m, ' and mx', Eq. (2.17) deter-
mines q, g', and g, masses in terms of P, X, and
Y or vice versa. Since the experimental g, mass
is not available at present, we cannot determine
all the unknown parameters (P, X, and Y) com-
pletely. According to the quark model, however,
P can be related to the quark mass by

E&0)
—m2x = 0, (2.15)

2M2P+1 m, —m~
3 m) —RE(p

(2.18)

for i = q, q', g„where

E&"&-m ' where m is a mass of the n quark. Thus, as-
suming universality, we may use the value of P
determined from the analysis of vector mesons.

The 16-piet model gives

E"'=N+C — +
Ms

3m' 2mEQ m

4~2 (m»*' —m, ') (2.19)

E&"&=X- — PC

E&0& =X+r,
C C CP

Me'

(2.16)

and a more refined model gives'

p =21.49 .

Equation (2.17) can be written explicitly as

(2.20)

x +x , ot' —M2 Pn—'+p, ——(p, —, n'+& M2 Pn'+—Y)

2Q
+x n' (3 M2P) p,

' ——(p,
' ——', o'+ —,

' v2 Po'+ Y) — (3+X+3p')~

I2

( —,
&' —'—' M2 Pn'+ p~X —p,

' —Y) = 0,
(2.21)

where x,.:—m,.' —p,
' with p,

' =3 (4mx' —m, ') and o' =mx' —m, ' (i =q, q', and q, ), or, equivalently,

x +x,+x = — p. ——,n + l3n +Y —p ——,n +@2 J3n
vT 2 2 1

n n' nc 3
(2.22K)

r 2 1, 2, M2, — 2a
x„x„,+x„x, +x„.x„=(—', —M2P)n' p,

' —— p.' —,'n'+ Pn'+ Y— — (3+X+3P'), (2.22b)

(2.22c)
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Substituting mass values" for m, K, q, and q',
we have determined the unknown parameters X
and Y and an q, mass. Numerical results are
listed in Table I ~ We note that parameter X is
not close to 1 and that Y/n is not small at all.
Thus the pseudoscalar-meson spectrum has quite
a different structure from the vector-meson one
where the nonet, or its SU(4)-extended 16-piet, model
supplied us with such a good first approximation. In
other words, our numerical analysis tells us that we
should not apply nonet, or 16-piet, mass relations,
which are the direct results of the assumptions X= 1

and Y= 0, to the pseudoscalar-meson spectrum. F-
meson and D-meson" masses can be predicted sim-
ilarly.

From Eqs. (2.3) and (2.4) we obtain

Y/n X mac

r)'=X
g'=E

18.371
14.038

4.6021
1.3004

2776.6 MeV
3092.0 MeV

where

v 3 X [&&2 n'+3p(l&s —m, ')]
4~g». 'P+ 3(p, s ——,'a'+ Y Xr»,—s).

» 2 n'+3P(l&' —rrr,').
4&&2 Q P+ 3(l&. —sQ —r&1&~)

(2.35)

TABLE I. Numerical results for Y, X, and g, with a
choice of P =21.49 and with known pseudoscalar-meson
masses as an input.

2A =F' =F =F =FD (2.23) In terms of a,. and b, , PCAC constants are given
by

@AD A =N+ C

1
)'n~ A =N+ C

v3

where

(2.24)

(2.25)

(2.26)

F"&=+F, (a, xb },.

r

F;'"=+F,a, (a xb),.

F'" ' = + F,b, (a x b ),. .

- X/2

p(a x b),.

-X/2
p(axb),

-1. /2

Q(ax b),

(2.36)

(2.37)

(2.38)

( j = 9, 10, 11,12),

(2.27)

2v2
P')l D

= P. —Q + PQ (2.28)

2v2m~'= p. '+ Pa' . (2.29)

With a choice P = 21.49, masses are predicted to be

~nD=2230. 2 MeV

»~~ =2178.2 MeV .

(2.30)

(2.31)

Earlier, essentially the same values were pre-
dicted by the group-theoretical approach provided
one used the quadratic mass formula. ' As we
stressed in the Introduction, the spectral-function
sum rules supply us with information not only on
masses but also on PCAC constants. We find

(2.32)

which is, apart from uninteresting phases, just an
SU(4) relation. '" After some calculations, other
PCAC constants F„, F„, , and F„can be deter-
mined. The ratios of F,. are, for instance,

F(o) F(zs)
rs&

—-a, and &s& =b, (i=&l, &l', . ~,),
f

(2.33}

(j=13,14) .

Substituting Eqs. (2.13}and (2.14) we obtain

Here a comment is in order. Suppose q, is a
pure cc state, then we should have

F(8) 0
C

or equivalently from Eqs. (2.33) and (2.35)

4v 2 P». ' =3(r»„' —i&'+ —',o') .

With a choice of P =21.49. Eq. (2.39) gives

(2.39)

m„=3077 MeV,
C

which is close to the previously predicted value if
&l'=E is assigned (see Table 1). This is not so for
the assignment of &)'=X(958). Thus if we accept
the assignment of r)' =X(958) either the impure
cc state should be allowed or the nonuniversal
value of P must be entertained, agreeing with
earlier observations. ' Since the numerical values
of F„, etc. are not of immediate experimental

C

interest, we shall not discuss them any further.

III. F. ~ K + K + x

In this section we are going to discuss the ques-
tion of which assignment of q' can be consistent
with the pseudoscalar-meson system.

Since the spectral-function- sum- rules approach
is awkward for treating problems like 3-body
decay processes, we rely instead on the sup-
posedly equivalent phenomenological- Lagrangian
approach from now on. For simplicity, we limit
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ourselves to the SU(3) level and concentrate on
the 0 -meson nonet and discuss the possible as-
signment of the rr' meson. [A complete discussion
on the pseudoscalar-meson 16-piet system in
SU(4) x SU(4) symmetry will be given elsewhere. ]

Using the linear chiral-SU(3) x SU(3) approach
developed earlier, "we are going to compute the
decay mode

FIG. 1. Feynman diagrams for E X'+K +z decay.
E(p) -K'(q, )+K (q )+rr'(q, ), (3.1)

where the momentum of each particle is indicated
in parentheses. Corresponding to the Feynman
diagrams of Fig. 1, the T-matrix element in the
tree approximation is given by

and can be related to two-point vertices, i.e., es-
sentially to masses. Three-point vertices were
previously evaluated as"

geKK

gran'ff

+ ~f{Ksgm' K

m, '+(p —q,)' m„'+(p —q )'

gy{Kif ~m' K
m„'+ (p —q, )' (3.2)

—Z =g,„,,(e 7r)r)'+ g,«(K(r y.)K)6KK

where three-point vertices and a four-point vertex
are defined by

0,(1+ W

P'22„—PH R'2„" —P'H K P2K —7'22

o.(l+ W) 2& n(W 1)—
2 . 2

22'2 —2'P2 K
gEKE &(I+ W)

g,„,, = —(m,
'-—m& '),

Q

(3 4)

(3.6)

+ [g„„,rq'(rrK)+H. c.]

where parameters n and 5' were introduced in
Ref. 13 and can be related to FK and F, as

+ g„r, (rr(7 rr)K)+H. c. +jq' 'rr'KK
~2 KKr

(3.3)

Here e (or rr) is a, scalar meson partner of the
pseudoscalar meson rr (or K), respectively.

In the linear- chiral- Lagrangian approach these
three- and four-point vertices are all calculated

W=2Fx/F, —1 .

Parameters a and b depend upon a mixing angle of
q and ri'. Its explicit form will be given later [see
Eq. (3.12)]. We must evaluate only a four-point
vertex f. In the notation of Ref. 13, let us write
the chiral-invariant four-point and also three-
point vertices as

1 9'V, 9'Vo
b u f

9~b9~u9~f 9@2 &a&c&e&g+2 ~ 9~b9 d9 f a~cue y

cy by cy dy ey fy g y 2f a c e g' 0 r2yby Cy&y eyf
(3.10)

where Vo is the most general chiral-SU(3) xSU(3)-invariant potential made of nine pseudosca. lar-meson
fields and nine scalar-meson fields, and the notation (), means that the enclosed object is evaluated at the
equilibrium point of the system. (For further discussion on the choice of an explicit symmetry-breaking
term, etc. see Ref. 13.) In Eq. (3.10) qry(s,') represent nine physical pseudoscalar (scalar) mesons, respec-
tively. The previously defined parameter f is now rewritten as

94V 9 9{p~ 9p
9 '270 9$

Neutral components of yb are related to m0, q, and q' by

m0

cp2
I

~ fr rr (3.11)

ry= (sin8+ v2 cosg), fr= (- v 2 sing+ cos0) .1 -1
~6 ~6

(3,1Z)
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Using the basic formula,

g4V
n(l+ W)

a(p ay~ e(p', ey,', (no sum)

«~'Vo $3 V $3 V
aq ay~as', , ' ey ey3es,', eq', ay', es,', ey ay~as', , ' eq ey', es,', ' ay,'acp', es,', '

(3.13)

we derive

1 &'Vo $3V ~3VO 1 B~VO

n(1+ W), &««'&««'as', , 8«)'8««'ss', , sq'sq', Ss,' V2 8««'8(p', ss,'

1
n(1+ W)

u("'e™~) &~ » ~ g~»r( +~25)
M2a M2 ~2

(3.14)

After eornbining everything, we find

(n+v 2 h)T= 2, q2ni„' —m„.' —m, —(m„—n&, ')(ni„' —m, ') 1 1
m„'+(p —q )' m„'+(p —q, )'

0 k'H
6

—Ol g(m, ' —m~') 1—
~2 «z'(1+ W) ' ~ m, '+ {P—q, )

(3.15)

Consistent with Adler, the above amplitude vanishes in the soft-kaon limit q, =0 (keeping other pa.rticles
on the mass shell). The final result contains scalar-masses on which we do not have much experimental
information at present.

According to the analysis of vector-meson masses' based on the spectral-function sum rules, however,
scalar mesons are not needed at all. Therefore, motivated by this fact and for the sake of simplicity, we
let scalar-meson masses»~, and m„' be infinitely heavy. Then

T(E -K'+ K + ««')

[(mz- m, )'—2m»' 2mzT, ]+(v 2 c—os8+ sin8)[m»' —(mz —m, )'+2m T, ]
2

J (2M2 cos8 —sin8)

(3.16)

where T, is a kinetic energy of the r meson in the rest frame of the E meson. This expression does not
eonta, in any free parameter. As was mentioned earlier, S' can be determined from

W =2F»/F, —1 .
From semileptonic decays, ~F»/F,

~

is conventionally taken to be 1.28, but there is some uncertainty as-
sociated with this determination. Alternatively, F»/F, =1 [SU(3) value] might be used. The former gives
8'=1.56, while the latter gives W =1. Regarding W as a free parameter, we can independently determine
8' from the following mass formula"":

2W m» (mq —Ill» ) + 2W(lH» —HE )(Hl q
—2m» ) + F11 (m„' —ni, ') —2(m»' —m ,).

2W'(ni„' —m»') —2W(m»' —m, ')+ m„' —m, ' (3.17)

With an assignment «l =E, , W is determined to be 1.055, which is close to the SU(3) value. Earlier we let
scalar mesons be infinitely heavy. Theoretically speaking, this procedure is valid only if 8" is close to 1.
With an a.ssignment of ««'=E, the above criterion is satisfied. With a choice of q'=E (hence with W
=1.055) the mixing angle 8 turns out to be'

6) = —0.0977

Substituting numbers, we obtain

T = —6.212(m,o/F, )'[1+0.2041(T, /m, )] .
This in turn gives the following decay rate":

I'(E-K'K vo) =0.26 MeV .

(3.16)
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The reason why we obtain a vanishingly small amplitude is due to the fact that the two terms originating
from v and e interfere destructively. When we rewrite Eq. (3.16) in the form

T(E-K'+K +z )

—mz'(3)'2 cos8+sin8)+ (f2 cos8+sin8) — I2mz' —(mz —m, )'+2mzT, )
(2)(2 cos8 —sin 8)

~3F,' 1+ 1+W

(3.19)

we note that in the limit of W= 1 and 8= 0 the
energy-dependent term disappears completely,
leaving a small constant term

T(E-K K z") = —)L2 (3.20)

(W=1, 8=0) .

Numerical results are not sensitive to the choice
of W or 8 as long as W stays close to 1 and 8 stays
close to 0.

Present experimental data are scanty. Earlier
Baillon et al."gave, within large error bars,

I'(E —KKw) =40 MeV.

The latest particle data' give, as an educated
guess, the following total decay rate of E:

where T„ is a kinetic energy of p in the rest frame
of q'

(T„-=q'„—m„) .
The above formula holds for q'=X as well as q'

=E. We note that, contrary to the g'-KK7t decay,
no delicate cancellation occurs here. If we assign
q' = E, we then have

'3

2(E-11~ ' ~ )=38.88(1—0.5341 " . (4.2)
PP7 p

Since the kinetic-energy term is not necessarily
small, we evaluate the phase space exactly. Then
the width for E —g+ 2m turns out to be

r(E - q+ 2z) = -,' r(E - q+ & + z-)

I'z(total) =- 60 + 20 MeV,
= 15.41 MeV . (4.3)

of which roughly -', might be the KKm decay mode. '
Hence, the experimental width is roughly

I'(E -KK )-z12 MeV . (3.21)

IV. q' ~ q + 2n

We can also calculate

E(f) —n(q„)+z'(q. )+z (q )

in the same SU(3) x SU(3) model.
In the infinitely-heavy-scalar-meson limit the

T matrix element for g'- g+ w'+ 7t was obtained
as13z22

T())' —ri+ z' + & ) =, (2V 2 cos28 —sin28)3y 2

x I (m„, —m„)' —2z' —2m, , T„),

(4.1)

This should be compared with the theoretical value

I' (E —KKz) = 6I'(E -K' K z') = 1.5 6 MeV,

(3.22)

where isospin invariance is assumed. "
In spite of large experimental uncertainties, it

is clear that the theory cannot account for the
broad width which present experiments seem to
indicate.

Unfortunately the experimental width is not ac-
curately known yet. The following width may be
guessed from the data-":

I'(E —q+ 2z) —
—,
' I'z(total) -36 MeV . (4.4)

Thus we cannot draw any conclusion from the
analysis of this decay at present.

Let us next discuss the X-g+m'+ ~ decay with
an assignment of q'=X. From Eq. (3.1 t), etc. we
find W=1.7 and 8=0.005. Since W is not close to
1 the idea of infinitely heavy scalar mesons may
be more questionable here. " The above value of
W is, however, rather close to that determined
from Fz/F, = 1.28.'4

Because the phase space available is small, the
decay width turns out to be small,

I' (X- q+ z' + z ) = 4.08 x 10 ' MeV,

or equivalently

I'(X- @+2z) = —', I'(X- q+ z'+ z )=0.0611 MeV .

(4.5)

Here again the phase space was evaluated exactly.
The above value is smaller than the nonrelativistic
one." The theoretical result is compatible with
the present experimental upper limit
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I'(X- q+ 2m) ( I MeV . (4.6)

In conclusion, if we assign q'=E, then we have
difficulty in explaining the broad width for E
-K+K+m decay. On the other hand, if we assign
q'=X(958), such a problem does not exist. In
fact, the theoretical width for X-q+27t decay is
compatible with the small experimental upper
limit. Although the assignment of q' =X (958)
should be favored at present, more accurate ex-
perimental data on the energy spectrum of an

emitted particle or the widths are highly desirable
in order to test the theory more precisely.
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