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In a Deck-model description of meson diffraction dissociation, we study the contribution made to the low-

mass enhancement by the vector-meson-exchange Deck amplitudes. The vector-exchange amplitudes are

parametrized with the help of data on the electroproduction of p mesons. Cross sections for vector exchange

are compared to the standard pseudoscalar-meson-exchange Deck results and are found to be comparable in

specific cases. A detailed spin and helicity amplitude analysis shows that the vector-exchange Deck amplitudes

provide a low-mass system which satisfies approximate s-channel helicity conservation, whereas the

pseudoscalar-exchange terms yield approximate t-channel helicity conservation. Combining the two

contributions, we show that approximate s-channel helicity conservation holds in Kp~(pK)p and in

Kp~(coK)p. However, t-channel helicity conservation is expected in Kp~(K~@)p, 7rp~(per)p, and

Kp ~($K)p. These results agree with data. The relevance of these results to the interpretation of the Q-meson-

resonance region is discussed.

I. INTRODUCTION

Detailed experimental analyses have recently
provided a wealth of information on the spins,
parities, and helicity properties of hadronic
states produced by diffractive dissociation. ' ' In
meson-dissociation reactions of the type 0 p
—(l 0 )p, it is observed that the low-mass vector
pseudoscalar system (l 0 ) is formed predomi-
nantly as an S-wave J~= 1' state. In two processes,
Kp —( pK)p and Kp —(+K)p, the helicity of the pro-
duced S-wave system is primarily zero when mea-
sured with respect to the s-channel coordinate
axes. ' ~ By contrast, for Kp-(K*p)p and vp
-(p~)p, the helicity is approximately zero with

respect to the t-channel axes."' Less precise
data on vp —(K*K)p and on Kp —(QK)p suggest
that t-channel helicity conservation also holds in

these two cases. '
The Drell-Deck model has been invoked in at-

tempts to explain many features of diffraction dis-
sociation. ' It has been known for some time that
the model leads naturally to dominance of J~= 1'.
In situations in which the pseudoscalar-exchange
Deck graph dominates, the model also predicts
approximate t- channel helicity conservation' for
the J =1' state. Until now, however, it was un-
clear whether the model could accommodate s-chan-
nel helicity conservation. In this article we per-
form a detailed helicity analysis of the model, in-
cluding both pseudoscalar- and vector-exchange
graphs. We conclude that the model leads to ap-
proximate s-channel helicity conservation for
Kp-(pK)p and for Kp-(uK)p, while it maintains

approximate t-channel helicity conservation for
Kp-(K*vr)p, for vp-(pv)p, and for Kp-(QK)p.
These results are in excellent accord with data.

The diagrams sketched in Fig. 1 show the pseu-
doscalar- and vector-exchange Deck graphs which
generate low-mass diffractive enhancements. The
vector-exchange contributions have often been ne-
glected in the past for reasons not properly justi-
fied. Data are now known to require their inclu-
sion. For example, the model with only z exchange
predicts a crossover in the momentum-transfer
distributions for Kop-Q'p and Kop-Q'p (Q-K*p)
in disagreement with data. ' Inclusion of the K* ex-
change was conjectured to remedy the error' and
this is verified experimentally. " Appropriate se-
lections on the decay angles in the Q rest frame
allow separation of the two exchange contribu-
tions. '" Motivated by this qualitative agreement
with the crossover data and by the failure of the
pseudoscalar term alone to provide s-channel hel-
icity conservation where required, we examine the
vector-exchange terms in detail. To our know-
ledge, the spin and helicity properties of these
vector-exchange terms have not been addressed
previously.

Our approach may first be sketched qualitatively
for the prototype reaction Kp -( pK)p. To specify
the helicity properties of the vector-exchange
graphs, we appeal to measurements" of the p heli-
city in the electroproduction process ep - epp,
sketched in Fig. 2(a). From these data we deduce
that transverse exchanged p's become p's of s-
channel helicity + 1 in the final state, whereas
scalar exchanged. p's are transformed into s-chan-
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FIG. 1. Deck diagrams for t'he diffractive dissociation
of a pseudoscalar-meson 0 beam into a system of mass
M composed of a vector 1 and a pseudoscalar 0 meson.
Symbol P denotes the Pomeron. In (a), a pseudoscalar
meson is exchanged, whereas in (b) a vector meson is
exchanged.

nel helicity-0 p mesons. Incorporating these mea-
sured properties of off-shell to on-shell pp elastic
scattering into the Deck amplitude, we derive the
helicity properties of the p-exchange Deck graphs.
In the model, the proportion of helicity-0 and heli-
eity-j. p's is determined by the pEE coupling and
the subsequent pp scattering. Qur conclusion is
that the p-exchange Deck amplitude provides a
final (pK) S-wave system which is dominantly in
the s-channel helicity-0 state. We then demon-
strate numerically that the p-exchange graph
yields a cross section which is comparable to that
of the t- channel-helieity- conserving pseudoscalar
E-exchange graph. We perform a partial-wave
analysis of both the E- and p-exchange amplitudes.
After combining the two contributions, our final
result is a derivation of approximate s-channel
helicity conservation in Kp -(pK)p, in accord with
data. For vp-(pv)p also, the p-exchange Deck
graph yields a (pv) system for which the s-channel
helicity is predominantly zero. However, in this
case, the t-channel-helieity-conserving g-exchange
graph is dominant. The final result in vp-(pv}p
is therefore an expectation of approximate t-chan-
nel helicity conservation.

We organize this article as follows. In Sec. II,
we summarize the experimental situation, indi-
cating more precisely what we understand by s-
and t-channel helicity conservation. ln Sec. III,
we provide explicit pseudoscalar- and vector-ex-

(c)

FIG. 2. (a) Vector-dominance diagram for the electro-
production process ep-epp. (b) p-exchange Deck dia-
gram for EP- {pKjPp. (c) Kaon-exchange Deck diagram
for E;p (pE)p.

change Deck cEplpHtsd8s for 0 p (1 0 )p. A di-
rect" graph may also be considered in which the
incident 0 first scatters diffractively and then
dissociates into a 1 0 system. Although poten-
tially important, this diagram leads uniquely to a
J =0 final state. Because our eoneern here is
the dominant J'~ = 1' S-wave (1 0 ) system, we ig-
nore this third diagram. For the case of vector
exchange, we discuss the various ingredients of
the amplitudes in detail, showing how the electro-
production data are used to obtain amplitudes A,
and A, for production of vector mesons with s-
channel helicity 0 and I, respectively. Cross
sections are then computed, and we show the vari-
ation with momentum transfer of the two helicity
contributions. We report a partial-wave analysis
of the model, separating the 8- and P-wave states
in the final (1 0 ) system for both the vector- and
pseudoscalar-exchange amplitudes. We treat in
turn the following processes: KP -(pK}P, vP
—(pv)p, Kp —(K~v)P, KP —(mK}P, KP —(QK)p, and

vp -(K*K)p. Our conclusions are stated in Sec.
IV.
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II. APPROXIMATE HELICITY CONSERVATION

Data on the diffractive production of low-mass
meson systems have been used to support various
hypotheses such as f,- or s-channel helicity con-
servation. As our partial-wave analyses show,
the Deck model does not provide either exact s-
or exact 3-channel helicity conservation. Before
discussing the detailed results of our investigation,
we wish to summarize the experimental situation
and to clarify some simple aspects of the problem.

Suppose the target and recoil nucleons are spin-
less, and that for a given produced state of quan-
tum numbers J, l, the various (partial-wave) am-
plitudes A«' '(s, f„M') are in phase for different
values of helicity 3I, as diffractive production
might suggest. Then for the J~= I' state [e.g. the

Q system in Kp - (K*p)p or I&p —(pK)jr j, the nor-
malized spin density matrix can be diagonalized
by a rotation about the normal to the scattering
plane, yielding a matrix with p,o= 1. That is,
there would be some direction in the Q rest frame,
along which the g would have spin projection zero
(M=0). The direction would be somewhere in the
production plane. This implies that the density-
matl jLx combination p + p vanishes as ls ob-
served. "

If the equal-phase and spinless-nucleon condi-
tions were exact, there would always be some
ideal choice of axis such that the spin projection
is zero. This is illustrated in Fig. 3. We suppose
that / 1

1s su eh that the s - and f -channe l quantiza-
tion axes z, and z„respectively, are oriented as
shown. (At f', =0, they are identical directions. )
The double arrow shows four possible orientations
out of an infinite number of our supposed ideal
axis. Remembering that "approximate conserva-
tion" commonly means p» = 1, one would associate
approximate t-channel helicity conservation with
those situations depicted in (a) and (c), and approx-
imate s-channel helicity conservation with (b) and

(d). Furthermore, (a) shows a, strong violation of
s-channel helicity conservation, and (b) shows a
similar violation of t-channel helicity conserva-
tion. Ifowever, the configurations depicted in (c)
and (d) are quite similar, and only modest changes
of dynamics would be needed to pass from one to
the other. In these latter situations it is not useful
to regard s-channel and t-channel helicity con-
servation as opposing concepts.

A simple mnemonic is that if approximate heli-
city conservation is observed, the ideal axis is
rotated clockwise (counterclockwise) from the
reference axis when the Rep„ is positive (nega-
tive), i.e. , for the configurations shown

Rep,', &0 in (a), &0 in (c),
Repf, &0 in (b), &0 in (d).

Zs

X
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(bI

FIG. 3. Illustration of approximate helicity conserva-
tion under the hypothesis of exact helicity conservation
along the direction denoted by the double arrow. (a) and

(c) both display approximate t-channel helicity conserva-
tion, while (b) and (d) illustrate approximate s-channel
helicity conservation. Experimentally, the processes
7)p—(p7()p and Kp —(K*w)p resemble (c), whereas Ep
—(p&)p resembles (b).

The behavior sketched above has been observed
and discussed by some experimental groups,
notably by the CERN-Serpukhov A, collaboration. '
In their analysis of vp -(pz)p, at 25 and 40 GeV/c,
they find a situation similar to that shown in Fig.
3(c), with the ideal axis shifted 10 from the I
channel z axis tosvaxd the s-channel z axis. Ex-
perimentally, ' Rep,'o= —0.15+0.02. In Kp —(K*v)p,
the situation is quite similar. For example, in the
combined analysis reported in Ref. 3, Rep,', -——0.15.
For Kp-(pK)p, however, the experimental situs.
tion approximates that shown in Fig. 3(b), with
Rep', 0

= —0.10+0.05. Thus, the (pK) system in

Kp -(pK)P is close to helicity see in the s channel
and far from helicity zero in the t channel. Data
on Kp -(&uK)p are less precise, providing a value
of Reo»—- 0.05+0.I, suggesting either diagram (b)
or (d) in Fig. 3.

Although our remarks are not strictly valid if
nucleon spin-flip occurs, or if the M =0 and 1 am-
plitudes are not in phase, they nonetheless provide
a simple description which allows one to interpret
the data easily. In our model calculation, we as-
sume no helicity flip at the nucleon vertex and no
phase differences between amplitudes and, there-
fore, the hypotheses are fulfilled.

III. VECTOR- AND PSEUDOSCALAR-EXCHANGE DECK

AMPLITUDES

A. p-exchange Deck amplitude for Ep ~ (pK)p

We begin with a detailed analysis of the p-ex-
change graph [Fig. 2(b)] for the specific reaction
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Ep-(pE}p. The results are generalized easily to
vector-exchange graphs for other processes, e.g.
p exchange in v p - (p7r)p, &e exchange in Ep - (&oE)P,
and E* exchange in Ep —(E*v)p, as we show below.

In Fig. 2(b), the incident E with four-momentum

p, dissociates into a final E with momentum q, and
avirtual exchanged p of four-momentum q = (p, —q,)
and helicity A.„u2=q2. The lower half of the dia-
gram represents high-energy pp diffractive elastic
scattering. The target has momentum p, and heli-
city X~,. The final p and the final px'oton have heli-
city X, and X, , respectively. The amplitude may
be expressed as

+2 ~1 ~»

=gpss ~ ~q ' P2+&3
a

x P"{"— '}~A1 . . (3.1)
m, -u

P 2
A, q )l ~,'Xq)ip2»

In Eq. {3.1), c(X,) is the polarization four-vector
of the virtual p. For the coupling constant, we use
the SU(3) relationship g,or,r = 0.5g,o...-. The am-
plitude A" is that for off-shell to on-shell pp scat-
tering. It is normalized such that ImA(t = 0)
= s,~o» for on-shell pp elastic scattering. In addi-
tion to the p propagator, we include a helicity-in-
dependent exponential form factor, whose slope b,
is specified below. We use elementary-particle
propagators and couplings throughout this paper.
Reggeization effects have been found important"
for a detailed understanding of the shape of the
mass spectra and of certain angular distributions.
This is certain to be even more true for vector
exchange. However, the inclusion of Regge effects
here complicates the formalism without leading to
any essential modification of our main conclusions.

The mass of the final dissociated Q{pE) system
is denoted M in Fig. 2(b). Because we are inter-
ested in the spin and helicity of the Q, it is useful
to examine Eq. (3.1) in either the s-channel rest
frame of the Q or in the Qottfried-Jackson t-chan-
nel rest frame. The properties of the pp scattering
are most conveniently stated in terms of the s-
channel axes, so we choose the s-channel frame
of the Q. The final proton momentuxn defines the
z axis. In subsections A 1 and A2, we discuss the
helicity properties of the amplitude A" in Eq. (3.1)
and of the pEE vertex factor e(X,) ~ (p2+ q3). We
then obtain the amplitudes A, and A» and the cross
sections for the production of p mesons with s-
channel helicity 0 and 1, respectively. These are,
of course, only intermediate results since in the
end we require helicity amplitudes for Q produc-
tion. We note, howevex, that for small I;, and
small M [-(m, + mr)], the dominant partial wave
in the Q system is the S wave. This is true be-

ause for smail It, I
a kinematic relationship holds

whereby the high partial waves in the p propagator
are canceled by the diffractive s,~ factor in Eq.
(3.1). This relationship" is

Spp S
2 2 0

mp —u2 M -mg
(3.2)

In the S wave, the orbital motion makes no con-
tribution to the Q's helicity, and therefoxe, the p
helicity controls the Q helicity. At threshold,
where M = (m, + mr), the p and Q directions are
aligned and the Q and p helicities are thus identi-
cal. A partial-wave analysis of Eq. (3.1) is pre-
Sented in SubSeCtlOn C.

Vll ftldI- p sccfteP&lg

In order to specify the properties of the virtual
to on-shell pp amplitude A" in Eq. (3.1), we may
appeal to data"- on p electroproductlon ep 8pp,
which proceeds according to the vector-dominance
diagram in Fig. 2(a). At high energies in the pp
center-of-mass system, the data are consistent
with the hypothesis of dominant s-channel helicity
conservation at the virtual p to on-she1. 1 p vertex.
specifically, for —q2&1.4 QeV2 and 2.1&M,~&2.8
QeV, the helicity single-flip amplitudes are of the
order of 15-20@of the nonf lip amplitudes for

~
t,

~

&0.5 (GeV/0)'. Double-flip contributions are
even smaller. We therefore ignore all s-channel
helicity-flip axnplitudes in the pp scattering. Lon-
gitudinal p mesons axe thus produced by longitudi-
nal virtual p's only, and transverse p's by trans-
vel'se virtual P s. Data 011 tile 1atlo R = 0"I/O'r of
the respective elastic cross sections are reported
to be well parameixized as"

&,
(-q')

Crr mp
(3.3}

Ao )
—f, s P$ 2

O' PexP
P

(3.4}

el Bpt»
A,» =vs, ~o,~exp 5» .

We have dxopped helicity labels pertaining to the

with E' of the order of 0.5 and independent of s,~
above 4 QeV'. The choice $ = 1 corresponds to
helicity independence of the cross section for on-
shell pp scattering. This expxession may not be
valid for

~

q'~ & 2 (GeV/0)', but we use it only in the
region

~

q'
~

& 1 (GeV/c)', where it appears to be
satisfactory.

Assuming a purely imaginary amplitude for
elastic scattering, and the properties of pp scat-
tering summarized above, we may write
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proton target, X„and X» in Eq. (3.1). This im-
plies that our amplitude is appropriate only for the
dominant ease of helicity nonf lip at the target-nu-
cleon vertex. Polarization predictions would re-
quire consideration in addition of the smaller heli-
city-fli„ terms. For the pp elastic slope B„and
the pp total cross section o,~, me use values mea. —

sured in vp scattering, viz. , B,= 8 (GeV/c)
'

and

24 mb, respectively. %'e note that the amplitudes
Ay

' are spec if ied in the pp rest frame.

v2 p,„o„ B t'
Q

&
= —ggPlt'K, 2 ~ sP&e P 2ttfH g

—'Mo j

&& exp [b,(u, —I,'-')] exp(- i4) . (3.11b)

Here 4 is the azimuthal angle of the final p in the
reference frame defined above. It is specified
more explicitly in the Appendix. The amplitude
for helicity-0 p scattering is

2. Vertex factor
&& exp ' ' exp[b, (u, —nI, '-)j.j Bpt, (3.12)

«(o)- ' „,(e., 0, 0, eo)
'R2

(3.6)

for longitudinal virtual p's, where the virtual-p
momentum has been written

= (Cg& 0& 0& &f&;) &

In Eq. (3.6), a, phase factor q is displayed explicit-
ly, ~q~

—1. We discuss its sxgmficance below. For
the transverse case,

«(1) = — (0, 1,i, 0) .1
(3.8)

In a reference frame in which the virtual-p mo-
mentum and the target-proton momentum are col-
linear and define the z axis, and in which the vec-
tor (p„+q, ) has no y but a positive x component,
we find that

«(1) ~ (p, + q, ) =v2 p,„ (3.9)

«(0) (p2+~, )=n(~u. ~)"'ii. (p..+&3.) (3.10)

Here v is the energy of the virtual p in the chosen
reference frame. The laboratory frame is a. con-
venient reference frame for reexpressing Eqs.
(3.9) and (3.10) in terms of invariants.

3. Cl'OSS M'CtlOflS

The amplitudes A, and .4, for producing a ( pK)
system in which the p has s-channel helicity 0 and
1 are obtained by combining Eqs. (3.1), (3.4),
(3.5), (3.9), and (3.10). We derive

~2p~„o' p Apt
&a = ~~pitx' 2

&)
~p&exp

(rn —z&2)

x exp [b,(u, —I,'}j exp(z4'), (3.11a)

The pKK vertex factor «(X,) ~ (p.+ q, ) in Eq. (3.1)
must be evaluated for X,=Q, 1. Because g @=0, we

may expl ess

We note that A, is proportional to (- u, ). This
factor is obtained from the (- u, )

- factors in Eqs.
(3.4) and (3.10). It expresses the simple physical
requirement that the amplitude for longitudinal
vector scattering must vanish when the vector's
mass (- u, )' is zero (there are no longitudinal
photons). The symbol $'= Pqv- 1. This factor in-
corporates the possible phase variations mhich
arise when the p is moved from the timelike to the
spacelike momentum region. In principle it could
include a Regge pha. se for the p, as well as pha. se
variation associated with analyticity structure of
the overall (2-3)-body amplitude, and details of
the pp amplitude. Electroproduction data could
help in fixing this overall phase, but present re-
sults are at too low a value of s, ~ to be useful. As-
serting that a diffractive amplitude should have the
mell-defined phase of +i at t, = 0, me mould fix
&'=~I&I ~

%'ith the choices 2g,«=g,o,;-, (T,~= o,~=24 mb,
and B,=B,= 8 (GeV/c) ', the only free parameter
in Eqs. (3.11) and (3.12) is the p form-factor slope
b, . Because there is no direct way to extract the
value of 5, from two-body reaction processes, it
remains a free parameter in our calculation. The
philosophy we adopt is to select a, value of b„which
allows us to obtain a consistent description of the
helicityproperties of the two reactio~~ rp —( pw}p
and Kp-(pK)p 'n which p exchange plays a role.
%'e use the same b, for both reactions and for
both amplitudes Ao and A, .

Shown in Fig. 4 are the cross sections me obtain
by integrating Eqs. (3.11}and (3.12) over three-
body phase space. Results are shown for two
choices of b, We display th. e distribution dc/df, '

for Kp-(pK)p at 13 GeV/c, for values of M,r
~ 1.35 GeV. The lab momentum 13 GeV/c is se-
lected to correspond to the energy at which the
SI AC data are ava, ilable. ' However, our results
are essentially independent of incident energy.
The restriction M,~ ~ 1.35 is made because the
prominent threshold enhancement in the data is
confined to this region. " To be sure, ou~ model
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does not provide as sharp an enhancement in the
distribution do/dM, r as is seen in the data. . We
believe that the detailed shape of the ma ss spectrum
is to be understood in terms of the resonance-Deck
unitarization procedure of Basdevant and Berger. "

A few features of the curves in Fig. 4 should be
noted. The cross section da„/dh', for producing a
p with s-channel helicity 0 is larger (- x 4) than
da, /dh', for all f,'. This is true for both of the
choices made for P, . It will be noted that dc, /d/, '

does not vanish as t,' —O. 7/hile it is strictly nec-
essary that the differential production cross sec-
tion for a ( pK) system with helicity l vanish as
i', -0, this is not true of do, /dt', We r. ecall that
dv, /d/I is the cross section associated with a p of
helicity I. In the (pK) system, the orbital angular
momentum provides a helicity contribution which
cancels that of the p and thus permits dc'~/dl~ to
remain finite as t,'-0. In subsection C we provide
a partial-wave analysis of A, and A,

Before proceeding to a discussion of the partial
wave and helicity structure of Eg. (3.1) in the ( pE)
rest frame, we remark that the Deck amplitudes
lead directly to predictions of the p helicity. Sub-
sequent statements regarding the helicity of the
pK system in specific partial waves may be de-
duced, as we do, but they are less direct tests of
the model. The p- and K-exchange Deck graphs
tend to populate different kinematic regions of the
two-dimensional (cos8, d&) decay angular distribu-
tion in the pA rest frame. A precise isolation of
the two contributions is impossible because the
mass M, E is small and the amplitudes overlap in
phase space. Nevertheless, by selecting events
in one region of phase space or in another, the
contribution of either the p- or the A-exchange
graph may be enhanced. '" In the purified K-ex-
change sector, the final p should have nearly per-
fect /-channel helicity 0 (cf. subsection B), where-
as in the p-exchange sector, the mixture of @-
channel helicities derived here should hold.

B. E-exchange Deck amplitude for Jf'p ~ (p&)p

The form of the pseudoscalar E-exchange Deck
amplitude is identical to that of the mell-studied
7)--exchange Deck amplitude» Because pseudo-
scalar exchange at small f, in Fig. 2(c) produces
a p meson whose t-channel helicity is predorni-
nantly zero, we choose to work here with t-channel
axes. It may seem inconsistent to use the s-chan-
nel axes when discussing the vector-exchange
graph and then the t-channel axes for the pseudo-
scalar-exchange term. In our treatment of the
partial-wave structure, we convert the pseudo-
scalar- (vector-) exchange term to the s-channel
(/-channel) basis. However, in dealing here with

l 0.0
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(

[(Gev/cj ]

I

2.0 —
( b)

Kp =(pK)p
l3 GeV/c

0,6

0.4
0.3

0.2

Q. I

0,06
b

0.04
0.03

0.02

0 Ol — l —- l l

O. l 0.2 0.3 0,4 0.5

[( 6 ev/c I ]

I IG. 4. Distributions de/dt&dM for Kp —(pK)p at 13
GeV/c integrated from threshold to M&+ = 1.35 GeV/c,
as obtained from the p- and K-exchange Deck ampli-
tudes. In (a) the p form-factor slope &&---1 (GeV/c) 2

in Eqs. (3.11) and (3.12), whereas in (b) b&= 2 (GeV/e) ~.

The curves are labeled 0'& 0 and op f to denote the cross
sections provided by the p -exchange amplitudes which
lead to final-state p's with s-channel helicity 0 and 1.
The curve labeled az is the contribution of the K-ex-
change Beck term.



EDMONO L. BERGER AND J. T. OONOHUE

&

ESKIMO'K~

eXP (s.ls}

Here Ip, I
is the magnitude of the initial K momen-

tum evaluated in the p rest frame at t, =0,
I p f I

= (m, ' —m»')/(2m, ). The amplitude defined by Eq.
(3.13}generates a ( pK) system having several
partial waves and helicities. However, because of
the kinematic relationship"

which is valid at small t„ the predominant partial
wave is the 8 wave. Furthermore, for values of
M not too far above the threshold (m, + m»), the
rotation from the boosted E-channel rest frame of
the Q to that of the p is not large. ' Thus, Eq.
(3.13) provides dominantly an S-wave ( pK) system
with E-channel helicity zero.

To obtain a reasonable value for the form-factor
slope b» in Eq. (3.13) and for a consistency check
on the magnitude of our K-exchange amplitude, we
investigated the tmo-body process Kp -pA. An
experimental analysis" at 4.2 GeV/c shows that an
unnatural-parity-exchange term is present in Kp
—pA with p,', -—0.2, crudely independent of t. An
elementary K-exchange contribution to do/dt for
Kp- pA takes the form

do 0.3893
dt 16»[s —(m~+ m»)'][s —(m ~

- I»)']
&& IA, I'[(m, —m, )' —t], (3.15)

p ( exp [&»(t —pE» )]
K gpKEI P

( t ~ 2 ~APK
K

The coupling constant g»~»'=4»(15), and 4g, »»'
=g,o,„, '-—4»(2.4). Here again we evaluate the
magnitude of the incident K momentum Ip

'
I

in the

p rest frame at t =0. Comparing Eq. (3.15) with
the experimental p»der/dt =0 2do/dt, we find tha. t
the choice b»= 1 (GeV/c) ' in Eq. (3.15) provides
good agreement with the data in both absolute nor-
malization and t dependence. The same value bK
= 1 (GeV/c) ' may be extracted from analyses of
the K-exchange component in Kp —p V*"

the full amplitude and the cross sections, it is
more convenient to work with the bases which are
natural for the two cases, viz. , s channel for vec-
tor exchange and t channel for pseudoscalar ex-
change.

The K-exchange Deck amplitude for producing a
( pK) system in which the p has t-channel helicity
0 (with the t channel defined in the p rest frame} is

, , exp[5 (t, —m ')]
K 2

These comparisons provide some confidence that
the form of Fq. (3.13}with the choice h»=1
(GeV/c) ' will give an accurate estimate of the
magnitude of the K-exchange Deck contribution in

Kp —( pK)p. The cross section d&r/dt', obtained
from Eq. (3.13}is shown (labeled o»} as a function
of t,' in Fig. 4 for M &1.35 GeV. For the KP elas-
tic slope BK and Kp total cross section in Eq.
(3.13), we use 8» = 3 (GeV/c) ' and o»~ = 19 mb.
Comparing the magnitudes of the p- and K-ex-
change contributions in Fig. 4, me observe that
the p contribution is dominant for 5, = 1 (GeV/c) ',
but is comparable to o„for b, =2 (GeV/c} '.

C. Partial-wave analysis of Kp ~(pK)p

The technical details of our method for partial-
wave analysis of the Deck amplitudes may be found

in the Appendix. We present partial-wave ampli-
tudes A~»'(s, M,», t,} for the f =0 and f = 1 states of
the pK system; J is the total spin of the pK system,
and M is its projection along either the s- or the
g-channel z axis. The partial waves mere compu-
ted numerically from expressions in the Appendix.
At the values of mass M, K considered, the differ-
ence between the square of the total amplitude and

the sum of the 3=0 and 1=1 partial amplitudes is
typically 1/o. Accordingly we shall not discuss the
$ o 2 ampj jtudes which are jn any case sensjtjve to
fine details of our parametrization. The partial
waves were initially obtained in the pK s-channel
system of axes for the p-exchange Deck terms and

in the pK t-channel system for the K-exchange
term. Appropriate rotations about the normal to
the pK production plane mere then made to obtain
the t-channel amplitudes for p exchange, and the
s-channel amplitudes for K exchange.

In Fig. 5 me provide the 8"=1', /=0, and M=0, 1
partial-wave amplitudes obtained from our p-ex-
change Deck amplitudes. As before, the lab mo-
mentum 13 GeV/c corresponds to the energy at
which data are available, ' but our results do not
depend on the overall energy of the reaction. The
mass selected, M,K=1.31 QeV, is in the region of
the prominent peak observed experimentally. %'e

choose the form-factor slope b, =2 (GeV/c) '. Our
results for the p-exchange contribution alone are
not sensitive to reasonable variations of b, about
this value. However, a small value of 5, [- 1

(GeV/c) '] leads to a p-exchange contribution which
is unacceptably large in vp-(pv)p, as we discuss
in subsection E. Such a small value is also not
favored theoretically. It provides a p form-factor
which barely compensates for the growth of the p-
exchange Deck amplitudes as a function of Iu, I

caused by the momentum factors p„and (p„+q„}
in Eqs. (3.11) and (3.12}. Too large a value of 5,
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FIG. 5. Amplitudes A&' vs It'&I for the J =-1, I —0 (S-
wave) pK system inKp —{pK)p at 13 GeV/'c and the mass
Mp&-= 1.31 GeV obtained from our I() -exchange Deck am-
plitudes. In the figure M is the spin projection of the
pK system along a given axis: In (a) and (b), the s-
channel axes are used, whereas the /-channel axes are
used in (c) and (d}. In the top half of the figure, (a) and

(c}, we display the partial-wave amplitudes obtained
from our longitudinal (L) p-exchange Deck term (with
(' ——1). In (b} and (d) we present the partial-wave am-
plitudes from our transverse (T) p-exchange Deck am-
plitude. In (a), the M=- 1 partial wave is negligible on
the scale used. For these results b p-: 2 (GeV/c) . The
net s-channel M=- 0 and M=- ~ 1 amplitudes provided by
our p-exchange Deck amplitudes are obtained by com-
bining the contributions shown in (a) and (b); likewise,
the net t-channel results by combining (c) and (d). The
overall normalization is arbitrary here, but the relative
normalization of the curves is fixed by our model. For
absolute normalization, consult Fig. 4 or the text.

[&4 (GeV/c) 'j suppresses the p-exchange contri-
bution overly much with respect to K exchange in
Kp-(pK)p. Thus, the value ft, =2 (GeV/c) ' is a
reasonable compromise which allows us to obtain
approximate s-channel helicity conservation in

KP —( pK)P, while preserving approximate t-chan-
nel helicity conservation in np-(pu)p.

In Fig. 5 we show separately the contributions to
the M =0 and M = 1 partial waves from the longi-
tudinal A., =0 (top half) and transverse

~
X, ~=1 p-

exchange Deck amplitudes, Eqs. (3.12) and (3.11),

respectively. It is striking that the A, =O Beck
amplitude has no M =1 component in the s channel.
There is no similarly simple pattern for the

~

X,
i

= 1

amplitudes which contribute to both 31=0 and ]..
The common factor of (-i) has been omitted here,
so that our partial-wave amplitudes are real. for
all I, /, 3J. Fron~ parity conservation it folio;~s
that A~«' —-(-1) A „'. Therefore, p»= —p, , for
l = 0, and p„=+p, , for l = 1.

In Flg. 5, the choice OI the slgI1 oj. the A. = 0 p-
exchange Beck amplitude corresponds to ~~' = —1
in Eq. (3.12). With this choice, we find after add-
ing the X., =0 and

~

X, ~= 1 contributions that the net
s-channel p-exchange amp1itude A,)o is large Rnd

positive, while A,'" is small and negative. Thus„
Re p'„ is negative, and the p-exchange Beck graph
provides the approximate s-channel helicity con-
servation. However, if we were to reverse the
sign of the A, = 0 Deck amplitude, setting "' =+ 1,
the curves in Fig. 5 show that the net would
be R near cRncellRtlon of the .U = 1 Rmplltudes ln
the (-channel, or nearly perfect j-channel helicity
conservation for the p-exchange Deck contribution.
This analysis demonstrates the crucial role played
by the sign of the factor $' in Ecl. (3.12). To ob
tain the phenoII1enologically desired result of ap-
proximate s-channel helicity conservation for the
p-exchange Beck graph we cannot set ~'=+ 1. The
choice E = —1 leads to Rpproxi111ate, ". -Channel con-
servation, Rnd it helps to achieve better agree-
ment with t'he overall normalization of the cross
section for Kp -(pK)p and for np -(p-„)p, as de-
scrIbed below Rnd in subsection E. The weak
point of our presentation is that we are unable to
derive the choice F. = —1 froIQ first principles.

Turning to the K-exchange Deck term, we pre-
sent its 8- Rnd f-channel pRrtiRl- wRve RnlplltUde s
AI,

' in Figs. 6(a) ancl 6(c), respectively. From
Fig. 6(c), it is apparent that AI" is very small and
negative. The K-exchange Beck amplitude by it-
self leads to the approximate (-channel helicity
conservation situation depicted in Fig. 3(c).

We now consider the results obtained when we
combine the p- and K-exchange contributions. It
would surely be inadmissible to Rdd the Beck am-
plitudes coherently, since as we have shown, the
final p emerges from the p- and R-exchange Deck
graphs with different spin properties. Even at the
partial-wave level, different questions of principle
may be raised concerning the legitimacy of adding
amplitudes obtained from t- (here t ,) and n (her. e-
n, ) channel exchange terms, respectively. On the
other hand, neglecting to add the partial-wave am-
plitudes is also of doubtful validity. In Figs. 6(b)
and 6(d), we provide our final s- and t-channel
amplitudes A'„' for Kp —( pK)p obtained by adding
the K- and p-exchange partial waves. With our
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FIG. 6. In (a) and (c), the contribution of the K-ex-
change Deck term respectively to the s-channel and to
the t-channel partial-wave amplitudes Az' vs

~
t'&~ for

the J =1, L =0 (8-wave) pÃ system in' —(pE}P at 13
GeV/c and M&& = 1.31 GeV. In the figure, M is the spin
projection along the s- or the t-channel quantization
axis. In (b) and (d) we display the results we obtain
after adding the K-exchange and p-exchange ((' = —1)
partial-wave amplitudes. The arbitrary scale is the
same as used in Fig. 5.

choice of $' = —1 in Eq. (3.12), we observe that the

Xp 0 p exchange amp 1itude adds constructively to
the K-exchange contribution in the M =0 state. The
net M = 1 amplitude is small and positive in the s
channel, but it is considerably larger (x 'f) and

negative in the t channel. Therefore, we obtain
nearly perfect s-channel helicity conservation,
with Rep,', very small and positive here. It is
evident that a small increase of the p-exchange
contribution (e.g. by a slight decrease of b,) would

move Repyp to the negative side of the axis, as
data' seem to prefer.

For Kp - ( pK)p, we conclude that with $' = —1
there is a large range of values of the parameter
b, for which the picture of approximate s-channel
helicity conservation is maintained in the Deck
model. If ('=+ 1 were chosen instead, the K- and
p-exchange amplitudes mould tend to cancel each
other; for example, at t,'=0 the net M=0 amplitude
would be —15 in the units of Figs. 5 and 6, rather
than the value - V5 which we obtain with $' = —1.
Stated otherwise, with $'=+1, the net p+K con-
tribution would be a factor of 2 or 3 smaller in the
M = 0 amplitude at t', = 0 than either the p or K con-

tribution alone. While such cancellation is possible
in principle, we find no physical reason to support
its occurrence. "

It is instructive to compare the absolute magni-
tudes of the J~j/1 =1'0 cross sections we compute
with those observed. " Adding our K- and p-ex-
change amplitudes coherently in the J~M = 1'0 par-
tial wave (with f' = —1}, we obtain the value do/
dt,'dM, r = 0.06 mb/GeV' at t,' = 0 and M, „=1.31 GeV.
An experimental result' is -1 mb/GeV'. Although
theoretical estimates are delicate so close to
threshold (hM-50 MeV here), especially since we
work with a p of fixed mass and zero width, me
believe we have made a careful estimate of the
magnitude of the K- and p-exchange amplitudes.
Accepting the data' at face value, '9 we conclude
that the order-of-magnitude deficiency of the
theory is a real effect in Kp-(pK)p. (The dis-
agreement would be even greater for $'=+ 1.) This
deficiency and the fact that the data show a narrow
enhancement near the pK threshold support a reso-
nance interpretation of the pK data. In this context,
we note that when the Deck model is properly uni-
tarized and one resonance (the Qs) is coupled to
both the K*p and pK systems, "a narrow enhance-
ment is produced in the pK mass distribution near
the threshold. This final-state-interaction effect
reinforces the Deck background, "potentially by a
factor as large as Mo/I" o in the pK amplitude. Our
present investigation shows that the J~= 1' pK
system is produced with approximate s-channel
helicity conservation, a property we conjecture is
maintained in the subsequent coupled-channel re-
scatter ing.

The principal s-channel pK P-wave amplitudes
A~~'=' obtained from our vector-exchange Deck
graphs are shown in Fig. 7. For normalization the
same scale is used as for the S waves in Figs. 5
and 6. We do not discuss them in detail except to
note that they are small.

D. Summary remarks on ECp~ (pE)p

As described above, the p-exchange Deck graphs
provide an S-wave J~= 1' pK system with s-channel
helicity primarily zero, whereas the K-exchange
graph yields a system with approximately 5-channel
helicity zero. Combining the two contributions,
we conclude that with $' = —1 in Eq. (3.12) there is
a large range of values of the parameter 5, for
which approximate s-channel helicity conservation
emerges naturally in a Deck model description of
K~ -(pK)~.

Qther features of the data are consistent with
our deduction that the p-exchange Deck amplitude
is important in Kp-(pK}p. First, we note that
the logarithmic slope of der/dt, ' is = 8 (GeV/c) '
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FIG. 7. The s-channel P-wave amplitudes A,z' for
KP (pK)P vs lt( I at 13 GeV/c and M&z ——1.31 GeV ob-
tained from our p-exchange Deck amplitudes. The con-
tributions of the transverse and longitudinal ($' = —1) p-
exchange Deck terms are labeled by T and L, respective-
ly. The [J,M] values are (a) [0, 0] (b) [2, 0], and (c)
[1,1]. In (c), the longitudinal contribution is negligible
and is not drawn. Other P-wave amplitudes are smaller
than those shown. The scale used is the same as in
Figs. 5 and 6.

included, the pp amplitude of Fig. 2(b) will still
provide a prediction of identical differential cross
sections for the two charge states K'p —( pK')p.
The Regge terms in the K-exchange graph provide
a crossover of doldt, ' which reflects that of elastic
scattering, with doldt', for K p-(peK )p having a
greater slope than that for K'p. Taking both the

p and K Deck contributions together, we find that
inclusion of the p-exchange graph substantially
dilutes the crossover, leading to essentially iden-
tical differential cross sections doldt, ' for K'p
-(p'K')p, even with all Regge exchanges included.
Indeed, the experimenters stressed their obser-
vation' that the production distributions doldt', are
virtually identical in slope and in normalization for
K'P —( p'K")P

Differences between K'p -(p'K')p and K p
-(p'K )p should be observed if events are se-
lected so as to enhance the contribution of the K-
exchange Deck signal. Selections on the s-channel
azimuthal angle Q, of the p in the ( pK) rest frame
have been shown to be effective in separating the con-
tributions from different production mecha-
nisms. '"'" With the definition of the s-channel axes
made in Ref. 11, the events with 0&

~ P, ~
& v/4 form a

relatively purified sample of data corresponding to
the K-exchange Deck graph of Fig. 2(c). In this re
gion, our model predicts o(K ) &a(K'), for ex-
ample, and a crossover of the differential cross
sections.

for the p-exchange cross sections ap Q
in Fig. 4,

whereas the slope is = 10 (GeV/c) ' for the K-ex-
change contribution (T~. The smaller value in the
case of p exchange arises in the model from the
kinematic "feedthrough" to the t,' variable of the
fact that our p-exchange amplitude is less peri-
pheral in u, than K exchange is in t, (cf. Fig. 2).
The data' show a slope of -8 (GeV/c) ' for the

( pK} system in the same mass region, M, r= 1.3
GeV, consistent with our expectations.

In our Deck graphs in Fig. 2 only the diffractive
(Pomeron-exchange) parts of the pp and Kp am-
plitudes are shown. As a result of this simplifying
approximation, we obtain identical helicity ampli-
tudes and cross sections for both K'p-(p'K')p
and K p-(p'K )p. Our results are therefore
app'icable to the average of the data for the two
charge states. A description of the differences
between the K' reactions would require including
the non-Pomeron Regge-exchange terms in the pp
and Kp amplitudes in Figs. 2(b) and 2(c}, respec-
tively. One interesting difference has to do with
the possible crossover properties' of the distri-
butions dol dt,' for K'p- (p'K')p. Because the p is
neutral, we note that even with the Regge terms

exp [f,(t, —m, ')]
)tp-(} gp ff+r

] p 2
~

2
Pl~ L2

B,
&& ss po p exp (3.16)

Here ~p,' ~

is the magnitude of the initial 7T momen-
tum evaluated in the p rest frame at t, =0, ~pe'~

=(m, ' —m, ')/(2m, ). This expression has the same
form as that in Eq. (3.13}.

The relative magnitudes of the p- and K-ex-
change Deck amplitudes may be estimated easily.
Near t, =0, s„/(- t, + m, '}= s/(M' —m, '}. Thus,

E. Deck amplitudes for mp ~ (pm)p

The p- and p-exchange Deck graphs are shown
in Fig. 8. Except for notational changes, the
analysis of these amplitudes is identical to that
given above for Kp —( pK}p. However, we find here
that the p-exchange graph provides a. much larger
cross section than the p-exchange term.

The pion-exchange Deck amplitude for producing
a ( pm) system in which the p has t-channel helicity
zero (with the t channel defined in the p rest frame)
is
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Setting t& =t& = 1 (GeV/c) -, and rtf = 1.3 GeV, we
find that

'&(»)l, 46
, a(K)

The Deck amplitudes for (p») production via p ex-
change are identical to those given in subsection
A, Eqs. {3.11) and (3.12), but for the replacement
«y&, 1;p by, '&,(),.„-. Jn Fig. 9 we show the cross sec-
tions fo r -. , p —(p;, )p predicted by the ~i and p-ex--
change Deck raphs. The values f&, =1 (GeV/q)--'

and t&„=2 (GeV/c) -' were used in the» and in the p
for&a. factors. respectively. Plotted is the t", de-
pendence of fI(7/d(,'d3J integra, ted from threshold to
3J„=1.2 GeV, the "A," region. We observe tha, t
the ratio a, /o, =o /(o, ,+2m, ,) =24 at t', =0. This
demonstrates clear dominance of p exchange over
p exchange in a Deck-model description of A, pro-
duction at small /'„. Although p-exchange graphs
have usually been neglected in previous Deck-
model descriptions of »p -( p»)p, ours is the first
numerical demonstration that their neglect is jus-
tified in this case.

The pa. rtial-wave amplitudes A„' for»p -( p»)p

FIG. 9. Distributions do/dtI CM for ~P-(p7t)P at 13
GeV&/c integrated from threshold to 1.2 GeV as obtained
from the Deck model discussed in the text. Sec. IIE.

were calculated in exactly the same manner as for
Kp - ( pK)p. In Fig. 10 we present the jpf&f = 1'0
and 1'1 amplitudes obtained from our longitudina. l
and transverse p-exchange Deck terms. The ma, ss
M„=1.07 Geg is in the region of the "A," enhance-
ment. The p form-factor slope t&, =2 (GeV/c) '.
There is little difference between these p-ex-
change amplitudes and those in Fig. 5 for pE pro-
duction. Again, the longitudinal p-exchange Deck
term provides essentially no M= 1 contribution in
the s channel. Taking (' = —1 a,nd adding the lon-
gitudinal and transverse p-exchange contributions,
we observe that the p-exchange Deck terms in pp- ( p»)p provide a value of Rep,', which is small
and negative, corresponding to the approximate
s- channel- helic ity- conservation picture sketc hed
in Fig. 3(b).

In the top half of Fig. 11 we present the J~= 1'
partial-wave amplitudes from our 7).-exchange Deck
term. These a.mplitudes resemble those in Fig. 6
for K exchange in Kp —( pK)p, except that » ex-
change is much greater in magnitude. The am-
plitudes show that the p-exchange Deck term pro-
vides approximate t- channel helicity conservation,
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FIG. 10. Amplitudes A ~' vs ~t& I for the J =-1 L = 0 @-

wave) system in mP-(p~)p at 13 GeV/c and the mass M&,
=1.07 GeV obtained from our Deck amplitudes for the ex-
change of (a) and (c) longitudinal (J ) (with (' = —1), and

(b) and (d) transverse (T) p mesons. M is the spin pro-
jection of the per system along the s-channel axes in (a)

and (b), and along the t-channel axes in (c) and (d). In

(a) the M=1 partial wave is negligible. We use b~=-2

(GeV/'c) . The overall scale is arbitrary; for normal-
ization consult Fig. 9 and the text.
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FIG. 11. Contribution of the x-exchange Deck term to
(a) the s-channel and (c) the ))'-channel partial-wave am-
plitudes Az' vs ~ttI ~

for the J =1, l =-0 (S-wave) px system
in ~p-(p~)p at 13 GeV/c and M&, ---1.0'7 GeV. In (b) and
(d) we display the results we obtain after adding the 7('-

exchange and p-exchange ((' =- —1) partial-wave ampli-
tudes. The scale is the same as in Fig. 10.

with Repxxu&0, as depicted in Fig. 3(c).
In the lower half of Fig. 11, we display the net

partial-wave amplitudes obtained by summing the
p- and p-exchange contributions, with $'= —1 and

5, = 2 (GeV/c) '. In the sum, we observe that
Rep, o is positive and that Re~,o is negative; this is
situation (c) of Fig. 3. At t,'= —0.08 (GeV/c)', we
find that Rep,', = —0.12 and Rep'„=0.25. These
results ar e quite consistent with the data of Ref.
5. At larger

l
t,' l, our p,', substantially exceeds

p,', . Nevertheless, it is clear that t-channel heli-
city conservation in our model as well as in the
data is very approximate. The effect of increasing
the parameter ft, (decreasing the amount of p ex-
change) is to produce more apparent t-channel hel-
icity conservation. Alternatively, if 6, is greatly
reduced one passes from situation (c) of Fig. 3 to
the approximate s-channel helicity conservation
situation (d) of Fig. 3. For example, b, ~ 1 is un

acceptably small if one wishes to maintain t-chan-
nel helicity conservation in vp —(pn)p. The data
on the spin systematics of both pA and p7l produc-
tion can be described adequately in the Deck model
if b, is chosen in the interval (1.5, 2.5).

The overall normalization of the J~M = 1'0 cross

section for tTp - (pv)p is reproduced within a fac
tor of 2 by our model. We may compare our re-
sults with the data at 40 GeV/c, where the non-
Pomeron-exchange contributions have presumably
died away. In Ref. 5, the logarithmic slope of the
differential cross section and the integrated cross
section for production of the 1'p7t S state are quoted
as 11.9+ 1.1 (GeV/c) ' and 72+ 5 )xb, respectively,
for Alp between 1.0 and 1.2 GeV. Converting these
figures to an average value for do/dt, 'dtt t... we find
that

=4.3+0.3 mb/GeV'
do

Rt ty 0 Rnd )VI
pg)

1 1 Ge& Our model provlcles
2.55 mb/GeV' for the same quantity. Only 30/g
of this theoretical value is due to the p contribu-
tion which we Rdded coherently ln obtRlnlng oui
answer. The logarithmic slope of the theoretical
do/dt, 'dM is 12 (GeV/c) ' in the same mass inter-
val, in excellent agreement with the data. In con-
trast to the pK situation, there seems little room
for a resonance in the 1+ 8-wave pg system unless
it is very broad.

HE I, ICITY CONSERVATION AND MESON DIFFRACTION. . .
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Owing to the dominance of p exchange, we con-
clude that in spite of the inclusion of p exchange,
the traditional Deck prediction of approximate t-
channel helicity conservation for the J =1' state
in»P —( pv)p remains valid.

B, t,
&& is„o,p exp (3.18)

It produces a (K*v) system in which the K~ has t

channel helicity zero. Here Ip»
I
=(m»+' —m»')/

(2m»g) and g»go». ,-'= 4p(1.66) .
For the K*-exchange amplitudes, we may follow

an analysis identical to that given in subsection A

for p exchange. Replacing Eqs. (3.12} and (3.11),
we clel lve

F. Deck amplitudes for Kp~(K*@)p

The process KP —(K*»)p receives contributions
from pion exchange and from K~ (vector-) exchange
amplitudes. The pion-exchange amplitude is

exp [b,(t, —m, ')]
XKg=o g K+ K+ff

I
P 2 2

Pyle —
2

thus becomes linearly proportional to —242, as is
true for the p-exchange amplitude in Eq. (3.12).
Owing to the unequal-mass kinematics, the point

Q2 = 0 occurs within the physical region for A* ex-
change. Therefore, the amplitude

&~' ~=o

contains an additional suppression factor not pres-
ent for the p-exchange amplitudes in Kp -( pK)p
and in»p - ( p»)p. The result is to reinforce the
dominance of the p-exchange amplitude for the
description of Kp -(K*v}p. This guarantees that
the S-wave (K*») system is produced primarily
with I-channel helicity 0, as is observed experi-
mentally. "

Explicit numerical results are shown in Fig. 12
for KP - (K*»)p at 13 GeV/c, with M(K*v) & 1.35
GeV and b»~ 1(G——eV/c) '. At t,'=0 the pion-ex-
change contribution is a factor of -10 larger than
the sum (YK+, + 2aK+, . If the second term in Eq.
(3.21) is retained, o»+, is increased by a factor
of 2.4 at t,' = 0. This leaves the pion-exchange
cross section more than a factor of 7 larger than

ty 0 K p K p
h»g=o P+»»r

(m +2 & )K 2

x exp
* ' exp bK+ zz2 —mK*' (3.19
2

ancl

2 p2xVK+p
I

~)s~, =jgKWK..- . 2', SK+peXp
K (PlK4 —zl!o j

x exp [b»~(u, —m»~')] exp(iC'). (3.20)

These are amplitudes for the production of a A*p
system in which the final K* has s-channel helicity
0 and 1, respectively. The factor E, in Eq. (3.19)
requires a brief discussion. Based on the forma-
lism of subsections A1 and A2, F, is explicitly

1 ~ 0

0.6—
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0.3—
0.2

0. 1)
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. ~ 0.02

Kp = (K"vr) p

13 GeV/c

M(K vr) & 1.35 GeV

)-2

F = '-&(X»*=0) (p, +q, )$
~z~.

1 —n, (p„+q„) IqI, ,
)

fP'l K4 V V

(3.21)

b
0.01

0.006
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The second term in Eq. (3.21) arises kinematically
because the vector K* couples to unequal mass
pseudoscalars. Arguing physically that the am-
plitude

&~'g=oK

0.002

0.001
O. l

I

0.2 0.3 0.4 0.5

I&'I IG~V/&)'

should vanish when the exchanged vector's mass
is zero, we may elect to drop the second term in
Eq. (3.21). The amplitude

A)ts ~=oK

FIG. 12 Distributions 4o/dt', 43I for Kp —(K*ng at 13
GeV/c, integrated over the region MK+ ---1.35 GeV, as
obtained from the Deck-model amplitudes discussed in
Sec. II F.
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the K* contributions at f,,' = 0. Further suppression
of the K* arises if we increase b»* to 2 (GeV/c) '.
Thus, whichever form is used for I'„ the p-ex-
change term is dominant and approximate t-chan-
nel helicity conservation is expected for the S-
wave K*& system.

G. The reaction Kp ~ (~K)p

The analysis of Ep -(&uK)p is identical to that
given in subsections A —D for Kp -( pK)p. In Eqs.
(3.11)-(3.13), we need only substitute the symbol
v for p everywhere p occurs. Because 0.„~=Opp,

g,»»=g„»» [according to SU(3)], and m =r&i„all
numerical results are also identical. Therefore,
we conclude as we did for Kp- ( pK)p, that the
Deck model yields approximate s-channel helicity
conservation for the 4 = 1' S-wave (~X& threshold
enhancement in Kp —(~K)p, as is observed in the
data. 4 Presence of the v-exchange gra, ph implies
that the production cross sections du/df', for K'p
—(~K')p should be similar, with no apparent
crossover. Because the p- and (d-exchange am-
plitudes are coherent in our description of Kp
-[(~,p)K]P, p-~ interference effects should be
present in the data.

H. The reaction Kp ~ (QK)p

The amplitudes for Kp -(QK)p need not be
presented here. Except for the replacement of P
with P, the diagrams are identical to those for
K(i -( pK)p. Recalling our conclusions for (pK}
and for (~K) production, we might guess that s-
channel helicity conservation will hold also for
(QK). However, this is not the case. We find that
the cross section supplied by the K-exchange Deck
graph is more than an order of magnitude greater
than that associated with the Q-exchange diagrams
in the near-threshoM region defined by lU~~ &1.62
QeV. This important difference from Kp —( pK'jp

arises from two factors. First, the amplitude for
P production by P exchange includes the factor
o.» —-10 mb, rather than (T,~=-24 mb. Thus, the
vector-exchange cross section is reduced by a
factor of (2.4)'-= 6 relative to the IC-exchange
cross section. Second, in the K-exchange ampli-
tude the kinematic factor (ni, ' —n~»')/2»~~ re-
places (m, ' —m»')/2nI„yielding an increase of a,

factor of -3 in the K-exchange cross section.
These two factors combine to provide dominance
of pseudoscalar over vector exchange in the Deck
description of Kp —(QK)p. Consequently we con-
clude that the Q is produced predominantly with (-
channel helicity zero and that the S-wave (AK)
threshold enhancement should satisfy approximate
/-channel helicity conservation. This agrees with
available data. '

J. The reaction np ~ (K*K)p

In a Deck-model description of »p -(K*K)p,
both K- and K*-exchange graphs are present. Qur
numerical results show that the K- and K*-ex-
change terms contribute comparable values to the
cross section. Neither dominates and thus no sim-
ple prediction can be made regarding the helicity
of the S-wave threshold enhancement in the K*X
system without a more detailed consideration of
possible cancellations between the K- and K*-ex-
change amplitudes.

IV. CONCLUSIONS

%e have investigated the helicity properties of
the threshold enhancements in the (1 0 ) meson
systems produced in diffraction dissociation reac-
tions of the type 0 p - (1 0 )P. In a Deck-model de-
scription of such processes, there are amplitudes
for pseudoscalar (0 ) and vector (1 ) meson ex-
change. The pseudoscalar- exchange graphs pro-
duce S-wave threshold enhancements with approxi-
mate t-channel helicity conservation. The vector-
exchange graphs lead to S-wave enhancements
which obey approximate s-channel helicity con-
servation. For a given reaction, the final result
depends on the relative weight of the two exchange
contributions. For Kp —

( pK}p and Kp —(uK)p, we
determine that the vector- and pseudoscalar-ex-
change Deck graphs are comparable in magnitude.
As a result of a detailed study of the amplitudes
we conclude that approximate s-channel helicity
conservation holds. However, for KP —(K*»)P,
»P-(p»)p, and Kp-(QK)p, the pseudoscalar ex
change Deck graphs dominate the overall cross
section, and approximate 3-channel helicity con-
servation is expected. In obtaining these resu'ts,
we find that two assumptions are required concern-
ing the vector-exchange Deck amplitudes. First, a,

value must be chosen for the slope b, of the ex-
ponentia. l form factor and, second, the overall
phase 5' of ll, [Eq. (3.12)] is theoretically unknown

(to us). All other parameters of both the vector
and pseudoscalar amplitudes are fixed a priori.
Results in agreement with the experimentally ob-
served helicity properties of both»p —( pv)p and

Kp - ( pK)f& can be obtained if we select b, = 2

(GeV/c) ' and $'= —I in Eq. (3.12). These choices
provide several other desirable features, includ-
ing a good representation of both the logarithmic
slope and overall normalization" of the production
differential cross sections dv/dt, dill for »P -(p»)P
and for ICp-(pIC)p Furthermor. e, the same con-
siderations, without any new assumptions, lead to
a proper description of Kp - (K*»)p, Ifp —(aK)p,
and KP - ( &5K)P.

In the q mass region, Ill(K»»} ~ 1.4 GeV, en-
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hancements in both the K*p and pK channels are
observed experimentally. Because the K*p sys-
tem satisfies approximate t-channel helicity con-
servation whereas the pK system obeys approxi-
mate s-channel helicity conservation, it was sug-
gested that two different dynamical mechanisms
are involved, one of which is possibly resonant. "
The different helicity properties have also been
emphasized as supportive of the interpretation of
the J = j.+ Epp system in terms of two distinct
axial-vector resonances. '" In this article we
show that the different helicity properties emerge
from a single nonresonant dynamical mechanism.
The distinction between s- and t-channel helicity
conservation is reduced to a matter of whether a
pseudoscalar- or a vector-exchange Deck graph
is dominant. This numerical question in the model
is resolved in terms of known relative coupling
strengths. We cannot negate and do not imply to
rule out the presence of one or more resonances
in the J~= 1 K&p system. Indeed based on struc-
ture in the mass spectra and relative phase varia-
tions, the case for one resonance, the Q~, belong-
ing to the J~~=1 multiplet seems strong. '~ This
resonance couples to both the K~g and pK channels.
Whether a second resonance, the Q„, is also pres-
ent in the data is an open question in our view. Qur
analysis of the helicity structure of the Deck en-
hancements shows that the Deck "background" on
which the resonance (s) is (are) superimposed
provides the helicity characteristics seen in the
data. The helicity characteristics of the data nei-
ther support nor refute the hypothesis that there
is resonance activity in the Q region.

define a set of axes in the rest frame of q, by a
parallel axis transformation. Let (P, P,) be a four-
vector in the (q, + q, ) rest frame. Then the boosted
momentum is defined by

p'=p+ [(»- I}p e- y PIPoj & (Al)

where

v=-1
(A3)

P„=+(P„+tP,}/W2,

Pp PgJ

and D,„'(n, P, y) is the usual Wigner rotation func-
tion. In practice one may solve for (n, p, y) by
selecting the coordinates of some four-vectors in
the chosen frames, performing the transformation
(A2), and applying (A3). Once the (n, p, y) are
known, the appropriate amplitudes for a partial-
wave analysis are obtained as

2 I I (s, t, M, 8, Q)

D'y~ (n, ti, y) A„I (s, t, M', 8, Q). (A4)

P.'=y(P. P,p—s),
where e is a unit vector in the direction (8, P), and

(yI, pI) are the usual Lorentz transformation pa-
rameters. If p denotes the components of the same
four-vector referred to the original choice of axes
in the q, rest frame, then there exists a rotation
(n, p, y) such that

APPENDIX: PARTIAL-%/AVE ANALYSIS

We suppose that the amplitude for the three-
body reaction

0 +, -0 +g+~

(P2+Pi q3+ q2+ qz)

( I 1$ 9 984)

where the spin projection A., refers to some defi-
nite choice of axes in the rest frame of the particle
of spin j (e.g. , s channel, t channel, or other). By
a definite choice, we mean that the components of
three-vectors are given explicitly. The choice
made should be motivated by the dynamics of the
model used to calculate the amplitude. The angles
8, Q refer to a set of axes in the rest frame of the
system (q2+ q, }, and they define the direction of II2

in that frame. Again one may choose any system
of axes. Qnce a definite choice is made, one may

Here m, is the spin projection of particle q, in the

q, rest frame along the boosted set of axes. The
(n, p, y) depend on the kinematic variables
(s, t, M', 8, and P).

Given these amplitudes, the partial-wave analy-
sis proceeds by analogy with the nonrelativistic
addition formula"

I, I (s, t, M, 8, Q)

(s, t,™)Q C F &(8 P).
tn g=

The

As~I' I (s, t„M )

are the partial-wave amplitudes, C'~,~ „is a
Clebsch-Gordan coefficient, alld F l I(8, @) ls a
spherical harmonic. The

A ''
4Xq~)tP~

may then be obtained by integration,
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A~g y (s~ f~yM )
cy Py

dcos8dg g C" „Y,&(8, $)
m lms

x A ~ ~ (s t M', 8 p),

(A6)

The normalization is such that

d cos8 d(5 A„A„* = A~'

We have dropped nucleon spin indices in this last
equation.

The results reported in the text were obtained
by standard numerical integration. The various
axes used were as follows.

In the Q rest frame we used
t channel: p, along positive z direction;

[p, x (- q, )j along positive y direction.

s channel: q, along negative z direction;
(p, x q, ) along positive y direction.

In the p (or particle q, ) rest frame we used

t-channel axes: p, along positive z direction;
p, x [- (q, + q, ) j along positive y

direction.

s-channel for "p"p- pp: q, along negative z di-
rection;

(p, x q, ) along positive
y direction.

The correct threshold properties of the A„',
namely

A '~(t —f ('"' 'ast -t

A~' ~ [M —(&n, + m, )]'~' as M- (»t, +»&, ),
provide useful checks on the numerical analysis.
We remark that in the p rest frame the direction
of the t-channel y axis may vary rapidly as a func-
tion of the kinematic variables; proper care is
thus necessary in the numerical integration.

The azimuthal angle 4 appearing in Eq. (3.11) is
the standard 4 angle in a Jacob-Wick expansion of
the virtual pp elastic scattering amplitude. It may
be defined as follows: In the center-of-momentum
frame for the virtual p-proton collision, let the
virtual-p momentum be along the positive z direc-
tion, and let p, have a positive x component, with
no y component. Then 4 is the azimuthal angle of
the final p, as seen in this system. This angle may
be expressed in terms of other angles or invari-
ants. A useful quantity for obtaining explicit ex-
pressions is

~ p, V~ P].P o '726 3 r

which is proportional to sin@.
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