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The t slope and peripheral structure of the cross sections d'a. /dtdm„„ for diffractive AN production can be
understood as a coherent superposition of non-spin-flip (hl = 0) inelastic two-body amplitudes. Using a wave-

function model of nucleon structure, we fit single diffractive production as a function of excitation, and with

the parameters so obtained predict the cross sections for double diffractive excitation.

I. INTRODUCTION

In hadronic diffractive production (DP) processes'
of the type a+ b-g*+ b*, we observe excited states
a*(b*) of a(b), which manifest themselves as
groups of hadrons with small relative velocities
and the same quantum numbers (except possibly
for spin-parity) as the ground state(s). The pro-
cess is called diffractive because it involves no
additive-quantum-number transfer and because
such cross sections generally peak at small mo-
mentum transfer, t; we are concerned here with
0& t»1 (GeV-/c)'. lf one of the states a* or b*
is the same as the corresponding incident state a
or 5, then the process is called single diffractive
excitation (SDE); otherwise it is called double dif-
fractive excitation (DDE). In all known cases,
high-energy DP has the following characteristics:

(i) A strong correlation between the mass of the
excited state and the slope of the forward peak b

(d/dt)ln(d-o/dt) I, , When the larger of the two
masses m, * or m, * is near threshold (e.g. , in mN

production, when m*=m, +mz) the slope b can be
as much as a factor of two greater than the cor-
responding elastic slope. As m~ increases, the
slope decreases, and seems consistent with at-
taining a constant asymptotic value of roughly half
the elastic slope. The "asymptote" is reached at
an excitation of -1-2 QeV.

(ii) Near threshold (in the above sense} the DP
cross section exhibits a richer t structure than
elastic scattering, generally in the form of a
sharp dip at —t = 0.25 to 0.35 (GeV/c)'. As m* in-
creases, this structure disappears.

(iii) The differential cross sections factorize
among the various channels (to within the experi-
mental error) in the sense that

ab~ab d ab~a+b
d(Xn b ~n4b4-

do ab~ab

(This is the factorization relation which would
follow from the exchange of a single Pomeron
pole. }

In this paper we describe a simple model which

accounts for the DP data in what we feel is a nat-
ural and transparent manner. We first apply the
model to NN- (mN)N in order to determine certa. in
parameters of the model. In the remainder of
this paper we shall use the parameters we de-
termined in SDE to calculate the corresponding
DDE cross sections. We have not attempted to
perform the analogous calculation for high-energy
(mvN) SDE which then would be applied to the cor-
responding (nest) DDE because, while the latter
data are to some extent available, ' the former are
not; on the other hand, the (wN) SDE data were
available to us in crude form, ' but at present we
have not seen any corresponding DDE data. In that
sense, this paper serves as a prediction for (mba')

DDE which we hope will spur the analysis and pub-
lication of such data.

We begin by describing our model and its appli-
cation to SDE, and then discuss the extension to
DDE. Motivated by current ideas about infinite
binding of the constituents of hadronic matter, as
well as by the desire to avoid inessential compli-
cations, we describe the internal structure of the
hadrons and of their excited states as (bound)
states in an infinite potential well. (Details of the
well turn out to be unimportant. ) The DP transi-
tion proceeds via constituent-constituent elastic
scattering, as shown in Fig. 1, which can promote
one or both constituents to excited states accord-
ing to the overlap of the final and initial states.
There is absorption in both incident and emergent
channels (resulting from elastic rescattering) fol-
lowed by (or during —again, this is not an essen-
tial detail) decay of the excited hadron(s) into the
particles which are actually observed. The ab-
sorption is extremely important: Not only is it
demanded by unitarity and by the strength of had-
ronic interactions, but without it the orthogonality
of the eigenstates generated by a potential would
cause the inelastic transition amplitudes to vanish
at t=0. We restrict the present calculation to ex-
citations with l =0, i.e. , to non-spin-flip, or mono-
pole transitions. While it would be both simple
and natural to include higher multipole transitions
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within this kind of model, we feel there is value in

determining to what extent the slope-mass relation
and other salient features of SDE and DDE can be
understood with monopole excitations only. There
is some evidence, ' based on a partial-wave analy-
sis of mN -mpN, in the w p subsystem, that many
of the features of DP hold for each partial wave in
the excited-hadron subsystem. If this is so, then
the effect must be explained without spin flip, as
we have done here. To summarize, our model
differs from many previous analyses of DP in two
important ways: First, that we have used a spe-
cific form of the inelastic transition densities in
impact-parameter space, thus keeping faith with
the spirit of such quark-confinement models as
the bag; ' and second that (by contrast with Deck
models' in which all natural-parity spin states of
the subsystem are excited in a very specific dy-
namical way, or with "pure spin-flip" models') we
have restricted ourselves only to monopole tran-
sitions.

Once the excited-hadron state is diff ractively
produced, it must decay into the observed par-
ticles. The theoretical characterization of the de-
cay amplitudes of bag-model states into physical
multiparticle states is presently beyond the capa-
bility of infinite-confinement theories, and so we
have chosen to take them as mass-dependent fitting
parameters. An esthetic and physical requirement
this approach imposes is that as the mass of the
multiparticle excitation increases, the excitation
should contain more of the higher states of the in-
finite-well basis.

Previous theoretical attempts to understand the
transition of, say, a nucleon from its ground state
to the diffractively excited state mN can eonve-
nient1, y be divided into two classes. In the first,
the pion-exchange Deck effect' suggests virtual
dissociation of a nucleon into an asymptotic pion
and nucleon, with the pion scattering from the un-
excited nucleon. (In nuclear or atomic physics
this is simply direct breakup of a composite sys-
tem. ) Although the simple Deck model (without
absorption) does not adequately account for the
data, ' recent work' has shown that inclusion of ab-
sorption (via rescattering of the produced and
spectator nucleons) improves the fit. This model
includes angular-momentum transfer, since in
impact-parameter space the produced pion and
nucleon scatter differently, at different points in
space, from the unexcited nucleon. (However,
many of the consequences of this model also hold
partial wave by partial wave. ) In the second class
of theories, the dissociating nucleon goes directly
into a state whose spin increases with the final
mass m, „. Using the empirical fact that the aver-
age s-channel helicity flip AA. increases with m,„

as well as the known peripheral character" of dif-
fractive dissociation, we see that these effects'
generally broaden the forward peak because a par-
ticular impact parameter R (such as is effectively
chosen by a peripheral process) contributes
J~~(R~t) to the cross section, and J~~, o con-
tributes at larger -t than Jo.

By its very nature, the Deck mechanism cannot
accommodate resonance production; we note in this
connection that the (quadrupole) N(1688) is promi-
nent in the data. ' Qn the other hand, the "pure
spin-flip" models' leave no room for monopole
excitations such as the N(1470). While our model
implicitly includes the N(1470) we omit (by choice)
the N(1688), but as we stated above, such reso-
nances are easily included by a natural extension.

It is worth emphasizing that amplitudes with dif-
ferent helicity flip cannot interfere and therefore
contribute incoherently to the differential cross
section. It is just the coherent superposition af
monopole transitions which produces the extreme
steepness of near-threshold cross section by
means of eancellations between the various terms.

The plan of the paper is as follows: In See. II
we present the detailed theory. %e follow this in
Sec. III with a discussion of our fit to SDE of a
nucleon into a pion-nucleus state. Using the pa-
rameters of SDE we discuss double excitation of
the form N+ N- (vN) +(vN) in Sec. IV.

II. THEORY

%here necessary we refer here, for definite-
ness, to transitions of a nucleon X to an excited
state ¹ which decays into a mX system. We also
call the nucleon constituents quarks. The main in-
gredients of our theory are summarized graphical-
ly in Fig. 1. Note thai in this figure the excited
state N*, labeled by the cross-hatched double
line, can include the elastic state N, since the
nucleon can decay into the (vN) state by virtue of
its being off-shell. In this figure the double
hatched ellipses represent absorption in the Sop-
kovich" sense, treated phenomenologically. The
open square, f„, represents quark-quark scatter-
ing. Since absorption is simply the result of mul-
tiple scattering, f„ is closely related to the ab-
sorption, as we see below. In addition, when the
N~ is an excited state of the well, the horizontal
ellipse measures the overlap with the ground
state. Finally, as the figure indicates, we must
expand the N* state into (vN) states. This is done

empirically by a fit to single excitation.
To make these comments more specific, we

begin with the eikonal for elastic scattering. %e
assume the rescattering corrections for the ex-
cited states (or for the off-shell ground state) are
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identical to those for the incoming (ground-state)
nucleons. Insofar as such cross sections have
been measured in hadron-nucleus scattering ex-
periments all "normal" hadronic states do have

roughly the same cross sections. The Sopkovich
prescription then consists simply of multiplica-
tion by the nucleon elastic S-matrix element. (We
also could have absorbed an outgoing pion and nu-
cleon independently on the other outgoing asymp-
totic state. Which of these is correct depends on
the time scale for development of this asymptotic
state from the N*. Our investigation of this al-
ternative possibility fortunately shows there is
little empirical difference between these options. )

We parametrize the nucleon-nucleon eikonal phase
from experiment. A simple and reasonably ac-
curate form is

iy(b) = ln(1 —de ' ), (2.1)

where b is the impact parameter, and d and a are
taken from experiment. Given this eikonal phase,
the elastic amplitude is

f(t) = ip—db bJo(bv t)(e'" —-1) . (2.2)

In the Sopkovich prescription, rescattering and/or
absorption is put in at each impact parameter
through multiplication by e'~ ~.

As we have stated above, the quark-quark in-
teraction is not independent of this eikonal phase.
Denote the single-quark ground-state density by

p, (r) and let A be the number of quarks within a
nucleon. (We consider only valence quarks here,
so that densities for differing quarks are each
normalized to unity. Moreover, all quarks have
the same cross section, by assumption. ) Then inthe
spirit of the Chou-Yang formalism we may write

A'
iy(b) = o'o' d baa dz dz'p, (r —r') p, (r')

2
=- ——craa' d'b'a, b —b') u, 5'), 2.3

where we use n, (b) to denote the transverse density
distr ibution. By two-dimensionally Four ier-trans-
forming this quantity and comparing with the Four-

ier transform of Eq. (2.1) we can determine the
parameters of this process. That is, define

d '
b e ' ' '

o.,(b) . (2.4)

Then

-A cr =-2magot — 2 d got
aa

= ~0
~2 NN 2

n=l n=l
(2.6)

Using values for d and a taken from P-P elastic
scattering and appropriate to the 43-mb fP total
cross section at v s=53 GeV, namely" d =0.724
and a =0.98 fm, and taking A =3, Eq. (2.6) gives
v,",' -=0.62 fm', a reasonable value. (The same
calculation for 7t-Ã scattering, using the experi-
mentally determined values d =0.574, a =0.88
fm, and A'-A, A/ =6 gives o,",'=0. 56 fm'. ) By
studying Eq. (2.5) for nonzero values of q and in-
serting (2.6) for A'o,",'we also determine o,(q):

1 " d" dtf l/2

a, (q) =—Q —,exp(-q'a'/4n)
— t7 =1 n=l

(2.7)

However, instead of using this (self-consistent)
form explicitly, we chose to take the density func-
tions from the ground-state wave functions of
specific potential wells. This plan gives us
the opportunity to test the sensitivity of our
results to different choices of potential well.
While these potential wells will not as a result be
precisely consistent with Eq. (2.1) for the eikonal
function (a function which is itself an approxima-
tion when compared to pp-scattering data), the in-
sensitivity of our results to the choice of potential
well convinces us that this deficiency is unimpor-
tant. Moreover, we directly compared the "ex-
perimental" form factor, Eq. (2.7), with those de-
rived from potential wells and found little differ-

~

~e ~ ' ln(1 de-~ ~)= vA-'o'o'n '(q)
(2z) oa 1

(2.5)

At q =0, the normalization of the densities makes
~,(0) = I/2v and Eq. (2.5) then yields

N

N

N

FIG. 1. Diagrammatic representation of the impulse approximation with absorptive corrections for diffractive produc-
tion of excited states of nucleons.
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ence out to q' =1 (GeV/cP, which is the important
region for the DP calculation.

%e next study the transitions. These can be
handled in a compact and convenient way by adding
to the ground-state c-number density n, (b) an op-
erator a'„(b) which induces transitions. This op-
erator only connects different states: Thus if
we think of o,(b) as the ground-state expectation
of the quark-density operator, then, a'(t'(5) is the
fluctuating part of the quark density. The matrix
elements of e'„are just the 5-space overlaps of
the potential-well wave functions (t&„(r); that is
[o.„(5)=- o.,(5)1:

(2.8)

The eikonal function then takes the form (2.3) with

u)~~ o&~~ + cR( ~ Eq. (2.2) stands with the under-
standing that the matrix element between appro-
priate initial and final states is to be taken. Final-

ly, in accordance with the idea that the transition
should be treated in lowest order we expand the
amplitude to lowest order in a„„nW 1. [Even inte-
grated over all Nm masses, the total cross sec-
tion for the process N+ V- (r(&i&i) + V is about 1/0 of
the total N-N cross section. However, the sum
of all diffractive dissociation channels may be con-
siderably larger, and the reader should be aware
of an alternate point of view'~ in which a lowest-
order expansion may not be appropriate. ]

The matrix element computed in this way rep-
resents the transition of one or both of the nucle-
ons to excited states N„* of the infinite well. %e
must decompose these states (including the ground
state) into the Nv (say) system of mass m* ob-
served in an experiment. Thus, we require mixing
coefficients c„(m*) (fitting parameters),

Using (2.9), (2.8), and expanding (2.2) to lowest order in a„, we have for the single-excitation amplitude

and for the double-excitation amplitude (note that here, consistency requires keeping some +&cond ord«
terms in u'„~}

((»)„(»)sIf(f) IN„&s&

(2.11)

In these expressions we have for convenience la-
beled the nucleons with A and B; 4 and 8 also de-
note their respective number of constituents. The
eikonal phase iy(f)) is given by Eq. (2.1); we re-
mind the reader that it contains no transition ma-
trix elements. Note too that the elastic term in

Eq. (2.10) and (2.11) is also treated (more pre-
cisely) by means of the phenomenological elastic
behavior of Eq. (2.1). Only in those terms where
there is at least one transition to a potential-well
excited state is it simpler to use a»(b).

III. FIT TO SINGLE DIFFRACTIVE EXCITATION

We here treat the v s = 53 GeV CERN ISR data'
for the process P +P(f)(n +'). &iThe data were
taken in six mass bins for m„,+, from 1.15 to 3

GeV/c' and the reaction is measured from f = -0.1
(GeV)' to = —0.8 (GeV)'. This data contains both
resonant and nonresonant (in the v'n state) con-
tributions. ' By far the clearest resonant signal
seen is the l&)i(1688), which may account for 20%
of the cross section. The N (1688) obviously is
not an 1=0 excitation, so we must take this as a
basic uncertainty of our results at the 20% level,
especially in the region around 1688 MeV/c'.

In an effort to test the sensitivity of our results
to the choice of potential well, we used both an in-
finite square well of radius R as well as an (in-
finite) harmonic oscillator, with strength param-
eter chosen so that the ground-state rms radius
matches the corresponding radius for the square
well. The wave functions and rms radii are
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p„(v) = — —sin
R r R

(square well)

(3.1a)

(3.1b)

{ii,(r) = V, exp( —r'/2c'),

gati, (r) = N, (1 ——,'r'/c') exp(-r'/2c'), (harmonic oscillator) .

ir„') = (n +', )c'

(3.2a)

(3.2b)

The equality of (r,') for (3.1b) and (3.2b) is guaran-
teed by the choice t."=0.43A. The square well is
particularly intriguing not only for its analytic
simplicity but also because of the insensitivity of
(r„') to vg. This means all excited states have the
same radii, in accordance with the approximate
equality of all hadronic cross sections.

Our results were insensitive to the choice of
potential. With either potential, we fit the periph-
eral structure of SDE better with the value A =1
fm, rather than A =1.5 fm which would be required
by a fit of the ground state to the proton rms
charge radius. The "true" form factor, Eq. (2.7),
which was determined from the experimental eiko-
nal function, has the property that while it gives
the correct proton charge radius, it falls much
more slowly at large q' than those we used in our
calculation. Thus our use of a smaller radius in
the transition form factors is a compromise.

Our procedure is, given the various overlap
functions, to fit the c;(m, +„) to the data according
to Eq. (2. 10) in a least-squares sense, reading the
data from the graphs of Ref. 3. We included up to
four excited-state amplitudes; for either the
square well or harmonic oscillator the quality of
the fits (y'/degree of freedom) decreased with
more than two parameters (one excited state plus
the quasielastic term). Table I lists the values
of the parameters as determined from these fits.

The astute reader will notice that in Eq. (2.10)

m; 1.32 GeV/c - 1.44

= 100
U

C3

10

only c,(in ~) and the combination (A 8/2)o,'",'c((m *)
(i c 1) appear. For Table I we took the factor (AB/
2)o,",' to be 2.78 fm', according to Eq. (2.6), but
this means there is some uncertainty in c„ac-
cording to uncertainty in (AB/2)ot, ".

The parameters c, and c, have fairly smooth
and reasonable mass dependences, c, falling and

c, exhibiting a peak. The mass bin 1.56-1.80 ex-
hibits a jump in c, which may result from the con-
tribution of the quadrupole transition to the N(1688)
resonance. If this resonance affects the size of
ifo/dt in this mass bin but not its shape, then c,
will be more sensitive to the subtraction of the
N(1688) than will c„ the behavior of the c, thus
could become even smoother with mass if the res-
onance contribution were subtracted from the
data.

Figure 2 shows the fit for the six mass bins
given in Ref. 3; this fit is that of the square well.
The harmonic-oscillator fit is very similar with
minor differences for t ~ 0.8 (GeV/c)' (dashed
curves).

TABLE I. Values of mixing coefficients c,(nz*) (, see
text) extracted from fit to single diffractive excitation.

b E

~ 100

.80 1.80== m --2.4 2.4'-. m = 3.0

Mass bin 1', GeV/c )

Square well
C1 c2

Harmonic
os c i l 1ator

c, 10

No. 1:
No. 2:
No. 3.
No. 4:
No. 5:
No. 6:

1.15—1.32
1 32 1 44
1.44—1.56
l.56—1.80
1.80—2.4
2.4—3.0

0.0827
0.0941
0.0740
0.0856
0.0558
0.0200

—0.128
0.0477
0.103
0 ~ 125
0.108
0.0694

0.0828
0.0939
0.0738
0 ~ 0854
0.0557
0.0198

—0.127
0.0391
0.0939
0.116
0.100
0.0612

0 . 2 .4 . 6 .8 0 . 2 .4 .6 .8 0 . 2 .4 . 6 . 8

-t [{Gev/c) ]
FIG. 2. Data from Ref. 3 for single diffractive produc-

tion of (n~i') at My=53 GeV in pp collisions, together with
theoretical fits using the theory described in the text.
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IV. DOUBLE DIFFRACTIVE EXCITATION

Equation (2.11) makes clear that we must dis-
tinguish between the factors (AB/2)crt, " and c,. For
e .ample, in Eq. (2.11) the direct term between

c,(rn„') and c,(ma) is proportional to

,'-A Be,'",tc2 (m „*)c, (m a*)

From Eq. (2.6) we take the value 2ABu,",'=2. "i8

fm in nucleon-nucleon collisions. Given this re-
sult and the parameters given in Sec. III, the cross
section for DDE is completely determined.

The overlRp integrRls ln Eq. (2.11) RI e far sim-
pler to perform numerically when the transition
densities arise from harmonic oscillators since
in this case we have analytic expressions for the

a„,(b). The difference in difficulty is so large that
we had to forego the square-well calculation. %e
calculated the cross sections for DDE [P+P
—(Vv) +(i'm)] in 21 mass bins corresponding to the
six SDE mass bins of Hef. 3. %e graph selected
cross sections in Fig. 3 and give some of the sa-
lient features in Table II; regularities become
apparent. Table II lists the values of the cross
sections de/dt at i =-0 and the slopes as measured
from I =0 to i =-0.1 (GeV/c)'. In this table the
mass bins are labeled as in Table I. Additionally,
the location and type of structure in t is indicated.

One should note the extremely large slope for
the 1-1 DDE mass bin. The slope shows a syste-
matic decrease as one or both of the (lVri) masses
increases. In the very highest mass bins, where
the broad dips appear, the cross sections actually
exhibit very broad maxima at values of -j from

0.5 to 1 (GeV/c)'. The cross sections are also
quite small at these l.arge mass bins. Although
not indicated in the table, the d~p structure also is
systematically less sharp as the masses increase.
The features described above are qualitatively just
like SDE.

Table II also shows a. rise in der, /d'f at t =0 when
one of the two excited masses is in mass bin 4.
This is the mass interval covering the Ã(1688),
and the reason for the rise is connected with this
state. Even though the V(1688) was formally ex-
cluded by our restriction to monopole excitations,
it is reflected in our parameters for this mass
bin through the fit. to SDE.

Another experimentally accessible feature of
DDE is factorization. In the sense implied by the
exchange of a simple Pomeron pole, factorization
for diffractive excitation means

da(p +p - p + B*)de(p+ p -A*+p)
de(p +p -p+ p) do(p+ p -A*+ B*)

This relation has been tested" at Ms=45 GeV„
where A* ls a (p1T w ) sta'te of masses summed
from 1.3 to 1.85 GeV/c' [dominated by the
Ã(1688)] and B* is any nonelastic diffractive
state, i.e., it is inclusively measured. In par-
ticular for three f regions from 0.15 to 0.525
(GeV/c)', R (I) was found to be unity to within
about 30%%ug-40%%uo. In this experiment one should

TABLE II. Predicted fonvard differential cross sec-
tions [pb/(GeV/c) ], slopes [(GeV/c) ], and positions
[(GeV/c) ] and char acters of dips (if any).

)0

01-

0.1

I t i l

0 .2 .4 .6 .8 0 .2 .4 .6 .8
[(Gev/c) ]

H

I 0.2 4 .6.8

I'IG. 3. Predicted differential cross sections for se-
lected mass bins in double diffractive production, ob-
tained as described in the text.

Mass bin

2-2

2-4

2 6

4-5
4-6
5-5
5-6
6-6

5.4x10 '
7.5x10 '
4.8x10 '
6.4x10 '
2.8 x10 '
3.7 x10 ~

6.5 & 10
3.3 & 10
4.3x10 '
1.6x10 '
1,4x10 '
1.4 x 10
1.8 x10 '
6.3x10 "

3.6x10 '
2.4&10 ~

8.0x 10 3

4.3x10 '
2, 5x 10

x10 5

10-'

20.7
13.6
11.3
11.1
10,0
7.3

10.9
9.5
9.4
8.6
5.8
8,4
8.3
7.5
4.1
8.1
7.4
3.9
6.5
1.9
2 ' 6

Dip in t

—0.2
—0.4
—0.5
—0.5
—0.55
—0.65

—0.1 (broad)
—0.2 (broad)
—0.05 (broad)
—0.1 (broad)
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recognize first that because the cross sections
fall with the ma. ss of 8* one is testing factoriza-
tion for relatively small Inasses, and second that
in the rea, ctions so far tested deep dips have not
been in evidence.

We tested factorization according to the gen-
eralization of Eq. (4.1), namely,

R, ,(f)

(do[I +p-(Z&), +(1').,.])'
do [p +p —(Nv), + (Nv), ]do [p+ p —(Nv), + (Nw), .]

(4.2)

Here the subscript labels the mass bin; in par-
ticular the subscript 0 labels the elastic state,
(Nv)o-=p. Thus the subscripts run from 0 to 6.
[The factorization relation of Eq. (4.1) may be
derived from linear combinations of (4.2).] Table
QI lists these factorization ratios. Several con-
clusions may be drawn from this table. First,
in view of the wide vaxiation of the cross sec-
tions themselves it may at first be surprising that
factorization works so well. When it does work,t' be ' f th ff t do

' f
over c, (or vice versa) in the cross section: With
a single parameter, factorization would be exact
in our theory. We then expect factorization can
only fail where the two parameters give com-
parable contributions. This is clearly reflected
in Table III. For example mass bin No. 1 is the
bin where the steep forward slope is a result of
interference between the two pieces. All the

R;,(f), where eit.her i or j= 1, are far from unity
(but note, not orders of magnitude different from
unity). This is also reflected ln mass bin No. 6,

TABLE III. Predicted factorization ratios at various
values of t in (GeV/c)2.

01 1,3
02 1.0
03 1.3
04 1.4
05 2.1
06 48.3
12 1.6
13 3.0
14 3.2
15 5.7
16 240
23 1.2
24 1.2
25 1.6
26 29.5
34 1.0
35 1.1
36 3.5
45 1.1
46 7.3
56 2.8

1,5
1.0
1.4
1.5
2.3

115
1.9
4.0

8.0
755

1.2
1,2
1.7

67.5
1.0
1.1

19.9
1.1
1.6
6.5

1.8
1.0
1.4
1.5
2.3

670
2.5
5.8
6.4

11.8
6 x 1{}3

1.2
1.2
1.7

391
1.0
1.1

122
1.1

108
52.8

2.9
1.0
1.5
1.6
2.2

27.6

11.4
12.7
23

509
1.2
1.2
1.6

16.3
1.0
1.1
6.0
1.1
5.5
3.4

24.6
1.1
1.5
1.6
2 ' 2

10.1

138
154
277

2.3 ~ 10'
1.2
1.2
1.6
6.0
1.0
1.1
2.6
1.0
2.4
1.7

(and to a lesser extent in No. 6), where the c, and

c, terms are again comparable.
The experiment of Ref. 15 does not test fac-

torization in the regions where our results state
it fails. %e believe our predictions are con-
sistent with experiment, and suggest that an ex-
perimental test of factorization as in Table III
mould be most interesting.

Note added in Proof. We mould like to dram the
reader's attention to a related paper by Hama, "
which me encountered recently.

ij R(t = 0) A(-0.1) A(-0.2) A(-0.3) R(-0.4)
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