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We show how to construct amplitudes for m' production, n N~n. vrN, which are suitable for energies not far
g+

above threshold and which are simple enough to be useful phenomenologically. The q amplitudes are
treated and the construction of their energy dependence is based on the unitarity relations for the coupled
channels m N and am¹ An ansatz is made about the nm-mass dependence to permit a parametrization which

employs the parameters of the s-wave mn system. The well-known features of the ~ zN elastic amplitudes
are cited to fix the values of several of the constants appearing in the construction. Formu1as are obtained for
the various m p production cross sections. Some early production-cross-section data are used to show how the
s-wave mm parameters may be extracted. The formula: are ofFered for phenomenological application of this sort
when more production data in the near-threshold region become available.

INTRODUCTION

Our knowledge of values for the parameters of
the low-energy mm system continues to be very
meager. The s-wave scattering lengths in par-
ticular are not known despite the obvious intrinsic
interest which has been associated with them for
many years. The 7tm phase shifts have been ex-
tracted' from Chew-I. ow analyses of the m produc-
tion reaction gN- mmN, but not for nm masses be-
low about 500 MeV. The decay g'-pres offers a
unique new source of isospin I = 0 n71 information, '
but, here too, not for very low mm mass. Extra-
polation to the very-low-mass regime requires
that the data be very precise and that the validity
of the parametrization be secure over the span
of the extrapolation. To determine the s-wave mn

scattering lengths we should really have recourse
to data near the n7t threshold and we should have
an analytical procedure which is reliable for this
region. In K„decay we have such a method' for
I=0, but the data' are hard to extract, so that the
determination is so far not decisive and not read-
ily improved upon. In this investigation we shall
return to 7l production, mN-mmN, and provide
an analysis suitable not far above threshold for
direct extraction of the low-energy s-wave mm

parameters. We shall have to await new accurate
production data for w lab kinetic energy T, some-
what below 300 MeV; tentatively, however, we can
examine older existing data at sufficiently low
energies in order to appraise our method.

The spirit of our procedure is to extend the
threshold method suggested long ago by Ansel'm
and Gribov' to the energy region slightly above
the threshold. Following these authors into this
regime we shall take the production amplitude to
contain the m7l amplitude as an explicit factor, and
thus restrict interactions in the final mmX state to
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FIG. 1. (a) Production amplitude near threshold. (b)
Unitarity relation for the production amplitude.

the mm system. We know that we soon reach ener-
gies where m1V interactions in the final state be-
come important'; our assumption is that at the
energies of interest the onset of these effects has
not yet been reached. Ideally we would prefer
to restrict the range of the method to T, &250
MeV; in fact, present data are so scanty that we
shall extend our range almost to 300 MeV. Near
the production threshold we can confine our atten-
tion, because of centrifugal barriers, to a final
state in which only s waves occur. Thus the pro-
duction amplitude we wish to construct is that
fo& Z = —,". The notation is indicated in Fig. 1(a):
The isospin T can be & or a, the c.m. energy is W, the
s-wave 71m system canhave isospinI = 0 for T = —,

' or
I=2for T= &, the 7tmmass-squaredisx. Itis of course
possible to develop a formalism which includes more
effects; our purpose here is to exploit the restrictions
applicable at low energy so that the end result will be
a simple formula which can be readily employed
phenomenologica1. ly. We hope thai the result will
have some range of corresponding restricted validity.
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CONSTRUCTION 4~n P
p'w'= (4.) w (3)

We denote the elastic amplitude, for mN-mN in
the —,

' state for definite isospin T, by M» =M»(W),
and the —,

"production amplitude for definite T and I
by M»=M»(W, x); the labels T and I are sup-
pressed for now. These amplitudes will be construct-
ed in accord with unitarity constraints. ' At these
energies only channels 2 (xN) and 3 (we) are open,
so we can write
1

.[M„(W+ ) —M„(W-)]

= M„(W+ )pgf„(W-)

+ dz M23 W+, z+ p;&32 W-, z —,

. [M»(w+, x) -M~, (W-, x)]
1

27rz

= M»(w+, x)p~U22(W-)

+ dzM33 W+yxy z+ ]33M32 W yz o

(2)

The xvN-vmN amplitude M„occurs in (2); there
are two additional discontinuity formulas, for M»
and for M33 which we shall not write down. The
~ notation refers to top and bottom of the cuts in
question; W+ means W+ i0 in the c.m. energy and
z~ means z +i0 in the mn mass-squared. The fac-
tors p, and p, are phase-space factors:

4~ g
- —

g y z 4+2 &/2t

(4v)' W (4w)' 2 z
(4)

in which P and Q are the nucleon c.m. momenta,
as in Fig. 1(a); note that Q depends on the dipion
mass v z. The nucleon and pion mass are m and

The range of integration for z is, for given
W, 4p'~z~ (W —m)'. Equation (2) is represented
diagrammatically in Fig. 1(b).

Kinematic factors with known W dependence may
be identified; they appear explicitly in the ampli-
tudes: Channel 2 (wN, p wave) carries the fa,ctor
[(P, —m)/2m]'I', and channel 3 (wwN, s waves) car-
ries the factor [(Q,+m)/2m]'I'. To give an exam-
ple, a calculation of the nucleon-pole term in M»
for J =-, ', T= —, yields

Po —m 2'
2 gyes yyg g

we shall need this result later. Our basic assump-
tion stated above is that near threshold the ~z
interaction is dominant over the mN interaction in
channel 3. This a,mounts to an assumption about
the x dependence of amplitudes connected to chan-
nel 3: Channel 3 then carries the s-wave pp am
plitude tz(x) as an explicit factor corresponding
to isospin I. We shall implement these observa-
tions by writing (and again suppressing isospin
labels)

F(W)
2m(M~2(w) M„(W, y) )

t(x)f:(W) t(x)H(W)t(y)

(6)

Qur ansatz serves to exhibit all of the dependence
on the 7tn mass. This construction is motivated by
the proposal, ' made long ago, that the interaction
of the beam pion with a pion in the nucleon cloud
should provide the dominant contribution to low-
energy m production. The expression given for
M» in Eq. (6) is as prescribed in the isobar model,
truncated to include only the mm isobar in the mmN

state. It should then be noted that our ansatz im-
plies that a zero of the ww s-wave t(x) is conse-
quently a zero of M»(W, x) at the same point x.
Morgan and Pennington' argue that this is not what
one should necessarily expect from partial con-
servation of axial-vector current (PCAC) and cur-
rent algebra because the occurrence on-shell of the
Adler zero is process-dependent. In the context
of the present work this distinction would be pro-

-"-(::)-(::)(::-)(::)
in which the new phase-space factors are

(7)

2 P
p= ),

—(P, —m) (6)

and

vided for by the inclusion of the other small iso-
bar contributions. The existence of such a, zero
will appea, r as central to Our pa, rametrization.
Once expression (6) has been adopted then the
unitarity constraints may be applied so that the
functions F, G, and H, introduced in Eq. (6),
must satisfy
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&wm& -
2 qP= dx „—(Q„+ rn)

4f2 4x)' W

The following parametrization satisfies (10) and

(11) (here we reinstate the isospin subscript for
T = — -}.1 3

1 1 x —4p. 'x,— ~l(x) '. (9) Y -).
F, l, (W) = X, + + J(W)

0
(12)

Note that only W dependence remains in Eqs. (7)
to (9).

We want to identify functions I", G, and H which
provide adequate approximations in the production
threshold region. Thus we need only be concerned
about local considerations of analyticity and uni-
tarity. We can even go so far as to neglect those
contributions to the unitarity relation (7) associa-
ted with p. We could include these effects readily;
however, they are estimable effects which prove
to be negligible. As empirical. evidence for this
we cite the vX-phase-shift solutions of Carter
et al. " in which the elasticity factors for P„and
P31 remain well above 95% up to T, = 300 MeV.
We therefore need only implement the constraint

F„,(W) =[X,+ J(W)] ',
Gr(W) =G+r(W) &

where

(13)

(14)

J(W) =-
&

—,[(W —»2 ) —p ] .
f(IV) —P (W) W+»2

(15)

Xl X3 Y, and lV, are pararnete rs which we s hal 1

be able to fix at the outset. G r(T =,—,') are con-
stants about which we have no a pxzovi knowledge.
Note that a. denominator-pole term has been in-
cluded in (12); we introduce this in order to ac-
commodate the behavior of the P„elastic ampli-
tude. " The function f(W) is analytic with the el.as-
tie cut,

f(W) = [(W —&») —p. ]-'
G H GE' G'- (10) (W —» l + l4) + (W —»2 —l4)

(W —&&2 + p, ) —(W —»2 —p, )

In our limited regime of interest it is also an ex-
cellent approximation to make the repla, cement
[(W+ &22)' — ]l4'-'- ( W»+)i2n p, Eq. (8), to obtain

(16)

for IV~ »2+ &4. The function &&&(N') is a. lengthy sec-
ond-order polynomial designed to eliminate the
apparent third-order pole at W= 0 in expression
(16):

n 2 2 4 &.p p, 'W' ., »& + (»!'- p,
-')' -'

»2 IV'-
p(IV) (»2 p ) !' p 2, + &&l(W —&2!)+ /.4 In + W-

L2(zp'2 —p. ) 2 than
—p

(17)

cot6r= 2W(P„+»2)(422)' ReFr '/P'. {18)

Near the nucleon pole, W=zzz, we have from Eq.

The parameters appearing in (12) and (13) we
shall regard as known a p&iori by fitting to the
well -known features of. the elastic — amplitudes.
For T =-,', there are three parameters: X„
a.nd $V„. We determine these by requiring that
j'tI„' ' have the correct nucleon pole position and
residue, and by requiring a fit to the P11 phase-
shiit solution of Carter et al. ' For T=-,' the single
parameter X, is determined by fitting to the Carter
P,„phase shift. The —,

' phase shifts for isospin
7 satisfy

the quality of the resulting fit to the Carter phase
shifts up to T, =300 MeV is shov n in Fig. 2. In
this energy range we can see that ll&e factor Fr(W),
zurich occztrs zn.",i', in tlzis cozzstvzrctiozz, is n

&»af or co&&fr&'f&2&lor lo lire W dej& enclence of llle /&ro-

~,.:.etz', on azzzj7lz. tz~de, especially for isospin T =,'-.
The production amplitude lU, may be assembled

from Eqs. (6) and (14). In it, a unitary expres-
sion for the z&22 amplitude l2(x) could be adopted";
however, a simpler parametrization is in order.
Our construction from Eq. (10) on neglects inelas-
tic cut effects due to t;he rrvN channel; it therefore
should a.iso suffice to employ a real linear form
for l, (x):

t2(x) = constant x (x —x4) . (21)
F,!„——122(4f'/(ln —W),

with ~~-/4zT = 14.5. This fitting procedure yields

x, = 2.74 &. 10-'
I „X,= -13.36 x 10 '

p. ,

p = 5.84 & 10 '
p, ', TV, = 8.65 p, ;

(19)

(20)

The parameters x„and x., in (21), are of direct
theoretical and phenomenological interest. They
are the Weinberg s-wave zeros"; the other s-
wave z~ parameters may be determined from them.
We can now show how these quantities appear in
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If we let g= fez&, f' and g =g) iz/g. , iz then we can
prescribe simple formulas for the S' dependence
of all the cross sections in terms of the four pa-
ra, meters x„x„y, and $. This parametrization
is a minimal one if we admit no further constraints
on the construction. We let

and

P
Z(W)= ~( )

x 4' 'i'-
R(W, x) = [(W —))z)' —x]'i'-

x

&& [(W+)zz) —x]' ',

then we have

FIG. 2. Fit to the P «and &3& phase shifts, 4
&

and 63,
of Ref. 9.

., =-;xz(w) I x)«)x(w, x)( -*,)- lz„,(w) l',

(25a)

the production cross section; with that we shall
then have a direct means of providing for a deter-
mination of their values from production data near'

threshold.
The production cross section is obtained from the

appropriate combination of isospin amplitudes by
means of

(22)

.= —;,xz(w)J x(*R(w, )l(*- )z x (w)

(25b)

(25c)

-))10$(x x„)FxZ2(—W) f',

(25d)

, = —;,xz(w) jz.)x(w, .)(Z2( — .,)z, x

+ v 5$(x —x, )F, zz(W)
f

without I = 1 effects to consider we have

fM( 'P- ' ' )f'=-,'-fM,',i"f',

fM(;i, -'"P)f = ;fM„' f, -

fM(~-P —a-a'p) f'= —,
'

fM,',"'f',

fM(a f —a'&-&) f'= ,', -M,',"' ~xozi—f,'z-'' f-',

(23a)

(23b)

(23c)

(23d)

These equations, together with (12), (13), (15),
(16), (17), and (20), comprise our construction of
the cross sections; the important amplitude-zero
parameters x„and x, appear directly in the final
formulas.

APP L ICATION

I~(~~-a""n)
f

= —.', f~2M'„'-"'+W5M„' 'f . (23e)

We shall refer to the corresponding processes as
reactions (a) to (e). For the ith process the cross
section is

( W-xxx) X 4 +2
(z, = ~ dx [(W —))z)' —x]'z-

W' P, +z)z) x

&& [(W +)zz)' —x]'i'

"14.(x-x.».(W)j; I, (24)

where gri, and g, i, are the unknown constants which
have accumulated in front of each isospin ampli-
tude, and where the notation ( ],. instructs us to
combine amplitudes for process i as in Eqs. (23). 4xo+ 5x, = 12 p, ', (26)

It is hoped that it will become possible to obtain
cross-section data at low energies well below T,
= 300 MeV, with precision sufficient to deter mine
the parameters. To know g and ( from such a
determination would be of little interest. However,
to know the positions of the s-wave zeros, x, and
x„would be of great va.lue. They ought to lie in
the real region of the variable x, i.e., in (0, 4p, '-).

The linear simplification adopted to tz(x) in Eq.
(21) suggests a means for reducing the number of
pa.rameters. If the s waves in (21) correspond to
a crossing-symmetric z;, —nv amplitude linear in
al/ invar iant variables, then it can be shown that
x, and x, must sa.tisfy
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c,/c, = -2.
The s-wave scattering lengths are

(27)

and that the constants appearing in (21), call them
c, and c„are also constrained:

0.5-

I

I

I

I

t

gz
—(i/l8m)c 1(1 —xl/4p, '), 1= 0, 2. (28)

By means of these steps, knowledge of x, and x,
leads to a determination of the scattering length
ratio, a,/a, .

We can go even further and determine both ar
if we adopt the conclusions of soft-pion physics"
and invoke Weinberg's relation" between the scat-
tering lengths,

0.2-

O. I-

2a, —5a, =6L, (28)

where L = p/8xF, ' in, which F, is the pion decay
constant. It follows that c, = 1/F, '. -To pursue
this interpretation, we define the parameters Qp

and q, by
200 260 200

T (MeV)

260

in which the indices are isovector labels, (P' ' is
an isospin projection operator, Q, denotes an
axial-vector charge, and 0. refers to the 0 com-
mutator; the notation is that of Ref. 11. An exact
relation holds between q, and q, :

2g —5q = 6. (31)

The size of g, furnishes a direct measure of the
exotic I= 2 content in the 0 commutator; as such,
it is of considerable interest in theories of chiral-
symmetry breaking. For example, with g, =0, o
is purely isoscalar and the Weinberg prediction"
is obtained:

a' '=7I. /4 and o' '= L/2- (32)

with xo= p, '/2 and x, =2il'. To date, we have no
information about q, from experiment. The phe-
nomenological application of the present analysis,
to yield values for x, and x„would provide the
means for its determination; it is obtained" from

l), = (x, —2 p, ')/p, '.
Cross-section data well below T, = 300 MeV

scarcely exist so only a preliminary application
of our construction is possible. We are limited
to some old results of Batusov et al. ' from reac-
tion (d). These authors provide values for o~ at
T, = 210, 222, 233, and 246 MeV; they assert that
for T, «245 MeV each final particle's angular dis-
tribution in the c.m. system is isotropic, in sup-
port of the s-wave assumption we have made in
the construction. We vary x, and x, subject to
constraint (26) and fit (25d) to their values for a~

FIG. 3. Cross sections for reaction (d): 7t p —7t+7t n,
and reaction (e): 71 p —~ ~ n. The data are from Ref. 14
and Ref. 15, respectively. The dashed curve is the
prediction for (e) from Ref. 16.

at 210 and 233 MeV. For each choice of (x„x,)
a determination of $ and y results; to select an
ultimate solution, data from the other reactions
at low energies are necessary. Nothing is avail-
able below 300 MeV from reactions (a), (b), and

(c). One datum from reaction (e) exists, "for
T, = 276 MeV. This result has large uncertainty;
however, it is in good agreement with an extrap-
olation, down to 250 MeV, of a reconstruction"
which has been made of o„based on available
data in the 300-500 MeV range from all of the
other reactions. The reconstruction of 0, in Ref.
16 is based on isospin invariance and amounts to
a prediction of a cross section which is difficult to
measure. We can obtain general agreement with
this prediction, and fit the lone value of 0., togeth-
er with the data of Ref. 14, with the parameter
solution

x =0.3p.', x, =2.2p.',

(=0.032, g=1.1 x10 mba,

The fit is shown in Fig. 3, where we have re-
stricted the plots to T, & 280 MeV. More recent
data" exist for o~ around T, = 300 MeV and beyond;
even though these energies are judged to be be-
yond the range of applicability of our ansatz the
curve for 0, shown in Fig. 3 continues to fit these
data within their sizable uncertainties. Equations
(27) and (28) provide a result for the scattering
length ratio:
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a,/a, = 4.-1.

If we also adopt (29) and (33) we obtain values for
the scattering lengths and the 0-commutator pa-
rameter:

ao = 7.4L/4, a~ = —0.9L/2, g2
——0.2;

the numbers for az are given to invite comparison
with the values in (32). Of course in the absence
of more solid data these results can only be con-
sidered as suggestive at best.

The emphasis in our method has been to develop
simple cross-section formulas having reliable
W dependence, based on unitarity. The preceding
application to obtaining the 7tm parameters can be
put to real use when more real data at low ener-

gies become available for more than one reaction.
If the 1=2 7t71 amplitude is as small as the indica-
tion from the value for a, would suggest, then re-
actions (a), (b), and (c) may not be useful for this
kind of study; our construction loses its validity
when final-state mN interactions cannot be neglect-
ed. From this point of view reaction (e) would be
the most promising, albeit the most challenging,
candidate to study: The final-state s-wave scat-
tering m n —m n is measured by the mN scattering
length combination 3a», +—,'a»„a quantity which
is an order of magnitude smaller than either a»,
or a», . The mN interaction is correspondingly
suppressed relative to the m~ in the final state of
reaction (e). We hope that the challenge associated
with obtaining the data for both reactions (d) and

(e) can be met in the near future.
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