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%e show that weak-interaction gauge-theory renormalization corrections are negligible, and that explicit
model dependences are small for the ratio I (m ~ ev or evy)/I (m ~p.v or ILt, vy). %e use the postulate that this

continues to hold for other pseudoscalar mesons to justify examining these radiative corrections for n, K, and
D in a phenomenological fashion.

I. INTRODUCTION

Since the original measurements' of the muonic
(m- pv) and electronic (n -ev) decay rates of the
pion there has been considerable interest in the
radiative corrections to these decays. This inter-
est was for the most part motivated by the relative-
ly high precision of the measurements and by the
fact that the ratio of these rates constitutes an
important test of muon-electron universality. "
In general, the problem consists of calculating the
ratio'

I'(m- ev)+ I'(m —eve)
R, =

I'(m- pv)+ I'(m- p, vy)

which can be written as

R, = R„'(I + 6„),
where

I"(m-ev) w, ' m, ' —m, ' '
I'(m —p v) m, m, ' —m, '

is the uncorrected ratio calculated in lowest order.
There are three broad components to the prob-

lem of calculating h: (1) cancellation of infrared
divergences associated with soft photons; (2) re-
moval of ultraviolet divergences associated with
higher-order (loop) corrections, i.e., renormali-
zation; and (3) the description of dynamical strong-
interaction effects. Using a field-theoretical
point pion, Berman' and Kinoshita' treated the
first component by means of electromagnetic
gauge invariance and this continues to be the stan-
dard approach. They ignored the third component
and solved the second by making the reasonable
ansatz that the field-theory ultraviolet cutoff is
the same for electron and muon.

Their result, which is frequently quoted in the
literature, is most easily expressed as ~, = ~„'

+ ~,"",where

2 ', Inp, +1 ln ——ln(l —p ) ——,Inp, + —,
1 + JL(, e A. I 3

1 —ILi, ,' ' m„ e e

with

2(1 —p, ')' "' (I —V,') ' 8(1 —V,')

—(same with p, ,—p, „),

dt
p, =m, /m, , p, =m„/m, , and I.(x) = —ln(1 —f) .

0

IB refers to inner bremsstrahlung-the real photon emission prescribed by electromagnetic gauge invari-
ance; X is a small photon mass used to handle the infrared divergences. In addition, there are loop cor-
rections due to higher-order graphs:

-2 '-, lnp. ,+1 ——2 lnp. ,+ —, + ' . in@,,+ &

3n m, 3~ A—(same with p, —p, )+ —ln ' + —ln a
m 27' A e
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where A, and A, are the ultraviolet cutoffs for
electron and muon, respectively. Under the as-
sumption that A, =A„, Kinoshita concluded that

R, =R,' 1+—[-0.92+ 31n(m, /m, )]

1.233 x 10
to be compared with

R, = 1.2835 x 10

(1.5)

Since this pioneering work, most efforts have
been directed at the third component —by means
of current-algebra techniques, ' phenomenological
Lagrangians, or specific structural models of the
pion. ' In these approaches the second component
is ignored. (The first is, as always, handled by
gauge invariance in the manner of Berman and Kino-
shita. ) The principal effect of the strong interac-
tions is to introduce additional (gauge-invariant)
terms in the real-photon-emission amplitude.
These terms are generally called structure-de-
pendent (SD) terms.

More recently, we have reported' that in a gauge
theory of weak and electromagnetic interactions
with a. point-pion field the second (renormaliza-
tion) component can be treated unambiguously.
The result agrees with the ansatz of Berman and
Kinoshita up to corrections less than or the order
of G~m, '. Thus, although nonzero, the contribu-
tions to ~, associated with subtleties in renormali-
zation are experimentally negligible. In another
paper, ' we handled all three components within a.

field-theory framework, again using a gauge theory
of the weak interactions and the static quark model'
(SQM) for the pions. There it was very important
to properly include the effects of strong-interac-
tion dynamics as the SD corrections are potentially
large. In the end, however, the value calculated
for R, was very close to that of Berman' and Kino-
shita. '

Since that time Marciano and Sirlin" have shown
that the largest contribution to 6, [(3n/v) ln(m, /
m, )] is essentially fixed by gauge inva. riance and
that most strong-interaction dynamical effects
cancel out in the total rates (although not in the
lepton spectrum). Only the pure SD contributions
are not handled by their argument, but these seem
to be small in the pion case."

We conclude from all of the above that reliable
estimates for R, can be arrived at more simply
by using phenomenological-Lagrangian techniques.
The plan of attack is as follows: (1) Calculate the
sum of the IB corrections and the loop correc-
tions. By the argument of Marciano and Sirlin
this will always give a contribution to 4, equal to
(3o'/v) 1n(m, /m „) plus small corrections. By our
argument, renormalization effects can only intro-

duce corrections to this of order G~m, '. (2) Cal-
culate the pure SD part using a phenomenological
Lagrangian in the tree (no loop) approximation.
The various coupling constants and mass param-
eters will provide the essential information on the
effects of strong-interaction dynamics, thus taking
care of the third component.

This last method of calculating may seem super-
fluous since ~, has already been calculated in some
detail. However, the phenomenological- Lagrangian
method may prove indispensable in calculating
radiative corrections to kaon decay (or charmed-
meson decay) where suitable gauge-theory models
have not yet been constructed. It also has the vir-
tures of ease and simplicity.

The plan of this paper is as follows: In Sec. II,
we present our point-pion model in expanded de-
tail. In Sec. III we discuss the static quark model
for the pion with a gauge weak interaction, also
in greater detail than previously. In Sec. IV we
calculate R, in the phenomenological Lagrangian
approach described above-very easily reproducing
the results of Secs. II and III. In addition, we
calculate the analogous result for kaon decay.
The (rather interesting) kaon results are improved
over previous estimates' in two ways: The results
of Secs. II and III put the calculations on a firmer
theoretical footing, and we use more recent data
to determine our parameters. We also make a
few remarks about the application of this phenom-
enological-Lagrangian technique to the purely
leptonic decays of charmed mesons. " In Sec. V,
we summarize and present our conclusions.

II. GAUGE-THEORY MODEL

As we pointed out in the previous section the
original work on m- lvz by Berman and Kinoshita
suffered from two shortcomings. First, the re-
normalization procedure is not clearly defined;
and second, strong-interaction corrections are
ignored. In this section we address the first prob-
lem, and treat the second in subsequent sections.
The most natural way to attack the renormaliza-
tion problem is within the context of a spontane-
ously broken gauge theory of weak and electromag-
netic interactions such as that of Weinberg and
Salam" (WS). The advantages of such a theory are
that p. -e universality appears naturally as a low-
est-order symmetry and the renormalization pro-
cedure is well defined. Our only problem is to
include the pion field in the WS Lagrangian.

Including the pions in the WS Lagrangian is
actually quite simple. Our notation and methods
will be quite similar to those used by Appelquist,
Primack, and Quinn (APQ) in treating W decay. "
As in APQ all our calculations will be done in the
U-gauge formalism. Our Lagrangian is just
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g = —,'(8.&„8„A,+gA„xA„)' —,'(8„a„sp,)'+ p 1., (ffl+ .' g-7 8(+ 2g-'g)L, + g ll, (fi+g'gt)fl,
l

+-.I(s. +-.'fgr A„--.ig'a, )c I'- QG, (l. ,ea, +ll, e'f. ,)+-.I(8„+-,'fg~ A„-,' fg'a. )zI' v(z, e),
l

(2.1)

1 —y5 vg 1+y5

The first six terms of this expression are just
the standard Lagrangian of the Weinberg-Salam
SU(2) x U(1) model, "where the 4 field is defined
to be

(;&2q
)

2ac -A (a -z)
4aD (a z)'

2/iD —'C (E I' )—
4aD (E z)'

The y and 0 fields must be shifted by these
amounts. The shifted Lagrangian contains, among
other things, g-7 mass-mixing terms which can
be eliminated by rotation in g-7 space. The fields
with definite masses are just

with p and qo real and q' complex. The field Z is
defined to be

'g = "g cosy+7 slny,

m = —q siny+ 7 cosy,
(2.4)

with 0 and w' real and v' complex. The ~'s will
eventually be associated with the 7t's and the v is
an additional scalar field. V(Z, 4) is the "poten-
tial" in our model. It includes all possible Z-4
interactions which are SU(2) && U(1) symmetric and
at most quartic in the fields. We write it as

v(z, 4) =-w(z'z)+a(z'z)2-c(c'c)+D(4'4)

+a(z'z) (4 '4)

(2.2)

Notice that we have eliminated a possible Z~4

+ 4tZ term by imposing an additional symmetry:
Z —Z. To insure stability we require B, D&0
and E —I' & —24BD,

We now find the vacuum expectation values of
0 and y by minimizing V. The minimum occurs at

with tang=6/X. The masses of these new states
are then

m, ,' = 2r(X'+ 52),

m„' =2(F +H)(X'+ &') .

(2.5)

The factor H just represents an isospin breaking
in the pion mass spectrum, so that H «E.

In the U-gauge formalism the massless q' fields
are absorbed into the definitions of the massive
vectors V and Z and do not appear explicitly in the
Lagrangian. The photon (A) and the neutral inter-
mediate vector boson (Z) are identified as the
mass eigenstates

&.= (g'+g") "'(ga. -g'&', ),
z.=(g'+g") "'(g'a, +g&',).

The charged intermediate vector boson is, of
course„W; = I'A'„+fA'„)/~2; and Gz/~2=g'/8M''
provides the usual connection to the Fermi theory.
The Lagrangian becomes

Z =kinetic terms -Z(X'+ 5')w' H(~'+ 5')(m')'-4a5'o' 4(E Z)5~op 4m'y'+-'g(5'+ X')
I
W

+—,(52+%.')Z„2 —Y' G, All —V' G,yll+ Q ' (v, (1+y,)lr' v2ly, lm' —l(1 —y, )vp }

+ 2(g +g")' '(m'zs„w [cos(28)Z" —sin(28)A~]+wois, m'W "cos8+m i&,m'W" cos8)

+ many additional interaction terms, (2.6)
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where we have introduced the Weinberg angle, "
tan8 =g'/g. Notice that —,(g +g")'~2sin(28) = e so
that the charged pion has the correct coupling to
the photon. Among the additional terms are the
usual weak and electromagnetic interaction of the
leptons and a multitude of couplings involving the
m, 0, and y fields. However, there are no addi-
tional pion-vector couplings like 8„m V" or m V„V".
Notice that there remains in the Lagrangian a
0-y mixing term proportional to E -I'. In order
to simplify our calculations we will ignore the
o'-q mixing induced by this term, which is equiv-
alent to setting E =I'. This assumption will not
alter t.".e validity of our results. We can now read
off the masses of the remaining particles directly
from the Lagrangian:

(2 '1)

The key term in our Lagrangian is the first term
in braces: The pion has a direct, nonderivative
coupling to the leptons of strength G, siny/v 2.
(The wo- e'e decay generated by the middle term
there causes no problem since it is a weak decay.
The rate calculated for mo-e'e is orders of mag-
nitude below even the m'- e'e y rate. ) By equating
this with the known strength of the pion-lepton
coupling, Gzm, f,/~2, we find that

t ayn= G~f,'/~2 (2.8)

malization constants.
With these definitions we find that the renormali-

zation counterterms for the my. v and n ev couplings
Rre

(Z, —1) sinyG, n'v„(1+@,) p (2.10}

(2.11)

where Z„, Z, , &„, and &„Rre the wave-func-
tion renormalization constant for the electron
neutrino, the left-handed electron, the muon neu-
trino, and the left-handed muon. (The right- and
left-handed leptons are separately renormalized
since the weak interactions do not conserve par-
ity. ) Z~ and Z~ are essentially mass-renormal-

e
ization constants for the electron and muon.
These expressions are really the key results of
this section. The electronic and muonic vertices
cannot be separately renormalized. The two
counterterms are explicitly related by calculable
factors. We now proceed to determine what that
relation is.

We will calculate corrections to the one-loop
level. We need only consider those graphs which
contain a lepton propagator within R loop since
only these can contribute to a difference between

Rnd e decRy.
In Fig. 1 we list the lowest-order graph and Rll

so that the angle y and, hence, the q-v' mixing
are very small indeed.

We now have our Lagrangian nearly into its
final form. All that remains is to replace the
unrenormalized fields, coupling constants, and
masses in Eq. (2.6) by properly renormalized
ones. We hencef orth denote all unrenormalized
quantities by a subscript zero and all renor-
malized quantities will have no subscript zero.
[Thus, all the quantities in Eq. (2.6) should be
understood to have zero subscripts. ] We then
proceed to define the renormalization constants

m, =MZ;m,

m+ /
(b)

v

7l (f)

(2.9}o, = ~Z,(r,

Z Z~Z „j/2
slnyo = siny '

at ir l

the remaining coupling constants are defined as
in Table I of APQ." Notice that there is not a
separate renormalization for 6 since it is defined
in terms of X and siny which already have renor-

FIG. l. Some low-order graphs for pion decay in the
point-pion model: (a) lowest-order and (b)-(h) next-
higher-order one-loop graphs, contributing to mph' ver-
tex renormalization (Z~).
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relevant one-loop graphs contributing to Z, . (If
we had allowed 0, y mixing there would be addi-
tional graphs with 0 replacing y. In that case the
sum of the 0 and y graphs would give the same
infinities as the p graphs alone do without mix-
ing. ) Doing the integrals, we find three types of
ultraviolet divergences: (1) quadratic diver-
gences which are independent of the lepton mass,
(2) logarithmic divergences which are indepen-
dent of the lepton mass, and (3) logarithmic di-
vergences which are preceded by a factor of
m, '/M~'. Thus, we can write each renormaliza-
tion constant in the form

Z

(b)

(cI)

2

Z',. —1=A,.I' 1-2 B,I 2-2 ~', C,.I" 2 -2
W

+ ultraviolet -finite terms,

where we have written the divergences as I func-
tions (to be evaluated at n =4) to remind the reader
that a simple and proper way to calculate is to use
dimensional regularization. " The A, , B,, and C,.
are independent of the particular lepton involved.
Thus, the only constants that concern us are the
C,.'s. A necessary and sufficient condition that
the counterterm of Eq. (2.11) will render v-ev
finite is that

C =C~ + 2C —2C (2.12)

We have explicitly calculated these C,.'s and find
that

2

C = 2(4 —4cos 8),

g 1

2C„=,(—,
' ——,

' tan'y),
16m'

2C„=,(-1+—, cos'() —4 tan'y) .

(2.1S)

In Fig. 2 we show explicitly the graphs which con-
tribute to Z„, Z~, and Z„. It is a trivial ex-C~&
ercise to see that Eqs. (2.13) satisfy relation
(2.12), i.e. , the renormalization procedure works.
Having seen that there are no ultraviolet diver-

gencee

problems we can now find the breakdown of
p. -e universality in the remaining ultraviolet-fi-
nite pieces.

We can now divide the graphs into two classes—
those with virtual photons [such as Fig. 1(e)) and
those without. Those without photons can be sep-
arated into a part independent of the lepton mass
and a part proportional to G~m, '. They make a,

negligible contribution to universality breakdown.
Aside from these small corrections the entire ef-
fect comes from the photon graphs. However,

FIG. 2. Lowest-order graphs which contribute to
muon [(a)—(f)] and muon-neutrino [(g)—(i)] wave-function
renormalization (Z„,Z„„)and to muon-scalar coupling-
constant renormalization (ZG ), by means of the rela-
tion to muon mass renormalization.

these are exactly the same graphs considered in
the original calculations of Berman' and Kino-
shita. ' To be more explicit, the graphs they con-
sidered are those of Figs. 1(e), and 2(a), and the
additional graph of Fig. 3. When these loop graphs
are combined with the appropriate real photon-
emission graphs (to handle infrared problems) a
finite result is achieved —that of Berman and
Kinoshita.

Having expended a lot of energy to recreate an
old result, we are led to ask what we have gained.
What we have gained is that we have replaced the
intuitively appealing ansatz that the electronic and
muonic cutoffs are the sa, me by an explicit calcu-
lation that essentially says they must be the same
(with only very small finite corrections). Of
course, we have only established this result in one
particular model of pion decay. However, it would
seem reasonable at this point to extrapolate from
our model and postulate that it will also be true in
any other renormalizable theory of pion decay.
It is difficult to see how corrections bigger than
0(G~m, ') could appear in any sensible model of
the weak interactions.

Along with Berrnan and Kinoshita we have still

FIG. ,'3. The lowest-order one-loop pion-propagator graph
which contributes to the cancellation of infrared diver-
gences in radiatively corrected pion decay.
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failed to take into account possible effects due to
strong-interaction dynamics. It is useless to ex-
pand in more loops since the strong-coupling con-
stants are presumably la,rge. In any case, a mod-
el with only pions cannot hope to give a rea, listic
picture of the strong interactions. In the next
section we will attempt to fill this void by consid-
ering a, model of the pion as a quark-antiquark
composite particle.

doublet (u, d) as follows:

-G„(L,,off„+H.c.) -G„(L,,CII, +H.c.), (3.1)

III. THE STATK QUARK MODEL

The static quark model' (SQM) is a very sim-
plistic model which has had unexpectedly wide
success in describing static quantities and has
recently been applied, with some success, to
dynamical properties of hadrons. ' In the SQM,
a pion in its rest frame consists of a quark and
an antiquark, each of mass one-half the pion mass
(m, ) and at rest. The binding energy is zero, and

the momentum-space wave function is a ~ func-
tion. Our motivation for using this model is two-
fold: (1) Because the quarks are on-shell, we can
unambiguously use an on-shell amplitude for
quark-antiquark scattering into a lepton pair, or
into a lepton pair plus a photon. In a gauge theory
of weak and electromagnetic interactions such an
amplitude is well defined and, in addition, has no
net ultraviolet divergence, "so that no problem
arises from the second component described in
the Introduction. (2) The wave function of the pion
is spread over all of configuration space; this is
an extremely soft, extended model of the pion.
It is difficult to imagine a model more different
from the point model of the previous section.

Considering the radically different pictures of
the pion adopted in the two models, we might ex-
pect the value of 8, obtained from the SQM to be
maximally different from the point model —pro-
vided R, is monotonic in the pion size {or binding
strength). As we shall see, the difference is quite
small, in agreement with the theorem of Marciano
and Sirlin, ' once the strong interactions are cor-
rectly handled. The major problem with the SQM
is that m, =m, —no spin-spin strong couplings are
included. [The SQM is a very simplistic realiza, —

tion of SU(6) symmetry. ] This (bad) approxima-
tion leads to an exceptionally large pure SD cor-
rection, which we correct by changing the effective
mass in a. propagator in the pure SD amplitude.
The result is then similar to what appears in a
more natural way in the analysis of Sec. IV.

We use the same I agrangian as in Sec II for
the leptons and the weak and electromagnetic in-
teractions [Eq. (2.1)], but delete all terms con-
taining the scalar Z field (which provided the
point-pion field). Instead, we introduce a. qua. rk

e - i ( w / 2 & v2 (g, + )

Note that we have set the Cabibbo angle equa, l to
zero, as it is irrelevant here. After shifting the
4 field by its vacuum expectation value, 9'„we
again find

Gz~~~=& ~S+~w ~
e =R'8' ~~K +Ã

a,nd, in addition,

Neglecting isospin breaking we choose G„=G„, so
that m„=m„= &m, to conform to the SQM picture.

We are now ready to begin calculating. Before
we do, however, we should recall that we a,re not
interested in the entire amplitude for quark-anti-
quark scattering. We only need the part corre-
sponding to our SQM pion, For an amplitude of
the form lsd, we can "project" out the pion by
taking

where the sum is over all g and d polarizations,
and 6 is a normalization factor. It is convenient
to do this projection before any other manipula-
tion of an amplitude, to avoid complications and
extraneous information on channels other than
J =0 . Thus, the lowest-order amplitude, as

FIG. 4. Lowest-order graph for ~' decay in the SQM.
The square bracket at left represents here, and in the
subsequent figures, the projection into the J+= 0" sector
which is described in the text.
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shown in Fig. 4, is just

5R, (m - Iv) =—~ m, (2m, C)l (1 y, ) vl

so that

e -f,l2m,

(3.2)

(3.3)

and f, is the usual pion-decay constant.
As in Sec. II, the radiative corrections (to low-

est nontrivial order) may be divided into two
classes: (1) those where a real photon appears in
the final state, a,s shown in Fig. 5, and (2) loop
graphs of the types shown in Fig. 6.

When the real-photon-emission graphs are added
together, they yield the following amplitude:

K(w -Ivy) = ~ f, —" ' — " ' m, l (1 —y, )v — ' I )„P„(1—y, )

(2 2t6 „„~gtgy ~ I- (I )
(3 3 2P„'P, (3 4)

where P, is the charged-lepton momentum, P, is
the pion momentum, and «„and P„are the photon
polarization and momentum, respectively. In the
last term we have made the approximation M~'
—(P, P„)'=M-v'. The amplitude (3.4) is the sum
of two parts. First, there is the IB part (en-
closed in square brackets) which is equal to that
found by Berman and Kinoshita; it is essentially
fixed by electromagnetic gauge invariance and
includes an infrared divergence. It gives a con-
tribution to a, given by Eq. (1.3). The remainder
of the amplitude is an infrared-finite SD part,
which was absent in the point-pion calculations.

As we will see in Sec. IV, this is very similar
in structure to what is obtained by calculating the
amplitude for the virtual decay m'- p'y followed

by the weak decay of the off-shell p': p'-l'v, .
The difference lies in the denominator, which is
essentially the quark propagator in Figs. 5(a) and

5(b). In the phenomenological-Lagrangian approach
of Sec. IV the corresponding propagator denomina-
tor is m, ' —(P, —P, )'=m, ' —m, '+2P, 'P„. Note
that the two denominators are the same if ni, = v~„
as is true in the SQM. The SQM, by ignoring spin-
spin interactions, fails to recognize that when the
emitted photon flips the quark spin, the resulting
p-like state is far off-shell.

This is a serious defect in the applicability of
the SQM to this process, for these SD terms do
not have the standard lepton-mass factor m„ the

(b)

(b) e

(c)

(c)

e

FEG. 5. Real-photon-emission graphs for 7r' decay in
the SQM.

FEG. 6. Schematic of higher-order corrections to
~' decay in the SQM. The shaded blobs are 1PI dia-
grams including (a) "box" graphs, (b) lepton —W-boson
vertex corrections, (c) quark- W-boson vertex correc-
tions, and (d) W-boson propagator corrections.



716 T. GOLDMAN AND W. J. WILSON

factor which suppresses m- e v relative to
7t —p. v. This factor is absent since the photon
emission leaves a spin-1 intermediate hadronic
state. The usual helicity argument for the spin-0
pseudoscalar case is avoided; the weak interaction
is able to proceed with full strength to produce a
lepton and its (anti-) neutrino with opposite heli-
city. Thus, this O(o.') SD contribution is enhanced
relative to the lowest-order (no photon emitted)
decay by a factor of (m„/m, )' in the rate. Explicit
ca.lculations show that this supposedly O(o.') con-
tribution to R, is actually O(1) if m, = rn, [i.e.,

using Eq. (3.4) uncorrected]. Thus, we find it
necessary to modify the SQM, in this SD part only,
by the replacement" 2P& Py 2P& Py+M p

where
we expect M —6'7

This more or less ad hoc procedure can be par-
tially tested by using the SQM to calculate the de-

cay rate for vo- yy. The decay amplitude for this
deca, y is quite similar to the SD part of 7t'-l 'vy

[they are related by CVC (conservation of vector
current)]. An adequate fit to the data" can be
made by retaining the M' correction of the last
paragraph and setting M = 685 MeV." (Notice that
([M' —(m, ' —m, ')]/m 'j =18%.) An additional test
can be found in the mass distribution of the e'e
in the decay ~'- e'e y. To the extent that this
shows no variation beyond that expected from
kinematics" it can be concluded that the ma. ss pa-
rameter of a form-factor correction (which is the
net effect of the 2P, P„+M.' denominator) must be
greater than a few hundred MeV —which is con-
sistent with the value of M above.

Returning to our expression for the real-photon
deca.y amplitude, Eq. (3.4), we find that it should
now read

(3 4')

Squaring this amplitude and integrating over phase
space, we find three contributions to the m- ivy
rate. First, there is the pure IB contribution as
previously calculated. This contains inf rared di-
vergences which will be cancelled by infrared di-
vergences in loop graphs. Next, there is inter-
ference between the IB and SD parts. This makes
a negligible contribution to the rate since it is
again proportional to m, '. Finally, there is a pure
SD term given by

7

(3.5)

where

2 ~
V 3M

In Eq. (3.5) we have neglected O(m, '/m, ') correc-
tions. We do not quote the form of I' (~- p, &r)
since this makes only a negligible contribution
to the muonic decay modes [(m, /I, )' is large,
but (m, /m„)' is not].

Turning now to the loop graphs, we note that
these are of four classes: (1) "box" graphs as in
Fig. 6(a.), (2) lepton-vertex corrections as in Fig.

5K',, = ——ln —Ãi,
277 nl.

(3.6)

where X is a small photon mass, and %, is the
zeroth-order amplitude given by Eq. (3.2).

Next we consider the lepton-vertex corrections
(detailed in Fig. 6). Because of the zeroth-order
symmetry between the muon and electron in their

6(b), (3) quark-vertex corrections as in Fig. 6(c),
and (4) W-boson-propagator corrections as in

Fig. 6(d). This last class can produce no detec-
table correction since it is symmetric between
the electron and muon cases and contains no in-
frared divergences. (Since the W is off-shell
there is an effective infrared cutoff. ) The quark-
vertex corrections (partia, lly displayed in Fig. 7)
are also symmetric between electronic and muon

decay; and so only the parts that contribute to in-
frared-divergence cancellation are important. In

fact, these infrared vertex corrections need not be
calculated in detail because such infrared diver-
gences cannot be sensitive to the pion structure—
they must add up to the same co rr ection as that
obtained in the point-pion case, i.e., the inf rared
part of Fig. 3, which is just

vC

FIG. 7. Expansion of quark —W-boson vertex correction showing some lowest-order one-loop graphs explicitly.
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FIQ. 8. Expansion of lepton- 8"-boson vertex correction showing lowest-order one-loop graphs explicitly.

gauge coupling to the W boson, the sum of the ul-
tx'aviolet divergences must be essentially the same
for the two, leaving only an ultraviolet-finite dif-
ference. This difference includes an infrared di-
vergence arising from the lepton wave-function
renormalization. It is given by

(3.7)

where p. ,=m, /m, . The details of this lepton-ver-

tex-correction calculation are analogous to those
of APQ in their paper" on 8' decay, so we will
not discuss them further in this work.

One final class of graphs —the box graphs detailed
in Fig. 9-remains to be calculated. Of these,
only the ones involving a photon [Figs. 9(a) and

9(b)] are of interest. The others [Figs. 9(c)-9(h)]
are all infrax ed-finite and second-order weak"
and so are negligible. '4 Evaluating the box graphs
involving photons, we find

GM e2
3}Ibox f I" w

3(2m)'
d'I Ot'+I P ){I'+2t P ){I,'-~')[(r+P )' M']]-'-

W'

x [3(P,"k"+P,"k'+P,"P," —2k'P, g"")+ie "~"P, kz]l[ m, „y „y+„y( it+/, ) y] I{—y, )v, , (3.8)
where X is again a photon mass needed to handle the infrared divergences. The term proportional to 3
inside the second set of square brackets contains all the infrared divergences. This term is related to the
IB part of the real-photon-emission amplitude. Its infrared structure is insensitive to the pion structure;
hence, we will find that it has the same infrared divergences as the graph of Fig. 1{e).

The term with the & tensor is related to the SD part of the real-photon-emission amplitude. %e pre-
sumably should make the substitution (k 2k+' P)- (k'+O'P, —M'/2) in the denominator of this term in order
to be consistent with the changes made previously. " In practice, this loop SD correction is entirely negli-
gibl. This comes about for two reasons. First, the lepton mass factor, which is absent in the puxe SD
part of the real-photon emission, reappears owing to the connection of the virtual photon to the lepton
line. (This is the same effect that made the IB-SD interference term negligible in the real photon emission
rate. ) Second, the mass factor, M, reduces the SD contribution by a factor of order m, '/M' compared to
the result we would have gotten by using Eq. (3.8) as it stands.

Integrating the remainder of Eq. (3.8) yields the following expression:

3R,2 =K, —&, [(In2)'+2(lnp, )' —2K(p)]+, , In2p' —, —4, Inp, ln-o
4m ~l-p, ' 2p. —1 2p. —1 1 —p, m

where p =m, /m, and

E(p) = (dt/t) In[(2p, ' —1)t+2(1 —tt')].

[In obtaining Eq. (3.9), we needed to use the identity

(m, —m, ) Io„„(l-y, )v, et~""(P,)„(P,-P, )~-I(I y, )v,

to rewrite some terms in a form proportional to II .]
Combmmg all of our 0(o.') loop corrections to 3g [E@s. (3 8) (3 7) and (3 9)] we get

1 2 4 o

4m 1 —p2 2p2 I 2 2p. ' -1

(3.10)

o 2 lnp+1 ln —.p
2

o~ 1 —p2 m
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The main origin of the deviation of this result from that of Kinoshita is that the quark-propagator pole
in the "box" graphs Figs. 9(a) a,nd 9(b) is not in the same position for nonzero photon (loop) momentum as
the pion pole would be. This is not an error in the SQM, but a, difference from what a more complete
model would give. (It corresponds to an atomic calculation, for instance, where one does not take into
account the binding of the electrons to the nucleus in some interaction involving the electrons. As the
electron pole and not the atomic pole is important there, up to binding effects, so here the quark pole and

not the pion pole is what we concentrate on. ) Presumably the effects of strong binding in a more complete
model would shift this case closer to the case studied by Kinoshita. This would involve extending the
SQM to include momentum correlations, as we have done above for spin correlations through the parame-
ter M. We have avoided this for two reasons: (1) It generates problems of gauge invariance and re-
normalizability which we are presently unable to handle. (2) We are interested in the maximum (possible)
change in R,; as the preceeding argument suggests, this is likely to be the case when the strong-binding
corrections are completely ignored.

Finally, we can combine the expression for the loop corrections with the real-photon-emission contri-
butions [Eqs. (1.3) and (3.5)] to get the total 0(n) contribution to a„ the fractional change in the ratio, ff„.
This expression, which is of course infrared-finite, is

2I 1 —p, —E p, —21np. ln 1. —p, + & 1.n2 —21.n 1 —p,

(1 —2p, ,') (38p,,' —O'Ip, '+15), (p, ,' —4) 2(2 —3p.,')
2(2y. , —1) 8(1 —p, , )(2p, ' —1) ' ' 2(1 —p, ')' (2p. ,' —1)

same terms with p.,—p. „

+ —ln ' + (3.12)

= (1.239 s 0.001) && 10 ', (3.13)

where the error allows for the uncertainty in the

We should once again recall that we have ne-
glected terms of order nG~m, ' and n(m, /M)' in
calculating this expression. Note that the term
(3n/m) In(m, /m, ) is in agreement with the theorem
of Marciano and Sirlin. ' The last term, the pure
SD contribution, is numerically quite small (0.05%).
The value of R, calculated from Eq. (3.12) is just

8 =R 1+—0.84+ 3 ln ' +0.0005
Q nl

0 m

SD part. This is very close to the value obtained
bl Kinoshita [Eq. (1.5)j and by us in Sec. II. It is
also an explicit demonstration of the validity of the
Marciano-Sirlin theorem. "

1V. PHENOMENOLOGICAL-LAGRANGIAN METHOD

In the previous two sections we have analyzed the
second and third components of the pion-decay
problem in particular models. The lessons we
have learned are: (1) The second component, the
ultraviolet-divergence renormalization, is inno-
cuous —up to weak corrections the electronic and

w+

(c}

FIG. 9. Lowest-order one-loop "box" graphs.
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muonic loops are renormalized the same way —and
(2) the effects of the third component, strong-in-
teraction dynamics, are small except possibly for
the structure-dependent contributions —this is es-
sentially the Marciano and Sirlin theorem at work.
We can therefore short-circuit most of the forma-
lism and employ a phenomenological- I.agrangian
approach which will reproduce the IB pa.rts cal-
culated previously and give the SD contributions
in a less ad hoc manner than in the SQM. We
will, of course, find a,n SD contribution of the
same size as we did previously; however, using
this technique we can analyze the radiative correc-
tions to any pseudoscalar-meson decay. We will
find that the SD contribution in the kaon case can
be quite large and may be dominant in the case of
the charmed mesons (D, F).

In general our approach is a standard vector

(a.nd axial-vector) dominance scheme with certain
peculiarities. For instance, our Lagrangian con-
tains a photon-pseudoscalar —(axial-) vector ver-
tex. We could, instead, use vector dominance for
the photon and include a vector —pseudoscalar-
(axial-) vector vertex; however, since we will
aluays examine processes with at least one photon
on-shell, we would gain nothing by this added
complication. Also, we do not explicitly include
the 8' meson in our model since finite-W-mass
effects are in general negligible. Our analysis will
be quite similar to that of Carron and Schult' who
also treated the K- yI'v decays. The differences
in our results will essentially be due to improved
estimates of the input parameters rather than to
differences in theoretical approach.

We begin by writing down the relevant parts of
our Lagrangian:

2z —-8 Ply„fB~+fe TrB,[PS'2]+e vp" e,„„~Tr(V'",F'~)P+fe "~' Tr[A'", F„„]P+e(v2 gvM') TrV+8,

+ —(~2g, &f') TrV'W, + —~(~2g„M') TrA'W. + fp
~ g Trm, PW', (4 1)

38 0 0
o —.'a, o

( o
'o'

—,'a, )
'

and W, =Z, W'„with (0 is the Cabibbo angle)

0 cos8 fy„(1-y,)v, sin8 fy, (l —y, )v,
W'„= cos6 v, (1+y,)y f 0 0

~

~

sill& v) (1+y5)y~f 0 0

and 8" has the same form as 8",' but without they&
factors. P is the 3 x 3 matrix representing the
pseudoscala. r octet and V„(A„) is the 3 && 3 matrix
for the vector (axial-vector) nonet; 8, is the pho-
ton. We treat only the electronic decay below, as
the SD corrections in the muonic decay a,re always
smaller by (m, /m )'. The fa.ctor of iVI which ap-
pears in various places is just an arbitrary mass
scale" designed to make the various g's dimen-
sionless. It should be clear from the notation that
we have asssumed SU(3) and nonet symmetry.

In this model the lowest-order pion decay pro-
cess proceeds as in Fig. 10(a), whereas the one-
photon-emission graphs are shown in Figs. 10(b)-
10(e). Figures 10(b) and 10(c) contribute to the
IB part. The contribution of Fig. 10(d) is an SD
part analogous to the SD part calculated in the
previous section. Figure 10(e) is an additional

(4.2}

(4g„„/M)(~2g,M') m, '
P P

(4 3)

(2g„,„/M) (v 2g„M') m, '
A. j A~

(4.4)

SD contribution which vanishes in the SQM but
need not vanish in general; we include it here.

The calculation of the IB part is again identical
to that of Berman' and Kinoshita, ' so we will con-
centrate here on the SD contributions. It is a
straightforward but tedious calculation to show
that the SD contribution to the pion decay rate is"
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The square of the function I(y) is defined as

I'(y) =20
i dxx'(1-x)[1-y(l —x)] '

= -20y '[4y —Vy'+ ('-,')y'

+ (1-y)'(4-y)ln(1-y)]

pl~'Uq 1 + j'~ (4.6)

In order to estimate the SD contx'ibution we need
only ascertain the value of

~
v„~. We can do this

in a straightforward manner by first calculating
the decay rate for m'- yy, using vector dominance
and the Lagrangian (4.1) (which is equivalent to
using CVC),

(4.7)

which yields

=120+ (n +1)(n +1)![(n+5)!]'y" (4.5)
n~0

and includes corrections due to the momentum de-
pendence of the vector (axial-vector) meson prop-
agators. For the pion, y-0 and I=1; i.e., these
corrections are negligible. However, they will
be important in the kaon case. [This is the one
place where txeatment of the muon differs —its
non-negligible mass affects the definition of I'(y).]
Another useful formula is the fractional change
in the electronic decay due to the SD part:

(b) (c)

FIG. 10. Low-order tree graphs for 7(' decay in the
phenomenological Lagrangian method: (a) lowest- order
graph, (b) and (c) real-photon-emission (radiative) cor-
rections which also appear in the point pion model, and

{d) and (e) structure-dependent real-photon-emission
(radiative} corrections.

pected since in both cases we used the m'- pz
width to estimate the size of the SD part.

Having seen how the phenomenological-I. agran-
gian approach works in the pion decay case we can
now easily estimate the size of the kaon decay cor-
rections. The relevant graphs are shown in Fig.
11. The uncorrected e/p ratio for kaon decay
[from Fig. 11(a)] is just

Substituting into this equation the known 7t' decay
rate" yields

0.0259
(4.8)

Finally, if we use Eq. (4.8) in Eq. (4.2) we find
that

&, /V,'=+0.0005(1+y, ).
This is the same result that we got in the pre-
vious section except for the additional factor of
(1+y,'), which is due to the axial-vector coupling.
[The reason that y, =0 in the SQM is that the A,
is an I = 1 state in the SU(6) x O(3) cia, ssification,
which clearly cannot exist in a static model. ] Ex-
perimentally, y, is measured to have one of two
possible values"

y,'"'=0.15 +0.11 or -2.07+0.11.

Vg Vg

In either case the SD contribution to R, is very
small compared to the usual IB part, i.e., our
result is essentially the same as it was in the
previous section. This, of course, was to be ex-

FIG. 11.Low-order tree graphs for R' decay in the
phenomenological Lagrangian method: (a) lowest-order
graph, and (b)—(e) real-photon-emission (radiative)
corrections.
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gO e K

= 2.57 x 10 5.

.m»
I ~» I

(I+y»')»n'8 (4.11)

(4.12)

i.e. , me need only replace all the g indices by K
indices. Once again, everything is knomn except
lzz»l and y»; however, if we take our Lagrangian,
Eq. (4.1), at face value we can derive all the nec-
essary parameters. In particular, we find

«=f.

(4gvp„/M)(v 2g„M')
PZ K

(4g„~/M)(v 2g„M') (,/, )&KZ'K =
2 mK PZKAPl K~

(4.13)

(4.14)

(4.15)

where the propagator corrections in I(y) are no
longer negligible. (They make a 257zz correction
to

I zz»
I

'.) Comparing Eqs. (4.14) and (4.15) with
(4.3) and (4.4) we find

zz»/zzg — I(m» /m» e )
PZK 4

(4.16)

I(m» /m» )
m,m,„ I(m»'/m» *') ' (4.17)

We can now compare the SD contribution to kaon
decay with the contribution to pion decay by taking
the ratio of Eqs. (4.12) and (4.6)

We must now correct for the effects of real-
photon emission and virtual-photon loops. The
theorem of Marciano and Sirlin" tells us that to
a good approximation the IB [Figs. 11(b) and 11(c)]
and loop corrections add up to produce a factor of
(3o'. /zz)in(m, /m, )+ 0(o./zz), i.e. ,

3& PZ~RK-R~ 1+ —ln ' +0 — = 2.47&&10 '.
PZ @

(4.10)

To this we must add the SD contribution [Figs.
11(d) and 11(e)]. (The muon SD part is still neg-
ligible. ) In a manner completely analogous to the
pion decay case me find that"

r'„ /I'
( )' *(1+& *)

PZK Pl
I(m»'/zzz»*').

Z PZK
(4.18)

Substituting the relavant mass factors into Eq.
(4.18) we find

", = (1360) &&

I K T',

= (0.68 + 0.08)(I + y„') (4.19)

in reasonable agreement with our theoretical es-
timate.

Since the theory and experiment are moderately
close to each other, it would seem prudent to re-
examine the assumptions that ment into our cal-
culation. In particular, the SU(3) symmetry of our
interaction Lagrangian mas a crucial input in our
calculation; it gave us the relations f„=f„g~,„
=gK+K„, g, =gK„etc. It is possible, however,
to test these assumptions by independent means.
For instance, by comparing p - p,v and K- pv
(where radiative corrections are relatively unim-
portant) we find that

f. f» - I 2f,'-
the variation indicates uncertainty as to whether or
not the Cabibbo angles for the vector and axia, l-
vector currents are equal. The upper limit as-
sumes equality, while the lower limit reflects
theoretical prejudices. " (Recall we used f» =f,
above. ) Next, we can in principle measure g„„
and gK+K„ from the radiative decays of the vector
mesons. Although the branching ratios for such
decays are not very well known, a preliminary
analysis of all the data"'" indicates that a reason-
able fit is given by g»~» „/g„„=m, /m»~. Finally

+ +
we can estimate the relation between g, and gK ~

by using the first Weinberg sum rule, "which
says, in effect, that g», /g, = m» ~/m, . Combining
the last two results we again obtaingK~K~K+
=g„~,; although the individual terms violate
SU(3), their product may still exhibit SU(3) sym-
metry to a large extent since the SU(3)-breaking
effects tend to cancel. "

As far as the axial vectors are concerned, there
is very little experimental evidence on g„~ or
g~. If our Eq. (4.17) holds true, then the factor
y»' equals y, ', which is either very small (-0.02)

which is a very sizable effect, indeed. (The error
here is due to the error in our experimentaL
input —the zz'- yy rate. ) Experiments. lly, the value
of this ratio is"

~ ~

IBD
= 1.05 + 0.25



T. GOLDMAN AND J. % I L SO% 15

or very large (-4). At present the larger value
does not seem to agree with experiment. "'" If
the smaller value of y~ is the correct one, then
its error is of little consequence at this point.

The discussion of the last two paragraphs is
meant to remind us that the error quoted in Eq.
(4.19) is probably an underestimate; it is difficult,
however, to estimate what the actual error quoted
should be since this depends so much on one' s
theoretical prejudices. If, for example, we as-
sume f»/f, = 1.1+ 0.1, attribute a 10% error to
v»/v„and assume that y» is negligible, then we

get finally

I'»n/I'» = (57 + 15)/o.

We believe that our results are better than order-
of-magnitude estimates, but we still see little
hope at present of improving the theoretical cal-
culations to a 5-10% error level.

As a final comment to end this section, we point
out that our phenomenological-Lagrangian method
can be expanded to include possible charmed
pseudoscalar mesons (D,E) in a very straight-
forward way. '"" We simply replace our 3 && 3
matrices in Eq. (4.1) by the appropriate 4 x 4

matrices. A simple order-of-magnitude estimate
suggests that the SD part of these decays is en-
hanced by a factor of (mD/m»)'(m» ~/m»)'- 10'
over the kaon case, so that the radiative electronic
decay rate is more comparable to the muonic de-
cay rate. Thus, the decays D(F)- ev are comple-
tely dominated by the SD parts of D(E)-yev; i.e. ,
calculations of D(E) —ev alone" will grossly under-
estimate the electronic branching ratios of the
charged-charmed-pseudoscalar-meson decays.
Of course, the D *(E*}radiative widths may be
exceptionally small and reduce the factor of 10'
above. The situation is further confused by what

may be very many closely spaced D*'s, observed
experimentally. " Their constructive or destruc-
tive interference could change the order of magni-
tude of our estimate. Nonetheless, it is apparent
that the decay D(F)- evy may be an excellent area
to examine pure SD effects.

such cancellations are negligibly small for ex-
periments of the foreseeable future (of order
G»m„„„'). (2) Sizable (& 0.5% in Rv) effects of
strong-interaction dynamics appear, if at all,
only in the pure-SD real-photon-emission part.
The size of these SD corrections grows rapidly
as the meson mass increases. In Sec. IV, we

showed that the size of these effects may be suf-
ficiently reliably estimated using a phenomenolog-
ical-Lagrangian approach together with (experi-
mental) data on radiative decays of vector and
axial-vector mesons. The only improvement that
specific models could provide is to include (pre-
sumably) small effects such as that of form factors
(except possibly in the decay of D (E) mesons)""
at the radiative decay vertices, andthebackground,
or nonresonant, contributions in the vector or
axial-vector subchannels. "

In the case of the pion, the SD effects are very
small. Our analysis restores to the ratio R, the
status of being a strong test of p. -e universality:
Even allowing for extreme model dependence, we

find that 1.233 && 10 ~R, ~ 1.239 X 10 . If R, lies
well outside this range, we believe that such a
deviation is unlikely to come from pion structure,
and that one should, instead, consider the pos-
sibility of a breakdown of p.-e universality. "
That is, p, -e universality may be tested to the
0.5/g level by R,. We remind the reader that the
best present value" for R, is (1.2'f4 +0.024) & 10~,
so that the question remains open. "'"

In the case of the kaon, the SD effects are much

larger, of the same order of magnitude as the low-
est-order (electronic) weak decay. Our calculation
gives a somewhat smaller effect than is observed
experimentally, but still in reasonable agreement
(within about two standard deviations} especially
when the uncertainties in the theoretical calculation
are considered.

Finally, we note that the SD contribution could
well dominate the purely electronic decays of the
newly discovered charmed meson" tD(1965)].
These decays of D mesons may provide an excel-
lent area to examine pure SD effects.
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