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Semileptonic decays of hyperons are considered within a model with SU(3) as a spectrum-generating group
with a precise relation to the Poincare group. Comparison with experimental data indicates that a reasonable

fit may be obtained.

I. INTRODUCTION

The semileptonic decays of hyperons are con-
ventionally analyzed in terms of the Cabibbo mod-
el' assuming an underlying SU(3) symmetry.
Since the SU(3) symmetI y is only approximate,
as exhibited by the observed mass differences
within the multiplets, the question arises as to
the symmetry-breaking mechanism. Various ad
hoc assumptions have been advocated but we still
lack a coherent treatment of the problem that af-
fords an adequate description of observed pheno-
mena. As an alternative to the often rather ill-
defined approach with SU(3) as an approximate
symmetry one of the authors' has suggested that
SU(3) be regarded as a spectrum-generating group
with a pxecise relation to the Poincare group so
that exact calculations are made possible as far
as "symmetry breaking" is concerned. In this
paper we shall apply these ideas to the semilep-
tonic decays of hyperons.

Recent studies of the semileptonic decays of
hyperons indicate that I ather large pseudotensor
contributions may be present. ' Indications of
sizable pseudotensor contributions in ordinary
beta decay of nuclei~ provide for further evidence
of second-class currents in semileptonic process-
es. Within the conventional framework these ef-
fects are ascribed to the underlying SU(3) sym-
metry being broken. Attempts to estimate the
size of such effects have been made using disper-
sion-relation techniques' and current-algebra sum
rules, ' but the results appear to be too small to
account for observations. ' Following the sugges-
tion of Bohm' we shall make precise assumptions
about the relationship of SU(3), regarded as a
spectrum-generating group, and the Poincare
group. From this we obtain the result that there
is a pseudotensor term present in the matrix ele-
ment, and it is proportional to the mass difference

of the baryons. This is true even though we as-
sume that there are no second-class currents
with respect to the spectrum-generating group
in the theory. A comparison of the predictions
of the model with the data from the semileptonic
decays of hyperons indicates that a reasonable fit
may be obtained.

II. THE CONVENTIONAL MODEL FOR SEMILEPTONIC

DECAYS OF BARYONS

The rate I" for the semileptonic decay process
B-B'+1+v, where (B,B') denote baryons and l
= (g, e), is conventionally written'

I
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~ ~

~ ~ ~ I
d'p' d'p, d'p,

2@' &'(p -p' p& p,)--
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The transition matrix element M is then given by'

Xi = ~ u, (p, ) y"(l+ r, ) U„(p„)

x(p g o II„(0)lpga)

The baryon states lpco) are labeled by the four-
momentum P, the third component of the spin o

(s = —,'), and the SU(3) and other internal quantum
numbers n =(I, I„Y', . . . ). The hadronic transi-
tion operator j„(0) in the Cabibbo model' is writ-
ten

j„(0)= cosg~(V'„'+A+') + sing~(V'„'+A'„'),

where (9c is the Cabibbo angle, V„and A."„, with
n = (0, + 1,*2, + 3, 8) (Ref. 10), are Lorentz vector
and axial-vector operators, respectively, which
are assumed to be SU(3)-octet operators in the
symmetry limit, that is, they will satisfy the ap-
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propriate commutation relations with the SU(3) gen-
erators.

In order to specify the hadronic matrix elements
further, we must specify the relationship between
the particle-classifying SU(3) and the Poincare
group, which provide the labels of the baryon
states. In the conventional approach it is assumed
that SU(3) is a symmetry group, i.e. , that the mo-
mentum operators and, therefore, also the mass
operator commute with all the SU(3) generators,

[P„,E„]=0. (4)

The state space is, therefore, a direct-product
space with the SU(3) content separated from the

Poincare content. By the Wigner-Eckart theorem
we then find

M" = ~(p'u'n'l(V~8+A~s)]pan)

(p'cr'n') V„'+A „'[boa)

=
~Z g C(y;npn')(p'~ li V„+A„ll po)i», (5)

y =1,2

where C(@=1; nPn') is the f-type (antisymmetric)
Clebsch-Gordan coefficient, and C(y = 2; npn') is
the (symmetric) d-type coefficient. The reduced
matrix elements in (5) define operators V~['~ and
A~&~ which act on the Poincare space, i.e. , we may
also write (5)

[P „,E„„]~0. (10)

Thus the Wigner-Eckart theorem cannot be used
to obtain (5) or alternatively (6), and the form fac-
tors fi&~ and gP' will in general depend upon the
SU(3) quantum numbers through the masses m'

and m of the baryons and their q' dependence.
This in turn introduces a dependence upon the

SU(3) quantum numbers through the mass formu-
la. The usual procedure is then to assume that
(5) may be used as an approximation good to low-
est order, and that symmetry-breaking corrections
may be introduced at a later stage. However, in
view of the large breaking of SU(3), and even larg-
er breaking of SU(4) if that turns out to be the ap-
propriate group, it is not clear that (5) is even ap-
proximately correct and that it can serve as a
basis for further analysis ~ Therefore, we shall
abandon this line of approach altogether and find
an exact substitute for the assumption (4), which
will allow us to compute the symmetry breaking
in the conventional scheme.

Before turning to the alternative model we note
in passing that through (8) and (9) all the form fac-
tors and, thereby, all decay parameters for the
semileptonic decays within the baryon octet family
are uniquely given in terms of the 12 (unknown)
"reduced matrix elements" f; & andgI&' (y =1, 2;
i =1, 2, 3). This is the starting point for all at-
tempts to fit experimental data.

P'&' Q C(y; Pn'n)( '„"V'+ JA') po
y =1,2

(6)

By the usual arguments of Lorentz invar iance
and the use of the Dirac equation this matrix ele-
ment may be expressed in terms of form factors,

= ~&s(p', &')[f "(q')y„+f; "(q')fo. q"

+f3" (q') q „+g,' (q') y„y,

+g." (q')f& „.v, q" +g, (q') y, q „]

xu~(p, o), (7)

where q =p' -p is the momentum transfer be-
tween the bar yons and

f; ~ (q') = P C(y nPn') f~&~(q'), i =1, 2, 3
y=1, 2

(8)

g", '~ (q') = P C(y; n pn') gP'(q') . (9)
y=1, 2

However, as previously stated, SU(3) is not a
symmetry group, and

III. A MODEL BASED ON SU(3) AS A SPECTRUM-

GENERATING GROUP

Instead of making the symmetry-group assump-
tion (4), we shall assume that the four-velocity P „
commutes with the SU(3) generators, " that is,

[P„,E ]=0.
This is by no means a unique choice as an alterna-
tive to (4), but it is the simplest and most obvious
generalization one may attempt. The physical re-
quirement that the mass operator must not commute
with the SU(3) raising and lowering operators is, how-

ever, rather restrictive and rules out many otherwise
possible alternatives, such as [P „/M', E ]=0 to
mention one example. An important merit of (11)
is that it does not obviously contradict the experi-
mental situation whereas (4) does.

To analyze the consequences of the assumption
(11) it is most convenient, although not necessary,
to employ the Poincare group P P(P „,L„„)g=—en-
erated by the four-velocity P „, rather than the
physical Poincare group P(P „,L„,). The physical
mass operator M is now independent of the choice
of the representation for P(P„,L„,) since we have

P„P& = 1. It is instead given by some function of
the diagonal SU(3) generators, that is, M —=
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M(I„ I, Y). Under the assumption (11) we may
write the basis vectors of the space of physical
states as direct products of the form

lp&~)-=Ip&)@l ~), (12)

(P'o'a'IP&a) = 2P.5'( p' - p) 5...
w I

(p'o'a 'i poa) = 2p 5,—— 6,

(13)

(14)

lf we assume that VB and AB are SU(3)-octet op-
erators, then by the Wigner-Eckart theorem we
obtain instead of (5)

M"=p (p'o'a'l(Vq+Aq)lpoa)

= f- g C(y; a/a')
y=1,2

x[&p ii v„iip )~~'+&P' 'ilA„lip )"']

) Q C(y )) ')(V'~' A'~') ) V)

(15)

where (iso)} span the representation space for
P(P„,L„„)and

gaia))

are basis vectors in an SU(3)-
octet space. The basis vectors ipoa) and ipoa)
are normalized differently:

that V„and A„" are SU(3)-octet operators this may,
in general, not be true, in which case (15) would
no longer hold. In seeking generalizations it ap-
pears, based on past experience, reasonable to
require that V„and A„, at least in the limit of ex-
act SU(3) symmetry, behave as octet operators.
One may then attempt to require that some suit-
able functions of V„and A„, which in the sym-
metry limit reduce to V„and A.„,are octet operators
for which the Wigner-Eckart theorem applies.
Denoting these generalized octet operators by v„
and a„, respectively, we may choose

v& =[M", V„"]„a„"=[M, A&]„N,N' =+ 1, + 2, . . .
(16)

or

a =m"'a m"' X & =~1 2

(17)
to give two examples. We shall only consider
modifications by means of the mass operator.
Applying the Wigner-Eckart theorem to the case
(17) with N=N' it is easily seen that (15) is re-
placed by

g
&VI =

(memB )" W2

where the last equality defines the operators V y

and A(&'. Equation (15), unlike (5) and (6), is then
an exact equation under assumption (11) even when
the SU(3) is not an exact symmetry group How-.
ever, even though it is an appealing assumption

To account for possibilities such as (18), and
other possibilities to be mentioned below, we will
write (15) in the more general form

M)) g (p&osaii(VB+AB)ipoa)

(19)

where Q~ „are functions of the masses. As seen above these functions are at least partially determined
by the particular choice of basic octet operators in the theory. From Lorentz covariance and the Dirac
equation we obtain

M = us(p', o')((Pv [F",~(q')y„+F, B (q')io„,q'+F, B (q')q ]

+ y"„' [G, (q') y„y, +G," (q') i(r„,y,q'+G, (q') y,q„])u (p(7), (20)

with q =p' —p and

F,~'(q') = P C(y; aPa')F"'(q'),
y=1,2

G;~'(q')= g C(y;aPa')G', "(q')
y=1,2

i =1, 2, 3

(21)

(22)

With the assumptions stated above this is an ex-
act equation. Since data analysis is conventionally

performed in terms of the form factors f; and g;
of Eq. (7) it is convenient for our purposes to ex-
press the f s and the g s in terms of the SU(3)-
invariant form factors I &y~ and Q ~y~. This is
straightforward but requires that careful atten-
tion be paid to normalization conditions, etc. when
rewriting (1) in terms of the basis (12) as noted
above. " The results for constant form factors are
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~fX fX (. 2 2

fCX'BQ
fX'fX

g C(y; aPa')[(m +m, ) ElI' —(m —m„, ) ElI'],
2{M~pl~i )

„„gC(&; aPa )[-(m.-m. , ) E~»+(m. +m„, ) E&»],
y?F~ PÃ~~ g

I

O'fX

Q C(y; aPa')[(m„+m„, ) GP' —(m„- m, ) G,'I'],
PPl fX PR fXI

Q fX" „„pC(y;apa )[-(m„-m.. )Gl»+(m„+m. , )Gt»].
2(tn nr~ )

E', "{0)-=~ E&I='I(0),=1 {30)

where E,"(q') is the isovector nucleon electromag-
netic form factor and the I/v 6 factor is a Clebsch-
Gordan coefficient. " Also

We may think of equations (23) through (28) as
giving a parametrization of the form factors f; ~
and g; in terms of the corresponding SU(3)-m-
variant form factors.

In order to reduce the number of free paramet-
ers in the expression for the hadronic matrix ele-
ment we will make two further assumptions, to be
made more precise below:

(1) The electromagnetic current density is identi-
fied with the component v„=v„'+ (I/v3 )v„' [general-
ized CVC (conservation of vector current)].

(2) There are no second-class contributions.
The first assumption leads to

E,'&="(0)= 0

and, from (21),

The second assumption, concerning the absence
of second-class contributions, leads, by the same
arguments as in the conventional derivation of the
consequences of only first-class currents, to"

ImE[&I(q') = ImE2~~'(q') = 0,

E,'I'(q') =0,

imG &~I(q') = lmG &»(q') = 0,
G (II(q2) —0

Cleal'ly, In tile case tllat SU(3} is a, syIIln1etl'y

group the same line of arguments leads to the
vanishing of the second-class-current form fac-
tors f, and g", . For this reason we shall re-
fer to the conditions (34) and (35) as the absence
of terms which are "second class with regard to
the spectrum-generating SU(3)."

Combining (27) and (35) we find

E&I=' (0) = ~+ "—" ElI=' (0}2 2 4 1 {31)

" „„gC(&;aPa )( mm. , )Gl».
l,PN Cf Sl fX t j g ~ 2

E&Y=~&(0) = "~ E[Y=~I(0)

where p. ~ and p. „are the proton and neutron mag-
netic moments, respectively. The connection be-
tween our coupling constant g and the usual vector
coupling constant Q~ —= 1.0025&10 'w~ ' for beta
decay is found to be

"'P
[ G [2 4Y g2[ EPtl(0)[2

(m„m, )'

We use the normalization E,"(0)=1, so the value
and dimension of g' mill depend upon P~~. For ex-
ample, we shall consider a case when P~~
= (n&„pn )'/2 and then we find g' =

) G~ j'.

Thus we note that an ordinary pseudotensor term
appears even when there is no term which is sec-
ond class with regard to the spectrum generating
SU(3). This pseudotensor term is proportional to
the mass difference.

Finally, we emphasize that the functions P~
and P~ are unknown functions which will be de-
termined by comparison with experiments. Qne
contribution to them, as discussed above, could
be the SU(3) properties of the transition operators.
In addition, for example, the inclusion of a lin-
ear q' dependence of the form factors E;(q') and

G, (q') would induce an overall mass factor which
would contribute to the functions P~ and P„
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IV. COMPARISON VfITH EXPERIMENTAL DATA

To test the ideas outlined in the previous section
we shall undertake to compare the predictions of
the model with existing experimental data on semi-
leptonic decays of hyperons. One natural choice
would be to assume that V„and A„are octet oper-
ators so that Q~ = P„=1. However, this choice
can be discarded because it gives a very poor fit
to the data. Since the usual Cabibbo suppression
has given good results in the past, another natural
choice would be to use those values of the func-
tions which reproduce the Cabibbo suppression.
These are

cos 6~ for 4 7' = 0,
a a a' a

This is a model in which the symmetry breaking
in the "currents" is still described by one Cabibbo
angle 6~, but in which a pseudotensor term, (36),
appears as a consequence of assumption (ll).

Finally, we have made use of the generalized
CVC hypothesis and the assumption that there are
no second-class currents with respect to the spec-
trum-generating SU(3) as discussed in Sec. III.
This leaves us with four unknown real form fac-
tors, which will be taken to be constants over the
range of q' values of these decays. Thus we have

6I~, G,"', g&", C,"', and C,"as fitting parameters.
The results representing the best fit for our model
with the above assumption for the Q~ and /~ functions
are given in Tables I and IIwhere the experimental
values for the relevant decay data" are also quoted.
For comparison we have given. the best fits for
tbe conventional Cabibbo model (allowing for q'
dependence in the form factors) and a modified
Cabibbo model with G3('~ = &3('& = 0 and constant form
factors. In the latter case, the symmetry-break-
ing corrections enter through the use of the physi-
cal masses and an arbitrary choice for the nor-
malization of the weak magnetism and the pseudo-
tensor form factors. As seen, this freedom does
not suffice to give a better fit than the convention-
al Cabibbo model. The confidence level is found
to be less than 2%. With the restrictions on G3("
and G('~ lifted, one achieves a substantial improve-
ment, as in our model reaching a confidence level of
about 2(F/p. The main difference lies in the differ-
ent predictions for the electron asymmetry para-
meter and the electron-neutrino correlation coeffi-
cient in the decay Z -nev.

In Table II we have listed the values obtained for
some of the form factors which appear in the analy-
sis. We note that the induced pseudotensor form
factors in general are comparable to the corre-
sponding values for g, . The decay Z -zzev is an
exception with@, quite large. For the neutron de-

TABLE I. Experimental data (from Bef. 15) and predictions for the semileptonic decays of
hyperons: A: the model of this paper with constant form factors; 8: modified Cabibbo model
with constant form factors and with G3 =G& =0; C: conventional Cabibbo model with q -de-(0 (3 * 2

pendent form factors. All transition rates are in 106 sec ' except for neutron decay, which is
in 10 3 sec '.

Process

n pev (rate)
A pev (rate)
Z Ae v (rate)

Aev (rate)
Z nev (rate)

Aev (rate)
Aev (rate)
Z e v (rate)

A Pp v (rate)
Z —np. v (rate)
np G~v

np e,
np Gv
Z A Q.~v
Z n nev
Z nee
Ap ne
Ap e~v
AP nv
Ap np

Experimental value

1.089 + 0.017
3.169 ~ 0.104
0.252+ 0.059
0.407 + 0.040
7.301+ 0.270
6.928 ~ 5.404

3 735", ,",,'

0.643+ 0.138
3.012 ~ 0.289

-0.095 ~ 0.028
-0.116+0.007
1.001+0.038

-0.40 +0.18
0.284 + 0.041
0.04 + 0.27
0.134~ 0.064
0.007 ~ 0.037
0.839 + 0.064

-0.526 + 0.070

1.066
3.181
0.282
0.470
7.288
3.171

3.692

0.511
2.945

—0.110
-0.124

0.986
—0.505
0.302

—0.127
0.012
0.001
0.972

-0.575

8
1.066
3.150
0.296
0.489
7.283
2.787

3.324

0.506
3.233

—0.110
—0.124
0.986

-0.427
0.358

—0.688
0.013
0.003
0.972

—0.576

C

1.062
3.213
0.290
0.481
7.050
2.870

0.531
3.285

-0.110
—0.122
0.987

-0.437
0.289

—0.736
0.019

-0.0353
0.994

-0.602
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Form factor process

~(F)

~(D)

~(+)

g(D)
3

A

1.091 1.093 gi = 1.114

—1.535 —1.534 g&
= -1.510(L))

—21.864 0

—50 254 0

TABLE II. Values of the parameters and the form
factors obtained from the fits of Table I. The confidence
level of fit A is 20% and that of fit B is about 1%.

ever, there is no a Priori reason mhy they could
not be large. The resulting values for the induced
pseudotensor form factors do not seem unreason-
able. The size of g, in the Z decay is striking, but
it is a quantity that cannot easily be experimental-
ly determined.

V. CONCLUSION

n —pev
A pev
Z Aev
Z Aev
Z nev

Aev
:- -Z'ev

1.287
—0.884

0.635
0.639

—0.680
0.521
0.840

—0.012
0.029

—0.823
—0.743
—5.002

2.045
—0.711

1.286
—0.889

0.686
0.686
0.394
0.204
0.910

1.282
—0.895

0.675
0.675
0.372
0.220
0.906

The treatment of semileptonic hyperon decays
proposed here gives a significantly better fit to the
available data than does the conventional Cabibbo
model. Since the differences in the predictions
are most evident in the Z - ne v data, these results
should provide strong encouragement for further
experimental work on this decay. On the other
hand, if the present results are even approximate-
ly correct, then the conventional symmetry-break-
ing calculations are inadequate to explain the data.
The present results instead provide encourage-
ment for further study of the consequences of the
assumptions made in this investigation.

A~pe v 0.334
Z -nev -41.457

—6.473
2.802
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