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Angular momentum constraints on dimuon energy asymmetries*
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It is shown that if a dimuon system is produced with bounded angular momentum j (j,„, then

g = If,'E —E+)l(E + E+p ( $0, where (0 is the maximum zero of P, ,„+I($). No other assumptions

regarding the source of the dimuons are made, and this bound can be reached. These bounds are considerably

weaker than those of Pais and Treiman but are strong enough that they may be useful in future analyses. The

results are applicable to a general two-body system and parity nonconservation is not required to reach the

bound.

I. INTRODUCTION

Pais and Treiman have shown' that the energy
asymmetry between positive and negative p 's
from the decay of a neutral heavy lepton L of spin
1
2 y

L p. + p, +vL,

is bounded by

9 4W2 (E ) 9~4& 2

&E,) 7

To derive this result they have assumed the most
general four-fermion interaction, without deriva-
tive couplings or form factors. This result has
important implications for the dimuon events pro-
duced in the Fermilab v experiments. '

It is interesting to generalize this result. The
analogous calculation, under the same general
assumptions, has already been done for a spin-
—, L (but spin-2 v~). ' For reference the result is

2 (E) 5

5 (Eg
which is a little less restrictive than the Pais-
Treiman result.

The objective of this paper is to determine how
strong a bound is obtained owing to angular mo-
mentum constraints alone. Suppose an L with spin
J decays into a spin-& v~ and two muons. Suppose
further that the decay mechanism limits the spin
state j of the dimuon system, so that j—j, i.e. ,
L decays into a coherent combination of dimuon
spins j ~j . (In the above-mentioned calculations,
j—1.) We will make no assumptions about the de-
pendence of the matrix element on the dimuon
mass. Since the four-fermion couplings limit
the rate of variation of the matrix element with
the dimuon mass, the bound we obtain will neces-
sarily be weaker. For j—1 it is weakened to

v 3 —1 (E) v3+I
WS+ 1 &E,& WS

The bound becomes rapidly weaker with j. For
j~2 it is

0.13= =7.9 (j 2).Ws W3 &E & &5+v3

the value obtained by removing events with E,&E,
which possibly come from v contamination, is

&E&

( &=6.1+0.8.

Evidently, because of the errors and uncertainty
about v contamination, we cannot draw any con-
clusions from these data for the general case.

Our results are the following: (a) The extrernum
is independent of J and M, spin and mass of L.
This is a disappointing result, because it limits the
information obtainable from this analysis. (b) If
we define

E —E,
E+E, '

then

where $, is the largest zero of the Legendre poly-
nomials,

„(~,) =0; (2)

1 —$o (E j 1+),
1+$ (E,) 1 —g

(3)

The bounds just cited are determined by the first
zeros of P, (() and P,($), respectively.

Because of result (a), it will be seen that re-
sult (b) is generally applicable to lepton pairs
produced with j~j in any way whatever, and by
simple extension the same results apply for any
pairs of particles. These results should be useful

The experimental value' for all events in the v ex-
periment is

= 3.7+ 0.65;
(E )
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E~ =y(E+P p),

E lab ~(E p p)

By straightforward kinematics, this gives

E'; =y'@ATE(I +PzP' cos8)

+ P(7 P 7z cos6 + r Pzl z cos6 cos8
—+1p1 Slll6 COS6'v S1118),

(2.1)

(2.2a)

—P(y'P' cos6+ y'P zygo cos6 cos8
—l'zPz. sll16 cosP sln8) . (2.2b)

FIG. 1. The velocity diagram for the decay I. p&
+J(L + p,

ln analyzing experiments where only energies ale
accurately measured. Of course, if rnomenta are
accurately measured as well, the much more de-
tailed conventional angular momentum analysis
can be carried out.

If. KINEMATICS AND DEPENDENCE ON J

Suppose that 1. is moving with velocity P~ in the
g direction in the laboratory frame and the c.m.
of p, 'll (C) is moving with velocity P in the x-z
plane with positive x component. (This defines
the orientation of our coordinate system. ) Let P'
denote the velocity of C in the rest frame of I.
and take the z' direction in C so that L moves in
the -z' direction, and x' lies in the x-z plane.
The velocity diagram and various angles defining
a def inite configuration is shown in Fig. 1.

In C, p, has energy E and momentum p, =p, an
p.
' has energy E and momentum p, =-p. The

angles 6), p specify the direction of p in C with re-
spect to x', y', z'. In the lab frame the energies
are given by

The variables used here are useful because they
are all expressed in terms of the decay angles of
the I. or the dimuon, the invariant mass (2E) of
the dimuon, and the velocity of I.. These expres-
sions may then be readily used to calculate the
average values (E," ), (E"; ) in terms of P~, the den-
sity matrix of I., and the decay amplitude.

Consider the case where I is produced unpolar-
ized. Then all the terms in (2.2) proportional to
I3~ vanish on averaging and so

&
«,"'-E,"& (PP'~'-S6&
(Elab yElab& (Eyv} (2.3)

independent of the velocity of J.. (The decay ma-
trix is, of course, assumed to be independent of
Pz. ) We will now see that, in the absence of further
dynamical assumptions, this ease will give the
maximum allowable asymmetry. This is in con-
trast to the Pais-Treiman situation where the
maximum asymmetry is attained for a completely
polarized I. moving with I3~ = 1.

Let p"„,(E, X„, X,) denote the density matrix for
the dimuon system. A.„A denote the U, , p.

' helicities
and will be suppressed frequently. Without any as-
sumptions about the E dependence of the decay,
such as centrifugal barrier effects, the only rem-
nant of the original J in p is the condition
~m~, ~m'~ —E+-, depending on the handedness of vz.
This condition will turn out to be of no conse-
quence. That is, angular momentum considera-
tions have no bearing on the j,j' dependence of p.
Now (with p =X, —A ),

dE dQ p"„,(E) cos6 p'y'pD', (lp, 6, (p)D",~ (il, 6, lp)—
y tft

2 f««a.".la)v'«.'„la, a, -alvv'. .(a, a, -a)
j, j', m

(2.4)

If we neglect the mass of the v~, then

M +4E
4EM

M2 4E2P'v' =

where M is the mass of I-. If p(E) peaks in the
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region where

(2.5)

for which there is presumably ample room, then

the energy factors in the numerator and denomina-
tor are the same. Outside this region, the numera, —

tor factors are always less than the demoninator.
Define

pal dE HAJJ E e (2.6)

Q p~'„ fd((t.'Os8 B' „((&, p)ll,'-(.9"„(, -w(

Z(("-'f«~'..(v, (, (')D.":(w.'-, -v)

(2.7)

with approximate equality attained if p{E)peaks

sharply as in (2.5). But this is precisely the equa-
tion one obtains for the asymmetry, assuming only
a distribution of j's for the dimuon but with no as-
sumptions at all about the source. This is result
(a) cited in Sec. I.

It may seem a Priori obvious that the asymmetry
will be independent of J. We have chosen to pre-
sent the result in this way to emphasize the fact
that it is strictly related to maximizing over all
possible energy dependences of the amplitude.
One can envision cases in which p is peaked for
E=M/2. In such cases, P' is small and, from
Eq. (2.2), we see that the asymmetry will be pro-
portional to a combination of (cosO) and (sin8) and
hence be proportional to the polarization vector
of I . It will be maximum for

I P~ I- 1, as in the
Pais-Treiman case, but obviously will be smaller
than the bound we obtain in the next section.

III. THE MAXIMIZATION PROBLEM

The first step is to evaluate the angular integrals in (2.7), the resul«f w»c»s

~maz 4ypgp .. ™~I 4[(j +tB+ l)(j —m+ 1)(j+ 9 + 1)(j—p +I)] It gy+((g )Z (2' 2)(2'+l)(2') ~ " {j2+ )3{j2+)2{j2+)
~=a

ffif )i j m, )tj, )12

~m((x pcs (y g)
Z {2j+1)

m, )t~, Q

Positivity requires that

(Repgg+1)2~ pjJ' pJ+1I /+1

~ (3.1)

(3 2)

Since we can vary p~~" independently of p~', the maximum will clearly be attained if the equality in (3.2)
holds. Assume that it does.

The equation simplifies in appearance if we define

p" = (2j + I)' (s' )' . (3.3)

Rep"" = (2j+ 1)(2j+3)a~a'"

and Eq. (3.1) becomes

{2j+1)(g)2~2[(j+1)4][(j+1)m]y

(3.4)

(3.1')

%'e determine the maximum possible value $o for the right-hand side of this inequality by differentiating
with respect to each a~ and setting the result equal to zero. We can clearly choose m ~ 0, p, ~ 0 without
loss of generality. The result is the set of equations

4m'(2j+I), [(j+1)'—p, ']'~'[(j+1)' —m']'~' . (j' —p, ')'~'(j' I')'~'
(2. +2)(2.) (((+ .

+ 1 m + ~ I ko(22+ I)n~
&

with

g ~lARX+~
Ont

The recursion relation for Jacobi polynomials is given by~

~p(2j+ 1)P' "' '"'(g )+j(j —m+1){j+m+I)P "'"'"(g )+(f+1)(f—i()(g+ p)P' "' '"'(f )

=j(j+I)(2j+1)hp'~™""'(h.). {36)
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z.e., (3.8)

P(m-g, m+g)(~ ) 0j m+1 0

We must now determine which value of ~n and p,

gives the maximum value of $0. It is possible to
prove that the maximum value occurs for m = p, = 0.
This seems very reasonable from Eq. (3.1'), but
we will now indicate a proof.

The proof relies on certain theorems given by
Szego' and a recurrence relation. Denote the vari-
ous first zeros of Eq. (3.8) by $0(m —p, , m+ p. , j
—m+1). By simple application of the quoted theo-
rems (Szego's numbers), we have for m ~ 1

)o(m —l, m+1, j —m+1)&(o(m, m, j -I+1)
(Theorem 6.21.1),

$o(m —l, m+1, j —m+1) ~ po(0, 2,j —m+1)

(Theorem 6.12.1),

)o(0, 2,j —m+1) &$0(0, 2,j +1)

(Theorem 3.3.2) .

Hence, the set of equations (3.5) is solved by

u j (~ ~ )
&2 ™)(j ) ' P(m-g, m+g)(g ) (3 P)m l~ 2 (j+~)t(j +)/ Jm 0

provided

gJmax'~(y g) =0

Thus, the maximum zero is either $(0, 2,j ) or
$(0, 0,j + 1). From the Rodrigues formula' for
P„' ~' we derive the recursion relation

(1+x)2P„'","(x)—(1 -x) P„";"(x)=4P„'""(x).

When

x=)o(0, 2, n —1),
P„'; '&0 (Theorem 6.21.1) .

Hence P ~0 "&0, but since P„""(1)=1 we have

t'(0, 0,j +1)&((0, 2, j ) . Q.E.D.

Thus, we reach result (b) cited in Sec. 1.
Note that because the maximum i.s attained forI = p, =0, the bound J ~ m is of no consequence, as

stated; furthermore, the bound can be attained in
a parity -conserving production and decay. Hence,
these results may also be useful for pairs of had-
rons. Evidently, similar results could be obtained
for higher energy correlations, i.e., higher mo-
ments of cos6I.

ACKNOWLEDGMENTS

I would like to thank F. Paige, D. Sidhu, E. Pas-
chos, E. de Raphael, and S. B. Treiman for useful
dlscusslons.

*Work supported by the Energy Hesearch and Develop-
ment Administration.

'A. Pais and S. B. Treiman, Phys. Hev. Lett. 35,
1206 (1975).

2A. Benvenuti et al. , Phys. Hev. Lett. 35, 1203 (1975).
3M. Daumens and Y. Noirot, Phys. Lett. 63B, 459

(1976). See also D. Sidhu and T. L. Trueman (unpub-

lished).
Handbook of Mathematica/ Functions, edited by M. Abra-
mowitz and I. A. Stegun, National Bureau of Standards
Applied Mathematics Series, No. 55 (U.S.G.P.O, Wash-
ington, D. C. , 1964).

G. Szego, Orthogonal Polynomials (American Mathe-
matical Society, New York, 1959).


