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Can one dent a dyon?*
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%e shove that the exact monopole and dyon solutions found by Prasad and Sommerfield are stable by proving
that they are absolute minima of the energy.

Two years ago, 't Hooft a,nd Polyakov showed
that certain classical gauge field theories admitted
monopoles, nonsingular time-independent solu-
tions of finite energy that carried magnetic
charge. ' Shortly afterwards, Ju1ia and Zee
showed that the same theories a1so admitted
dyons, solutions that carried both electric and

magnetic charge. '
Very little is known about the stability of these

solutions under small perturbations. Of course,
because of the conservation of magnetic charge,
the solutions cannot radiate away all their energy
and dissipate utterly, no matter how they are per-
turbed. However, all solutions obtained so far
have been found under the assumption of spherical
symmetry. This method of approach gives no in-
formation about the effects of perturbations that
are not spherically symmetric; thus it remains a
possibility that a monopole (or dyon), if tapped on
its side, will radiate away some of its energy and
settle down into an asymmetric configuration, a
dyon with a dent.

This note reports some modest progress on the
stability problem. We have been able to prove
stability for the special limiting case of the
't Hooft-Polyakov theory in which Prasad and
Sommerfield obtained exact analytic solutions
for monopoles and dyons. ' We emphasize that we
define "stability" to include the possibility of neu-
tral equilibrium. We had better define it this way,
for it is trivial to construct a. perturbation (a
small Lorentz transformation} that sets the mono-
pole as a whole in uniform motion with steady ve-
locity. Also, of course, we prove stability only
in an appropriately chosen gauge; without a gauge
condition, we can trivially construct a perturba-
tion that grows exponentially in time simply by ap-
plying an exponentially growing gauge transforma-
tion.

The theory considered by 't Hooft and Polyakov

has for its dynamical variables an isotriplet of
scalar fields P and an isotriplet of gauge fields
A, with dynamics determined by the Lagrangian
density

Ll = ——,'F „'F""+ Dp'D~p —-2X(p' —l)'.

F „=&„A,—&„A„+A„XA„,

D„P =&„/+A„&p,
X is a positive number, and we have chosen our
units of mass and length such that both the gauge
coupling constant and the ground-state value of
P' are 1.

Three conserved quantities will be important to
us. One is the energy

E = — d'x[E,. E,.+ B,.' B,. +D,P'D, P

+D,p'D, p+ X(p' —. i.)'],

E,. = Fo,.

B -~~~;~F;~ ~

Another is the electric charge

Q=limr' tdQQ'E, .

The third is the magnetic charge

For nonsingular solutions of finite energy, 4
must be an integral multiple of 4m.

Prasad and Sommerfield found analytic expres-
sions for the monopole and dyon solutions in the
limit &-O'. These solutions have 4 =+47', arbi-
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trary Q, and E=(Q'+4')' '. This is all the in-
formation that we will need for our proof.

Our proof will rest on a general theorem of
Lagrangian mechanics: Given a. system with gen-
eralized coordinate s q", and La grangian of the
form

Hence, for arbitrary angle &,

F. + B + D

E, —sjnnD;P '+ B; —cosa D,.P

Then the minima of the energy are points of stable
equilibrium. ' If the theory admits other con-
served quantities, then the same is true for the
minima of the energy with these other quantities
held fixed. The Lagrangian of our theory is in

this form if we choose the gauge

AO=AO,

where A, is the value of A, in the known solution. '
We shall now show that the solutions of Ref. 3

are minima of the energy with fixed C and Q.
From the definition of B,,

D,.B,. =0 .

Thus, by integration by parts,

Likewise, one of the field equations is

D.E.=D,y x y .

Thus, by integration by parts,

d'xD, .Q'E,. =Q .

+Q sin&+4 cos&

—Q sin&+ 4 cos& .

If we choose

sinn =Q/(Q'+ 4')'~', cos& = 4/(Q'+ C')'~',

we obtain

E) (Q2 ~ C,2)1/2

This bound is saturated by the solutions of Ref. 3.
Q.E.D.

As a by-product of this proof, we observe that
saturation of the inequality implies that the solu-
tions must obey

E,. —sin&D,.Q =B,. —cos&D,.Q =0.
These are first-order differential equations, and

they can be solved trivially once one makes the
assumption of rotational invariance. This is a
method of finding the analytic form of the solu-
tions alternative to that of the origina, l paper, to
wit, guesswork.

Note added. After this manuscript was submit-
ted we discovered that substantially identical re-
sults had been obtained independently by L. Fad-
deev (private communication) and E. B. Bogomolny
[ITP Chernogolovka report, 1975 (unpublished)].
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4We sketch the proof here:

E=q (pL/QP ) —I. = —
Q P +V.

Let us add a constant to V such that the minimum of E

is zero, and let us denote by So the surface of zeros of
Because E is the sum of two positive terms, the

two statements that the configuration of the system is
close to So and that the velocity of the system is small
are equivalent to the single statement that E is small.
By conservation of energy, this is preserved by time
evolution. This is stability, including the possibility
of neutral equilibrium for motion along So. We em-
phasize that this proof does not depend on a linear ap-
proximation to motion near a point of equilibrium;
such an approximation may be deceptive, notoriously
so in the case of neutral equilibrium.

5For any initial field configuration, we can always make
a gauge transformation such that Ao takes on any de-
sired value. For a proof, see S. Coleman, Ref. 1.
We don't gauge Ao away altogether because this would

make the dyon a time-dependent solution.


