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The SU, symmetry of an extension of the cr model containing massive vector and axial-vector bosons is broken

by adding electromagnetic interactions. This is done in a way formally similar to the way in which the

intrinsic symmetry —but not the "gauge" invariance —of space-time is broken by gravitational interactions.

I. INTRODUCTION

The unified gauge theories of Weinberg' 3nd
Salam' have been recently extended to include
strong interactions (Bardakci, ' de Wit,"and Bars,
Halpern, and Yoshimura, '). Using the Higgs-Kibble
mechanism' locally chiral-invariant extensions of
the cr model can be constructed which include
strongly as well as weakly interacting Yang-Mills
fields. From the general results of 't Hooft, ' one
can show that the resulting Lagrangian is renor-
rnalizable. Furthermore, de Wit' has shown that
although the current-algebra hypothesis does not
seem to be satisfied in these models, the results
of chiral-Lagrangian field theory (see, for ex
ample, Gasiorowicz and Geffen') which follow di-
rectly from partial conservation of axial-vector
current (PCAC) remain valid.

In this paper we shall present a locally chiral-
invariant extension of the o model which includes
electromagnetic interactions. Our approach dif-
fers from that, for example, of de Wit"' in two

respects. First of 311, the Yang-Mills fields which
we introduce acquire a mass in the same way that
the nucleon acquires a mass in the 0 model. In the
a model the nucleon has no mass and there is a
term in the Lagrangian linear in cr which explicitly
breaks the gauge symmetry and makes the vacu-
um unstable. The fields are then shifted to give
a stable vacuum and a nucleon mass. We intro-
duce a second scalar field P which gives a mass
to the Yang-Mills fields in a similar way. How-

ever, we pursue the general logic of the 0 model
in the inverse direction. Instead of breaking gauge
symmetry and shifting the fields, we shift the
fields in the classical Lagrangian by fiat [see
formulas (2.19), (2.25)]. This means that we keep
the gauge invariance but the quantum Lagrangian
will have an unstable vacuum. This approach has
a drawback in that it cannot be directly shown to
be renormalizable, although we have explicitly
constructed the Lagrangian to be polynomial and
to have a minimum number of derivative coup-
lings as well as to be loca11y gauge-invariant.
However, it allows the classical Lagrangian to

have massive gauge fields and these masses are
fixed as they are in the unified gauge theories
which use the Higgs-Kibble mechanism (for ex-
ample, see de Wit'). Also, it leads naturally to
a second, and more important, difference.

We have attempted to interpret the photon not as
a gauge field arising from an additional U, gauge
group to be juxtaposed to the strong-interaction
gauge group SU, x SU„but as a gauge field as-
sociated with the breaking of SU, && SU, . There-
fore, the total gauge group remains SU, && SU.,
even in the presence of electromagnetic inter-
actions; the intrinsic symmetry of this gauge group
is broken, however, by these interactions. We
have here been inspired by an analogous situation
in general relativity.

If one has a Lorentz-invariant theory which one
wishes to write in a form invariant under the gen-
eral covariant (pseudo-) group (or under the lo-
cal Lorentz group), one introduces a general (flat)
metric and a general (flat) connection or covariant
derivative. One has then a gauge theory which is
Lorentz-invariant. If one wishes to introduce
gravity, one requires that the metric and the con-
nection acquire curvature. One has then a gauge
theory which is no longer Lorentz invariant; the
gauge invariance remains as it was, but the in-
trinsic symmetry of the gauge group is broken.

In order to lend support to the approach we use,
we present two mass formulas, (3.13), and (6.11).
However, neither of these formulas can be con-
sidered to be exclusively a consequence of our
Lagrangian. Formulas like (3.22) connecting the
ratio of the axial-vector mass to the vector mass
have appeared often in chiral- Lagrangian theory
(see, for example, Barnes and Isham' ) and they
also follow from spontaneous symmetry breaking
(for example, de Wit'). Also, formula. {6.11) is
identical to that connecting ~n~, n~~, and 0~ in
the Weinberg-Salam model of weak interactions.

The free Lagrangian for the nucleon system g
=(~) is

2 = p~{iy~s —ni)g.

This Lagrangian is invariant under constant trans-
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formations of the isospin group. It is not, how-

ever, invariant under transformations which are
functions of the point in space-time because of
the derivation in the kinematical part. If a is an
element of SU, (or of SU, x SU, ) then, in general,

s„(ap) wa s, p.

Yang and Mills" solved this problem by replacing
the partial derivative 8„by a cova riant derivative
D„defined such that

D, (at)~') = aD' P', P= alt'.

If we write

then the I'„are the Yang-Mills fields; they also
constitute what is called a connection (see, for
example, Kobayashi and Nomizu"). We shall be
led to introduce three different types of connec-
tions —the general connection or Yang- Mills fields,
and two special connections. We shall discuss in
Sec. II the theory of connections in sufficient de-
tail to be able to describe the three types of con-
nections which interest us.

The Lagrangian (1.1) is not invariant under even
constant transformations of the chiral group SU,
&& SU, because of the y' in the mass term. If a is
an element of SU, &&SU, then, in general,

ay'w y'a.

This problem was solved by Gursey" by replacing
the matrix y' by a general metric g defined such
that

ag' =ga.

We shall discuss in Sec. II the theory of metrics
within the context of the chiral group and we shall
in particular define a metric connection, one of
the special types of connections mentioned above.

Define P= tt)*g. We now have a Lagrangian,

z = Py" D P —mfa~, (1.2)

which describes the nucleons in interaction with
the metric fields g and the Yang-Mills fields I'„
and which is invariant under local transforrnations
of the chiral group SU, && SU, . These first two

steps have also been described by Mainland and
O'Raifeartaigh. ' They refer to them as a gen-
eralized minimal principle. The principal re-
maining problem is the mass of the Yang-Mills
fields. No invariant mass term can be constructed
from the connection I „alone.

We shall solve this problem by using a gener-
alization of an idea due to Stueckelberg" which
h3s also been used by Schwinger" and by Wess
and Zumino. " We shall introduce a third con-
nection I'„which is flat and we shall use it with

the Yang-Mills connection to construct an in-
variant mass term. We shall discuss this con-
nection in Sec. II. In particular we shall show
that it was necessary to introduce it; the metric
connection mentioned above could not be used be-
cause it would lead to a nonpolynornial Lagrangian.

The introduction of the mass term for the Yang-
Mills field in a ga.uge-invariant manner fixes the
value of the mass. To see this, we recall the
Stueckelberg argument. Let P be the proton field.
Then

2= jiy'(a, +ieA, ) p —.F',„F'"
is invariant under space- time- dependent phase
transformations e' . The connection in this ca.se
is ieA, . ieF„„ is what is called the curvature of the
connection. A connection is flat if its curvature
vanishes. In this case, this means that it is of the
form f 8„y where f is a constant. An invariant
mass term may be constructed using eA„and f a, g.
The resulting Lagrangian is

2=jib" (s„+ieA„)h —, F„,F"+,(f&y eA)'. -
(1.4)

The mass of the field A, is equal to e/f. We shall
find similar relations for the masses of the vector
and axial-vector mesons in the more complicated
case of SU, &&SU, .

We see then that by three successive applications
of the general idea of a compensating field we shall
be led from the free-nucleon Lagrangian to one
which is invariant under local transformations of
the chiral group SU, && SU, . The three additional
conditions mentioned at the beginning of this sec-
tion place severe restrictions on the final La-
grangian.

The additional fields which we shall be led to
introduce are the Yang-Mills fields p„and a„ for
the chiral group SU, & SU„ the cr-model fields o.

and 7t come from the metric g and four isospin-&
fields come from the flat connection. The nota. —

tion is that of Bjorken and Drell. "
In Sec. II we shall introduce some general math-

ematical formulas and write down the invariants
which can be formed. The only essential conclusion
to be drawn from this section is that the metric
connection of g cannot be used in the Lagrangian
since it would lead to nonpolynomial terms; this
serves as motivation for introducing the flat con-
nection. We use some of the elementary concepts
(but none of the results) of differential geometry
in 'his section since in Sec. VI we wish to stress
a vague analogy between the way we break the
SU, && SU, symmetry by electromagnetic inter-
actions and the way the Lorentz symmetry of
space- time is broken by gravitational interactions.
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In Sec. III the Lagrangian is written down and ex-
panded in terms of the fields. We also discuss
here the constraints on the masses of the axial-vector
and vector mesons. In Sec. IV the equations of motion
are discussed. In Sec. V the currents are intro-
duced; the fields are formally quantized and the
charge algebra is shown to be formally equal to
SU, &&SU, . In Sec. VI, the symmetry is broken by
introducing electromagnetic interactions. This is
done in a way which conserves local gauge in-
variance and an analogy is drawn with general
relativity. The extra invariants are discussed
which the electromagnetic interaction introduces
and various interaction terms are explicitly written
down.

It is interesting to note that if C is a curve in
Minkowski space with tangent vector dx /dt, then
the condition

dx
D /=0 (2 8)

R„„=s„r„s„r.+]r„r„]. (2 8)

uniquely defines a nucleon field along C in terms
of its value at one point of C. Fields which satisfy
such equations are the closest things we have in a
gauge theory to constant fields. That is, the equa-
tion D /=0 in general has no solutions. The rea-
son for this is a quantity known as curvature.

The curvature R,„of the connection I'„ is defined
by

II. INVARIANTS

The nucleon field p, defined by

It is an antisymmetric (Lorentz) tensor with val-
ues in the Lie algebra of SU, ~SU, . One sees
easily that

(2.1) [D„D.] P=R„g. (2.10)

takes its values in the eight-dimensional complex
space G'(3 G'. The chiral group SU, & SU, operates
on this space, the Pauli matrices operate on G',
and the Dirae matrices y' and I operate on G'. We
are interested in defining a derivative of the nu-

cleon field g which is covariant under transforma-
tions of g by elements a of the chiral group. That
1S, lf

So it is evident that the equation D g = 0 has no
solutions unless R„„=O. One can in fact show"
that if C is a curve which starts and finishes at
the same point then a solution of Eq. (2.8) will
not have the initial and final values of P equal in

general unless R„, vanishes.
A connection for which R„„vanishes is called a

flat connection. One can show that R„vanishes
if and only if I", is of the form

g= ag' (2.2) I'„=I'„=b-'a„b, (2.11)

aD„P' = D„g.
Define I', by

D =3 +I'„.
Then

(2.3)

(2.4)

a(a, + I'„')g' = (9„+I', )aP',

and we see that I'„must transform as

is a transformation of P, then we wish to define D„
of g such that

where b is a function with values in SU, &&SU,.
From (2.6) it is evident that such connections can
be made to vanish by an appropriate choice of a.
(We have written b ' instead of b* since we sha, ll
be lead to consider a slightly more general form
of flat connection later. )

A metric in the space of P's is a matrix-valued
function whose determinant is not zero, which to

P, and P, associates a real number g,*gg, . It
follows that g must be Hermitian:

I",=a*I',a+a B„a. (2.6)
(2.12)

The additive term a*8,a is an element of the Lie
algebra of SU, & SU„so it is sufficient to suppose
that I'„ takes its values also in this Lie algebra.
We shall call I'„a connection. " We may write I',
as

I ~= p~+p a (2.7)

where p„and a, are functions with values in the
Lie algebra of SU, . They are the classical Yang-
Mills fields. Let T,- be the Pauli matrices. For
convenience we shall expand p, and a„ in terms of
the matrices aj= —2i TqI.

g' = a~pa (2.13)

if we wish to have P, gg, =g,'*g'P,'.
Consider a curve C and two solutions g, and P,

to Eq. (2.8); then we have

—(q*,gy, ) = (e 4,*g4,i 0, e g0, +N,*g a 0,)

q,*(a~- r.*g gr. )q, . (2.14)

Under a gauge transformation P,. = a(i',. (i = 1,2), g
must transform as
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A connection which satisfies this equation is called
a metric connection. In particular, with such a
connection a field g has constant length P*g|t) along
a curve C if it satisfies Eq. (2.8). Since I',*=—I",
we have

A'+[I g]=0 (2.16)

if I is a metric connection for g.
If b is a function with values in SU, && SU„ then

0 b+ Ob (2. 17)

Suppose that this vanishes for any curve C; then

(2.15)

we have introduced a metric it is natural to in-
quire whether an associated metric connection
could play this role.

Let B„be such a connection; therefore, B„satis-
fies Eq. (2. 15) or (2.16). By choosing the gauge
r = 0 one can see immediately that g has in fact
no associated metric connections, but that the
conformally related metric g/Mj has such con-
nections. If we expand B„as follows:

B„=X„+y'Y„,
then we find from (2.16) that X„Y, satisfy the
equations

is a metric. We shall call it a flat metric since
it has as metric connection the flat. connection I '„.
In a particular gauge we have ~' = y' (from 2. 13),
so that in this gauge

av [X„,v] a jv
1+o I+o 2j(I+o)

( Y, vj= ~ —(1+v)
4g

(2.23)

&*a'0=0 y'0=0(. (2. 18) The general solution to these equations is given by

The gauge in which ~'=y' is the gauge in which
I'= 0.

The nucleon metric which we shall introduce is
the metric

X„=j '[a„v, v]+ V„

Y,=j '(a„v+(ra, v —v a o)+ [v, v, ]
1+ o.

(2.24)

g = y'(I + o'+ 2y'v) (2.19)

f, = 1 (unit of length) . (2.20)

This fixes the fa,ctor 2 in front of v in (2.19). The
factor 1 in front of cT is fixed by the free kinemat-
ical Lagrangian. As with the Yang-Mills fields we
expand m in terms of the 0,. matrices: ~= m'cr,

Let a =e '"~ be an arbitrary element of SU, x SU, .
The requirement that g transform according to
(2.13) induces the following transformations of the
cf and ~ fields:

o'= o+2S'+2[P, vj+2P'o+ (P, [v, o'])+
(2.21)

v'= v+ P+ [vl n]+ Pcr+ —,'[P, a]+ —.
'

[[v, a], n]

+ l [ P, o] ~+ (P, v]P+ ,' I [&, o], ~] +—lt3'&+

The metric g is Hermitian and it defines one
invariant j:

j = g' = (1+o)' —4 v' . (2.22)

We shall identify invariants with the corresponding
multiple of the unit matrix in the 8-dimensional
space we are using, so that Tr(j) = 8j.

In order to give a mass to the Yang-Mills fields
using the Stueckelberg mechanism we need a sec-
ond connection in order to form a gauge-invariant
mass term for the Lagrangian. We see from Eq.
(2.6) that the difference of two connections trans-
forms without the additional term a"8„a. Once

of the o model (Schwinger, "Gell-Mann and Levy" ).
See also Giirsey" and Lee." We have chosen units
so that the pion decay constant f, is equal to one,

b=1+—+y' '+fg+yf~.f4, f4,
2 2

(2.25)

g and w are functions with values in the Lie alge-
bra of SU, . We expand them in terms of the 0;
matrices:

The solution depends on an arbitrary vector V„
which takes its values in the Lie algebra of SU, .

We cannot set V„equal to zero, since it must
transform so that B„ is a. connection. One solu-
tion would be to identify V„with the p-meson fields
and to use B„as the Yang-Mills connection. This
would do away with the necessity of introducing
the A, mesons as fundamental fields. It would,
however, lead to derivative couplings between the
pions and the nucleons and it would be impossible
to introduce either a p-meson mass term or a pion
kinetic term in a gauge- invariant manner.

If we wish to use B„ to form a mass term for
the Yang-Mills fields then V„must be constructed
from ~ and from a scalar field T with isospin
equal to one. From the known transformation
properties of cr, m, and B„one can in fact easily
see that B„must contain a term 9 v and that it
cannot be independent of n. We have not succeed
in constructing such a V„which would lead to a
B„polynomial in the field variables, or even one
which would yield a B„such that j "B„is poly-
nomial, for any integer n.

We shall use this negative result as motivation
for introducing yet a third connection~ flat con-
nection I'„given by (2.11). Define the matrix
function b by



(P, X') are scalar fields; (P„x') are pseudoscalar
fields. We shall see that ea, ch of these sets of
fields constitutes two isospin- & multiplets. The
parameter f is the ratio of the (P„a') "decay con-
stant" f„ to f, (which we have set equal to one by a
choice of units). This fixes the fa.ctor 1 in front
of v; the factor & in front of (t), comes from the
free kinematical Lagrangian.

The Hermitia. n adjoint of b is given by

of I'0, one finds

I '„*= - r'„+ s, (h k); (2.33)

so that I'„ is not strictly a connection as we have
defined them above. In fact the anti-Hermitian
part of I'„ is a connection and the Hermitian par t,

—.'(I'„+ I'„*)=-,' s, (ink), (2.34)

is an invariant. We shall ignore this rather trivial
difference. Written out in terms of the field vari-
a.bles, I"0 is given by

k*= 1+ + y' ' fX 1-"f~-f4, f4,
2 2

This yields the invariants

k=b*b=bb"=(+y'f,

where $, ( are given by

1+ — + ' -fy-f&

g=f Q, 1+ —f

(2.26)

(2.27)

(2.28)

k o 1

f2 4 f 2
—I' = —+ —+ y' —'

& (x+ y'z)

—-' (x+ w'~) &„(0+~'0, )

+ -'[s„(X+1'~), (X+ ~'&)]+ 2-2 s.k (2 36)

The curvature R',„of r'„given by (2.9), van-
ishes:

(2.36)
The inverse of k is given by

(2 f2

and the inverse of 5 is given by

(2.29)

(2.30)

We require that under a gauge transformation
a and b transform as

b- b' =ha. (2.31)

0' = 0+ (&'+ fl')+I—.X, c f+ [~,&f

This yields the following transformations on the
field variables:

I" —PI" +qI", p+q —1 (2.37)

is a,iso a connection. The most general covariant
derivative we can introduce is therefore

Since we have introduced a flat connection it is
of interest to enquire whether we could have used
the flat metric g' (2.17) instead of the a-model
metric (2.19). In fact, we could have done so but
the fields we introduce using b are necessarily of
isospin & and could not be used as pion fields. If
we use ~' as metric, then the pions would disap-
pear from the Lagrangian.

We have introduced two connections T'„and I'„.
One easily sees from (2.6) that

+ —(&'+ P') + —' fo' t) f+ ' ' '
2 2

P', = P, +/x, Pj +[v, o.)+ —' (o,"+P')

x' = x+ —+ —. [x, ~]+ —. [~, Pl+ —+ ASP

f ' ' 2 2

(2.32)
C„=I'„r'. .

Prom (2.6) we see that C„ transforms as

(2.38)

However, if we do not wish to have derivative coup-
lings with the nucleons we must set q = 0 and p = 1.
This yields the covariant derivative (2.4). It also
implies p universa, lity.

From I' and I"o we can construct the covariant
quantity

+ —"(o"+ i3') (+n fi'f+

~' = ~+ —+ —, [x, P]+ —, [x, o. ] + —+
P I I 4P
f ' ' 2 2

C„C„'=a*C„a.

The Hermltlan ad]oint of C~ ls given by

C„*= —C„—S,(ink) .

(2.39)

(2.40)

Define I „by (2.11). If one calculates the adjoint

We are now in a position to discuss the invariants
which can be formed from the covariant quantities
which we have introduced. Since we wish to form a
Lagrangian from the invariants we shall restrict
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our attention to those which have at most first-
order derivatives in the field variables and which
yield diagonal second- order terms.

Consider first of all those invariants formed
using the nucleon field. We have

g j" tI'j, )A" P, n a positive integer

(2.41a)

(2. i4b)

(2.14c)

ii*goj" tt, P*g'k" P, n a positive integer (2.41d)

4~r'D„W, (2.41e)

F(f, e. f, k, a„k), (2.42a)

which is a Lorentz scalar. However, if we do not
wish to have derivative couplings between these
fields then the most general function we can
choose is

yj"D~'Z, Ziy'k"D g, n a. positive integer.

(2.41f)

We could choose as mass term any linear com-
bination of (2.41a), (2.41b), (2.41c), and (2.4ld),
For example, (2.41c}would lead to direct nucleon-
kaon couplings. We shall choose (2.41a) for the
mass term since it corresponds to the cr-model
choice. Also it is the only one which contributes
to the Lagrangian a term of degree not greater
than 4 (see, for example Bessis and Turchetti").
The only term which we can choose as the nucleon
kinematical term is (2.41e); the invariants (2.41f)
lead to derivative couplings.

Consider now those invariants which can be formed
using only the pseudoscalar and scalar fields. The
most general such invariant is a general func-
tion,

Tr(k~j'D, gg "D gg'), p, q, r, s integers. (2.43c)

We shall choose as mass term for the Yang-Mills
fields (2.43 a) with P = 1 and q = r = s = 0. We shall
see when we write this invariant out in detail in
the next section that it is the only one which has
no derivative couplings. As the pion kinematical
term we shall choose (2.43c) with p=q=r=s =0.
We shall see also when we write this invariant out
in detail that it is the only possible choice. It con-
tributes a term to the axial-vector mass. The
standard Yang-Mills kinematical Lagrangian is
given by (2.43b) with p = q = r = s = 0. We shall
also make this choice. Any other values of p, q, v, s
would lead to derivative couplings between the
vector, axial-vector, scalar, and pseudoscalar fields
containing second-order derivatives. Similar re-
strictions on chiral Lagrangians due to the ab-
sence of derivative couplings have been considered
by Ogievetsky and Zupnik. "

Ill. THE LAGRANG1AN

From the discussion of the preceding sections,
we have as Lagrangian the following invariant:

Z=giy"D, q —rnq~P+, Tr(kC„C ')

+ -,'- Tr(R„„R~')+—,', Tr(D,g D"g)
2 2

Tr(k) — ' Tr(j) .

This Lagrangian depends on five parameters
f„f„, p, )U.„,In. We have set the (bare) p coupling
constant g, equal to one.

A short calculation yields the following expan-
sion for the third term in 2:

F(j, k) .

We shall restrict ourselves to using

Tr(j), Tr(k)

(2.42b)

(2.42c)

, Tr(kC, C ")

rT(a, b S'b*+ 2I"'b*e„b bb*I', I") . (3.2)

as mass terms. The only other invariant of de-
gree not greater than 4 which we could have used
is

Tr(j') (2.42d)

rT(kj' ,C"gC'g'), p, q, r, s integers (2.43a)

r(kT~j'R, „g"R "g'), p, q, r, s integers (2.43b)

as in the 0 model.
Finally, consider those invariants containing the

Yang-Mills fields. For simplicity we do not write
down terms with g' factors; they can be eliminated
in the same way as the terms with g factors. We
have

We can see now why this was the only invariant
which we could choose from the family (2.43a).
Any other values of p, q, r, s would not have yielded
the simple a„b 8 "b term on the right-hand side
and this is the only one which does not give de-
rivative couplings between the scalar and pseudo-
scalar f ields.

Similarly for the fifth term in Z. We find the
following expansion:

—' Tr(D gD~g) = —'Tr( , Sa'gg)+ '-Tr(r„( g' age "gg}}

+ '- T r (I',gI"g —jI', T'~) . (3.3)

Any other values of p, q, r, s in (2.43c) would not
have yielded the simple 8~ 8"g term and this is
the only one which does not give derivative pion-
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pion couplings.
We write Z as the sum of three terms:

2, = T&&fy'I', &t - m(&T&&( 7&—&&t), (3.6)

Z= Z, +22+2, ,

where

2, = gy ' a, &t& —m &t&g+ —,
' T r(R,„R„„)

(3.4) ,Tr(I'b a, b) —,
' Tr(I', (ga"g a'gg))

, Tr(bb*I', I'~)

+,Tr(a, b a'b*)+,—', Tr(a~ a'g) + —,
' Tr(I'~1 "g —jI', I") . (3.7)

2 2

T r(k) — ' T r(j),4 16
(3 5)

It is straightforward to expand Z,. in terms of the
field variables:

g, =T&&fy" a, p —mg&t&+-', Tr(R„R"")+-,( ,at&a'Q p'y')+-, ( ap, '
aI&,&p„'&—a, )

Tr(a
&&

a
&& p, „&& + a, && a'&& p, „'&&') + —,'(a, a a'v —p.,'a ') ——,

' Tr(a, &T a'&& - p.'&&') —2 p„'&t& —p, 'o

(3.8)

= gyt" (p + y5a„)P —omT»&t& —2m&t&y 7&/, (3.9)

——Tr[(j~&~&+j~&"&)p + (j~5&~&+j 5& "&)a ] —
z Tr( p ) —a (1+ 1/f ') Tr(a')

, Tr[(-,' &t&'y y+ —,
'

&t&,
'

&&' —«')(p'+ a')] —,o (&7+ 2) Tr(a') —,Tr[(&t&,(1+ ~ @) —h, «})a,p']

+ ~ (1+ &T ) Tr(p [&&, a"]) ——,
'

T r([ p~, w] [p, »] + [a~, &&] [a, &&]) . (3.10)

= —+ —8X+ —8 I('(.) 1 & ~ &5 ~ X ~

f 2 2 2
(3.11)

5 2--a'0, +l[a'~, ~]+l [a'x, x],

j = —+ —8 g+ —8 g ——8'5( ) 1 & ~ &5 ~ X

f 2 2 2

'
a @+-,'[a x, ~]+-,'[a'~, &&].

, contains the free Lagrangian plus the Yang-
Mills fields' self-interactions terms; Z2 contains
the nucleon-boson interaction terms; Z, contains
the mass terms for the Yang-Mills fields plus the
boson-boson interaction terms.

Z contains 6 fictitious degrees of freedom cor-
responding to the 6 gauge degrees of freedom. We
shall discuss how best to eliminate them in the
next section. Here we would like to point out that

The currents (Sec. V) are defined by the Eqs.
(5.15), (5.16). In terms of the field variables, they
are given by

j &=[a &&, &&],

j = 8 'tt'+0 8 7T —7T 8 0'

1, 1
PB 2 Vl~ +

1
(3.12)

This yields the ratio
2

mA

yn 2
P

(3.13)

for the masses in terms of the "decay constant"
of the fields (&b„«) [see (3.11)].

2, has two linear terms —2(p„'/f) &t& and —p, 'o;
and therefore the vacuum expectation value of the
Q and 0 fields do not vanish. In order to obtain a
stable vacuum we would have to add to Z two linear
terms+2(p, „'/f)&t&, + p,,'o as in the o model. These
terms break the chiral symmetry and give a non-
vanishing value to the divergence of the axial-
vector currents. It is important that this be so
since we shall see later that if we formally quantize
the Yang-Mills fields, the axial-vector charge can
be used to transform a pfield into an A, field. Since
these particles have different masses we arrive
3t a contradiction with conserved axial-vector cur-
rents.

We see from (3.10) that the (bare) masses of the
Yang-Mills fields are fixed. They are given by
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The splitting of the vector and axial-vector mass-
es arises because of the extra contribution to the
latter coming from the fifth term in (3.1). This is
identical to the origin of the splitting in Barnes
and Isham" (formulas 20 and 21).

By varying the Lagrangian with respect to the
field variables we obtain the classical equations of
motion. The only ones which we shall consider
here are those for the Yang-Mills fields since
they imply constraints. %e shall show that the con-
straint equations are identical to the equations for
the conservation of the currents.

The equation of motion reads

%e have therefore, for the equat;ion of motion,

D,R "= —,[g, D"g] ——,C"- (4 4)

From the identity D„D„R"'= 0 we obtain

D, (k C') +& 0= + f'[g, D, D g]. (4.5)

This is the same equation as (4.2).
If we were to calculate the equations of motion

for the spin-0 fields we would find also that (4.2)
[or (4.5)] followed from them.

In fact, it is of interest to consider these equa-
tions in the lowest approximation since they in-
dicate the most natural gauge condition to choose:

p pV JV 5@V5 (4. 1)

s„(g+y'g"') = 0. (4. 2)

Equation (4.1) may be written in a manifestly
gauge- invariant manner by introducing the covari-
ant derivative of R„„:

where the right-hand side is the total current. The
constraint equation is therefore

(Q+ ]L(,,') m = 8 a" —2~v l)y"'0,.d}o,

The most natural gauge condition is

(4.5)

(4. 'l)

(4.3)
In this gauge, the longitudinal components of the
Yang- Mills fields decouple.

V. CURRENTS

Since the Lagrangian is an invariant the equations of motion yield the following identity:

This yields the equation for the conservation of
the vector and axial-vector currents, defined by
the equations

J"= —i gy "0.$0

i (I) y"y'o—;(()o, ,
'

(5.4)

v(~) + 5 ~5(~)
2f'

gP 5 yV 5+j05(P) +

jets(W)

+ "05(&)
CJ (5.8)

%e remark here that the usual definition of the
currents (see, for example, Gasiorowicz and
Geffen') is such that a. gauge-invariant term would
yield no contribution to them. Since we have a
gauge-invariant Lagrangian this would yield a. total
current which is identically zero. The reason is
that this definition includes in the current (5.4),
minus the left-hand side of (4.1), so that (4.1)
becomes simply the expression of the fact that the
total current vanishes.

The total vector and axial-vector charges are

~u(~) + ~5~m(r) ( [g su~] Q= ~d x, Q'= 85d x.

g~ +jf (P) +~ P (ff) +~&~) It is convenient to introduce the notation
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R „-8„„=—tan8F „A v,b. {6.2}

We now formally quantize the fields. Using the
standard (anti-) commutation relations between the
fields and their conjugate momenta, we obtain the
charge- field commutation relations:

(5.12)

(5.13)

(5.14)

(5.15)

(5 16)

F„„is the curl of A, We define C„now as

(6.3)

If we were to maintain a closer analogy with
general relativity we would set C„equal to zero
and use 4, as the Yang-Mills connection. We did
not do this since it would introduce derivative
couplings with the nucleons. Such couplings exist
between the nucleons and the gravitational field.
An attempt has been made" to push the analogy we
are here considering in the other direction and to
introduce a. nonvanishing C into gravitational in-
te ractions.

Using A„we can write down two additional in-
variants,

We also obtain the charge-algebra commutation
relations A, |i'y '

{t.~, 7r(S,„S~"), (6.4)

(5.17)

As we remarked earlier, (5.14) is inconsistent
with the existence of vector and axial-vector me-
sons of different masses.

From (5.12) and (5.13) we can deduce the isospin
content of the (Q„x) fields. To do this it is con-
venient to expand the charge and the fields in terms
of isospin components. We have

(5.18)

so we have

(5.19)

We see then that we have two isospin- —, multi-
plets.

and our final Lagrangian including electrom3g-
netic interactions, is given by

&= py D„p- sng'g —21 tangA„)y"p

+,Tr(kC, C*') +,—', Tr(D gD'g)

+ —,
' Tr(R„„R'")+, Tr(S„„S")

8 tan'0

(6.5)

The mass term for the p' meson is contained in
the invariant Tr(kC C "). With the new definition
of C, (6.3), this term is no longer diagonal and
we have to introduce a mixing between the p'„

and A„ fields to make it so. The physical p' and
photon fields are given by

VI. ELECTROMAGNETIC INTERACTIONS p~ = cos0 p~+ sln0A„)
(6.6)

In the general theory of relativity, interaction
with the gravitational field is introduced by sup-
posing that a flat connection develops curvature.
We introduced in Sec. II a flat connection I"', which
we expanded in terms of the (P„v) fields and their
scalar parity partners. We shall suppose that
electromagnetic interactions cause this connection
to acquire nonzero curvature. That is, we sup-
pose that it is replaced by the connection &„ given
by

(6 1)

0 is a mixing angle between the photon and the p
meson which we shall determine later in terms of
the charge. A„ is a vector field which is invariant
under SU, ~ SU, transformations. A straightfor-
ward calculation yields the following value for the
curvature of b „:

A„=—sin0p'„+ cos0A„.

To first order, C„ is given then by

2

C„= p„'+y'a' 0,. + p'„sec0+y'a' 0,
1

—9$—y9 g —9 P —y9

With this new definition of the p field, the invari-
ant Trw'kC C*") is diagonal to second order.

The Lagrangian (6.5) includes the following in-
teraction term between the nucleons and the vector
bosons p' and y:

p'„go, y" g ——,
'

tanHA„gzy ' tI'j.

Written out in terms of the physical fields this be-
comes
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p', Pig, y"P- & tanOA, ztji y" P

san' 9= i cos 0 p'„zt) cr,y'P p'„~y" g2 cos(9

—sinOA g(io, +;)y "t(. (6.6)

So we see that the charge e of the proton is re-
lated to the mixing angle 0 by

sin(9= e. (6.9)

, Tr(kC C*')+

Tr(kl' I'~)+ ~

1
, Tr(a'+ (p'o, + p'a. ,+ sec8p'o, )']+ ' . ~ ~

(6.10)

In the Lagrangian (6.5), the mass of the p' me-
son is no longer equal to that of the p' mesons. To
see this we write out explicitly the appropriate
terms:

and the electromagnetic field.

2 =,—', Tr(D~gD~g) + ~ ~ .
= —,

' Tr(I', (g s'g —s'gg))

+ —,
' Tr(I', gI' g —jl"„I' )+

=e'A'v v' —ieA (s'v'v s'v v')+ ~ ~ ~ . (6.13)

We have broken the intrinsic symmetry of the

Lagrangi~ (3.1) so as to maintain the local gauge
invariance, so we still have conserved currents.
The currents for the vector and axial-vector mesons
are the only ones which are modified. They become

j""'+y'j""'= —[If"', I'«] —kI" —tan&A'b v,k

——,
' [[r',gl, g] . (6.14)

The charge algebra (5.17) remains unaltered, but
the charge- field commutation relations involving
the p' field are modified. Instead of (5.14) we have
(for P=O)

[q. , p, ) = —[p„, n] —p'„[o „n](cos0 —1)

We have therefore m, ,= (1/f) sec0 and the follow-
ing ratio":

+A„[o„n]sine,

[q„A,]= —,'Tr([n, p, ]o,) sine.
(6.15)

m, p —rn, ~ 1
m' (1 —e')" ' (6.11)

The terms describing the interactions between
the (P„v) fields and the electromagnetic field
are contained in the same invariant. We have

We see then that although we have conserved vec-
tor currents we can have different masses for the
p' and the p' because the vector charge Q is not
realized as an operator on the space (p'„, p'„, p~),
but on the extended space (p', , p', , p', A„).

, Tr(kC C*')+ ~ ~
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We must expand another invariant to obtain the

terms describing the interactions between the pions
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