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Magnetic «nd quadrupole moments of the W boson*
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The validity of the external-field treatment for the electromagnetic scattering of a 8' boson in the steinberg
model is examined„and calculation of the magnetic and quadrupole moments of the 8' boson is carried out in
the renormalizable gauge instead of the unitary gauge used by earlier authors. Our results agree with those of
Bardeen, Gastmans„and Lautrup in the static approximation, and thus gauge independence of these results is
demonstrated.

I. INTRODUCTION

Magnetic and quadrupole moments of the 8' boson in the Weinberg model' were calculated by Bardeen,
Gastmans, and Lautrup by using the unitary gauge and applying dimensional regulax'ization. However,
recently DeRaad, Milton and Tsai have discussed an anomaly in the results obtained in Ref. 2, and ques-
tioned the use of dimensional regularization in the unitary gauge. It would, therefore, be desirable to re-
calculate the moments in the xenoxmalizable gauge to test the consistency of the dimensional regulariza-
tion procedure.

It is customary to derive the magnetic and quadrupole moments of a particle by considering its scatter-
ing by an extexnal electromagnetic field. We shall first examine the validity of the external-field treat-
ment in theWeinberg model, and then caxry out an independent calculation of the moments with the use of
the renormalizable gauge instead of the unitary gauge. By showing that our static results agree mith those
given in Ref. 2 and confirmed in Ref. 3, we shall demonstrate gauge independence of the results obtained
with the application of dimensional regularization. The vector anomaly, however, mill not be discussed
hex e.

In oxder to explain our notation, we shall state the Lagrangian density for the Weinberg model without
leptons in the form used for our calculations. The Lagrangian density is
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where b and b, are nonphysical fields related to
W„and Z„, respectively, C~, C *, Cz, and C„
are nonphysical gauge-compensating fields obey-
ing the Fermi statistics, and the coupling con-
stants e and g are related as

e'=g'(1 M 'iM ') (1.4)

q /M~ «1, (2.1)

where q is the momentum transfer during the
scattering. Since the external-field treatment cor-
responds only to the one-photon exchange, such
a. treatment is valid only under the condition (2.1).

The necessity of the condition (2.1) for the valid-
ity of the external-field treatment becomes es-
pecially transpa, rent in the renormalizable gauge.
Let us consider the first-order contribution of the
scattering operator for the scattering of a W boson
by an external electromagnetic field, which is
given by

~, = e(2~)'~(p' —p —Q)W „*(p')W,(p)&.(Q)

x
l. (&~+K)b,.+(qp -&,)b.~ —(q. +&')bg~l

(2.2)

II. VALIDITY OF EXTERNAL-FIELD TREATMENT

The external-field treatment, which is often
used in quantum electrodynamics, must be care-
fully examined before it can be applied to the
Weinberg model. In order to understand the situa-
tion, consider the lowest-order scattering of two
W bosons. Such a. scattering can proceed not only
through the exchange of a photon, but also through
the exchange of a, Z particle as well as through a
direct interaction. It is easy to verify that the
one-photon-exchange contribution predominates
when'

Wq (P) —iPqM~ 'W(P) . (2.4)

When the initial W boson is physical while the
final one is nonphysical, the application of

W«(P')- iP'„M, 'W«(P'), P-„W„(P)=0, P-'=-M, -'

(2.5)

to (2.2) yields

S', = e(2~)'5(p' -p —q) W«( p') W, ( p)A „(q)

x M~ '(M~'5, )+ q'5, „-q„q~). (2.6)

Qn the other hand, the corresponding contribu-
tion for the process in which a physical W boson
is converted into a b particle is

S)' = e(2&)'b(P' —P —q)b *(P')W, (P)A ~(q)M~ 5,~ .

(2.7)

A comparison of (2«6) and (2.7) shows that the
negative probability for the creation of the non-
physical component of W boson will be canceled by
the positive probability for the creation of the b

particle only if, in addition to the supplementary
condition q„A ~(q) = 0 for the external field, we
also impose the condition (2.1), Thus, the ex-
ternal-field treatment requires the condition (2.1)

where p and p' are the initial- and final-momen-
tum four-vectors of the W boson. It is well known
that W„(P) contains a nonphysical component W(P),
which must be treated by means of an indefinite
metric. ' The nonphysical component can be elimin-
ated from W„(i)) by subjecting it to the constraint

i)qW~ (P) = 0, (2 3)

while the nonphysical component can be extracted
from W„(P) by the replacement
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FIG. 3. Scattering diagrams with s lines.
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I'IG. l. Scattering diagrams without Z and s lines.
In F'igs. 1, 2, and 3, solid, broken, wavy, and
crossed lines represent the tt', Z, A, and s particles,
respectively. while labeled dotted lines represent
various nonphysical particles.

to maintain consistency even in the lowest order,
where divergent integrals are not involved.

III. EVALUATION OF MAGNETIC AND QUADRUPOLE
MOMENTS IN RENORMALIZABLE GAUGE
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I"IG. 2. Scattering diagrams with Z lines.

l.et us again consider the scattering of a lV bo-
son by an external electromagnetic field, and de-

~, = ie(»)'&( p' —p —q) ~'„'(p')H', ( p)& g(q)

x[(p~+ p'„)6„„+2(q„5„„-q„5„~)]. (3 2)

In order to obtain the third-order contribution in
the renormalizable gauge, it is necessary to con-
sider a large number of diagrams. Since the cal-
culations for diagrams with lepton loops remain
unchanged when the renormalizable gauge is used
instead of the unitary gauge, we shall not evaluate
such diagrams. " %e shall also ignore self-energy
dlagl ams which do not give rise to any contribution
to the moments. The remaining diagrams can be
divided into three categories, which are shown in
Figs. 1, 2, and 3. These diagrams can be treated
by means of dimensional regularization, ' and the
total contribution can be put, with the use of (3.1)
and (2.1), in the form

S, = ie(2m)'u(p' —p —q) H,*, ( p'))('„(p)g, (q)

xtA. [(p„+p'„)5„,+ 2(q„5,„—q, 5„~)j
+ v(q~ 6,q —q, e q&)+ (Q/2 cubi ,N,

'-)
qq q, (p) + p q)j,

(3.3)

where the constant 6 is absorbed by charge re-
normalization, while ~ and Q represent the
anomalous magnetic and quadrupole moments.

The contributions to the magnetic moment x
arising from the diagrams in Figs. 1, 2, and 3

note its initial- and final-momentum four-vectors
as p and p'. %e shall now take the initial as well
as the final lV boson as physical, so that

Pp&p(P') =Pu1i'. (P) =O P'=P" = -iaaf~' (3 1)

Moreover, in order to ensure the validity of the
external-field treatment as explained in Sec. II,
we shall impose the condition (2.1).

With the use of (3.1), the first-order contribu-
tion of the scattering operator, given by (2.2),
can be expressed as



512 DEBOJIT BARUA AND SUBAJ 5. GUPTA

e2

16@2

15 2
dx 3x —Vx +

2 x

+ 15(3x' —2x) lnx, 3a 32&2

3x'
x'+ (1 —x)(}).'/M~') '

38
1b 1c 32~2 K +K35 3c 32g2

1 x2
dx x'+ (1 —x)(p, '/M~') '

K1y =
2 dx 2—

e2 1

K~8+ K~f z dx(3x 2x)lnx
16m K3, + I(."3~ = 0,

dx(3x' —2x)ln[x'+ (1 —x)(p,'/M~')],

e
Klg + /&1g 2 y 'g+ 6

2
g'"=-is" '&)

1

dx(x —2)lnx where the divergent constant q is given by'
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(3.4)
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(y is Euler's constant).
Further, the nonvanishing contributions to the

quadrupole moment Q, which arise from only

eight diagrams, are

e2
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Thus, the total contributions to the magnetic

and quadrupole moments are found to be

GM~ 1
'=3m' 2r~2 R

dx x
Sx' —Sx'+ Sx+Z(x' —5x' —2x) + —,'Z'(- x'+ 5x - 4)

x'+ R(1 —x)
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+ 2 dXX2w'W2, x'+ A'(1 —x)

(3.5)
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where

o. GM„' 1 ' x'(1 —x) (8+ R}
9& 2v'v 2 3R x'+ R(l —x) 2~'v 2 3, x'+ R'(1 —x) ' (3.6}

(3.7)

and it is to be noted that terms involving the divergent constant g in z„+~», ~„, and z,I, + ~„are mutually
canceled by virtue of (1.4). The above results agree with those obtained by Bardeen et al. in the unitary
gauge, ' which can be regarded as a confirmation of the gauge invariance of these results.

The arguments presented in this paper clearly establish that the anomalous magnetic and quadrupole
moments of the W boson are given by (3.5) and (3.6) within the limits of validity of the external-field treat-
ment.
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