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Patterns of symmetry breaking in a gauge-theory model~

Frederick L. Behrens
Department of Physics, University of Washington„Seattle, 8'ashington 98195

(Received 24 May 1976)

We examine the SU(2)L U(1) U(1) gauge model of Yang by a group-theoretical approach and also by
explicit computation to determine the number of physically inequivalent solutions of spontaneous symmetry
breakdown and the physical particle content of these solutions. We find only two pseudo-Goldstone bosons in
this particular model. An error is pointed out in Yang's paper in the determination of the number of pseudo-
Goldstone bosons present and in the identification of the physical particle fields. Although our work deals
with a specific model, it does illustrate the general type of detailed analysis necessary to determine the possible
physical particle content of a gauge theory.

I. INTRODUCTION

The proposal that the pion may be a pseudo-
Goldstone boson" has been widely investigated. "
The desirable feature of this idea, is that the mass
of the pion is calculable and finite in higher orders
of perturbation theory and, as a result, the mass
of the pion can be related to other parameters of
the theory. The finiteness of the calculated mass
is a consequence of renormalizability and the
absence of a counterterm which is not allowed by
the symmetries imposed on the Lagrangian. In
this note we will examine the structure of a model
of T. C. Yang' which was motivated by this idea.
We find that there are two different families of
potentials in this model which are characterized
by whether a certain coefficient in the scalar-
field potential is positive or negative. By group-
theoretical arguments and by explicit computation,
only one physical solution of spontaneous sym-
metry breakdown of the model will be found to
exist for each family of potentials. The solution
in each case is determined by using the definition
of the vacuum state as the lowest-energy state of
the theory facilitated by use of the requirement
that the solutions satisfy the "tadpole condition"
of Weinberg. ' The physical particle content of the
model for one family of potentials will include one
photon and four massive vector bosons, and for
the other family of potentials it will include five
xnassive vector bosons and no photon. There will
exist two pseudo-Goldstone bosons in the theory
for either family of potentials instead of the three
pseudo-Goldstone bosons stated by Yang. The field
taken to represent the neutral pion by Yang will
be shown to be an unphysical Higgs- Kibble scalar
field, ' and a second field listed by him as a Gold-
stone boson will be shown to have a mass. The
one-loop mass correction to the two pseudo-Gold-
stone bosons in the theory is obtained in an integral
fox'm, extending the mass correction computed by

Yang to more general values of the parameters of
the theory. We find, contrary to his claim, how-
evex', that this one-loop mass correction cannot
be made to vanish if there is a photon present in
the theoxy and all other vector bosons are massive.
The mass correction, in this case, is too large to
represent a physical pion mass if the heavy vector
bosons in the theory have masses on the order of
30 GeV or larger. For the solution of spontaneous
breakdown in which all of the vector bosons are
massive, we find the interesting result that the
mass correction to the pseudo-Goldstone bosons
can be made arbitrarily small to all orders of
perturbation theory by an appropriate choice of the
pax'ameters of the model.

Let us first consider a general gauge theory.
We will define G to be the group of coordinate-
dependent gauge symmetries and 6, to be the
group of coordinate-independent continuous global
symmetries satisfied by the Lagrangian. Each of
these are symmetries before spontaneous sym
metry breakdown. The group Q will be defined as
the continuous symmetry group of the scalar-
field potential term of the Lagrangian before
spontaneous symmetry breakdown. The groups
8, S~, and 5 will be defined as the gauge symmetry
of the Lagrangian, continuous global symmetry
of the Lagrangian, and continuous symmetry of
the scalar-field potential, respectively, after
spontaneous symmetry breakdown. The number
of generators of a symmetry group 9 will be de-
noted d[9].

In a paxticular subclass of gauge theories, each
continuous symmetry of the scalar-field potential
that is broken after spontaneous symmetry break-
down will give rise to a scalar boson which is
massless to zeroth order. Hence, there will be
d[G] -d[3] scalar bosons which are massless to
zeroth order after spontaneous breakdown. ' These
zeroth-order massless scalar bosons can be
divided into three categories: unphysical Higgs-
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Kibble bosons, physical Goldstone bosons, and

pseudo-Goldstone bosons.
If the symmetry of the potential that is broken

is also a gauge symmetry of the Lagrangian, then
the massless vector boson associated with the
gauge symmetry will acquire a mass after spon-
taneous breakdown, and the massless scalar
boson associated with the broken symmetry is an
unphysical Higgs- Kibble scalar boson. This
scalar boson is not a physical particle and may be
gauged away by the Higgs-Kibble mechanism' to
become the longitudinal component of the vector
boson. The number of massive vector bosons and

related unphysical Higgs-Kibble scalar fields is
equivalent to the number of broken gauge sym-
metries,

If the symmetry of the potential that is broken
is a continuous global symmetry of the Lagrangian
which is distinct from the gauge symmetries con-
tained in G, then the associated massless scalar
boson is a physical Goldstone boson. This scalar
boson will remain massless to all orders of per-
turbation theory. Since this Goldstone boson is
not associated with any massive vector boson, it
is an excitation which cannot be gauged away.
Hence, there will be

no =d[Gr] -d[Sr] -]d[G] —d[SQ

physical Goldstone bosons in the theory.
Now it may turn out, because of the symmetries

imposed on the Lagrangian and the requirement of
renormalizability, that the symmetry G of the
scalar-field potential is forced to be larger than
the global symmetry G& of the Lagrangian. Those
scalar bosons associated with symmetries con-
tained in G but not in G~ that are broken after
spontaneous breakdown are pseudo-Goldstone
bosons. These scalar bosons are massless to
zeroth order but then pick up a mass in higher
orders of perturbation theory. This mass comes
from terms in the Lagrangian that did not satisfy
the symmetry in t" that is associated with the
pseudo-Goldstone boson. The number of such
pseudo-Goldstone (PG) bosons is given by'

&~o =did]-d[&1 —(dl&. ] -d[s.]&
In a theory with pseudo-Goldstone bosons present

there will in general be an arbitrariness in the
vacuum state at the tree-graph level. This arbi-
trariness is reflected in the existence of a con-
tinuous infinity of physically inequivalent sets of
vacuum expectation values which are solutions of
the model at this level of calculation. Since the
vacuum state is not completely specified at the

tree-graph level, higher-order perturbative cor-
rections must be carried out in order to determine
the correct vacuum state of the theory. ' As Wein-
berg has shown, '- this can be achieved by imposing
the condition that the vacuum expectation values
have a well-behaved perturbative expansion. To
implement this condition, Weinberg considers the
one-loop correction to the vacuum expectation
values of the scalar fields that is given by tadpole
diagrams with an external scalar-boson line. A

typical tadpole diagram is shown in Fig. 1. When
the external line is that of a pseudo-Goldstone
boson, which is massless to zeroth order, the
tadpole diagram is singular unless the sum of the
tadpole loops for that particular line is identically
zero. In order for the vacuum expectation values
to have a well-behaved perturbative expansion, the
choice of vacuum expectation values is required to
be such that the sum of the tadpole loops is identi-
cally zero for any external line which is a pseudo-
Goldstone boson. Additionally, the vacuum expec-
tation values must be chosen such that the calculat-
ed masses of the pseudo-Goldstone bosons in

higher orders of perturbation theory are positive
real quantities. We shall henceforth refer to the
combination of these two conditions as the tadpole
condition.

This raises the interesting question concerning
how many physically inequivalent solutions of
spontaneous breakdown are allowed for a gauge
model by the tadpole condition. Further complicat-
ing this question is the fact that these solutions
may have a discontinuous dependence upon the
parameters of the scalar-field potential and thus,
must be determined for each of different families
of potentials. We shall illustrate this question
concerning the number of allowed, inequivalent
solutions by examining a particular gauge model
of T. C. Yang. ' The general symmetry properties
of the model will be discussed in Sec. II. The

FIG. 1. Feynman diagram for the tadpole with an ex-
ternal pseudo- Goldstone boson line. The pseudo- Gold-
stone field is represented by the dashed linee. The solid
line represents a vector field or a scalar field.
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solution of spontaneous breakdown of the model
will be obtained for each of two families of scalar-
field potentials in Secs. III and IV.

II. THE MODEL

The model of T. C. Yang4 to be examined is in-
variant under an SU(2)~ @ U(1)@U(1) gauge group.
The interesting feature which Yang investigated
in this model was whether or not the pseudo-Gold-
stone bosons which he identified as pions could
have small masses arising from the electromag-
netic weak interaction even though the masses of
the massive vector bosons were large. The model
consists of three complex doublets of scalar
bosons,

(4)

G = SU(2)i ISIU(1) @U(1)c (6)

gauge symmetry. The SU(2)~ gauge group rotates
the component fields of each of the three scalar
doublets f, g, and $, and makes a rotation and

gauge translation on the vector fields A,". The
U(1)s gauge symmetry rotates the g& scalar-
doublet component fields and makes a gauge trans-
lation on the vector field B". The U(1)c gauge
symmetry rotates the component fields of each of
the g and ( doublets while making a gauge trans-
lation on the vector field C". We can further re-
quire that the Lagrangian be invariant under two
separate global coordinate-independent symmetry
transformations U(1)&8U(1)&. This allows the
component fields of the g doublet and E doublet to
rotate independently of each other under two
global U(1) groups. From the gauge group above

three SU(2)~ vector bosons A,", and two U(1)~SU(1)c
vector bosons B" and C". The SU(2)~~U(1)~SU(1)c
gauge-invariant Lagrangian formed from these
fields is

& = —,
' l(8" —i gr, A", —i g'B")4&l'

+ —,
' l(8" —i g 7,A,"—ig'C" ) q l'

+ —,'l(a" ig7, A—,"—ig'c")gl'-

--'( l~&.)'--'( g&)'--'( ic&)'-1'(0, 0 &), (6)

where Fi"„&, F&s&, and Flc& are the field strengths
of the vector bosons, and P is the potential term
of the scalar bosons.

Following Yang, we will impose a charge-con-
jugation symmetry P —v, P*, B"~ —B" on the La-
grangian in addition to the

and the arbitra. rily imposed U(1)&@U(1)
&

global
symmetry, we conclude that the total global sym-
metry of the Lagrangian before spontaneous break-
down will be

G~ = SU(2)~ U(1)y@ U(1) g
~ U(l) (,

where the subscripts denote the particular scalar
doublets that transform under each group.

The most general scalar-field potential which
is consistent with this global symmetry, charge-
conjugation invariance, and renormalizability is

P(y, &(, g) = h, y' -h, q'--a, ('
+ h, (y')'+ h, (4')'+ h, (g')'

y2q2+ h y2(2+ h g2(2

qt((tq (8)

We see that P' is invariant under an 0(4)& sym-
metry group of transformations of its real fields

This simple remark leads to a larger sym-
metry group. Using the definition of g and (, Eq.
(4), the term &}t$$tg of the scalar-field potential
can be written as

+ (~P, v,tl, +»,Z —on. ,)'] . (10)

The coefficients h, are to be chosen such that
each of the doublets (Ij), g, and E develops a vacuum
expectation value. To accomplish this, the coef-
ficients h„h„and h, are chosen to be positive.
To guarantee a stable theory, the potential must
be positive for large classical values of its fields.
Therefore, to have a stable theory, the coefficients
h„h„and h, must be chosen to be greater than
zero, and each coefficient h„h„Sz„and h„
must be greater than some negative constant. The
negative lower bound for each coefficient h„h„
h„and h1p is determined by the values of the other
coefficients in the potential. If h„h„and h, are
too large, then not all of the doublets will develop
a vacuum expectation value. For the type of spon-
taneous breakdown which we desire, each of these
three coefficients must be less than some upper
bound which is positive and is determined by the
values of the other coefficients in the potential.
The term with coefficient h1p will merit special
attention since the sign of h„has an important
bearing on the solution of spontaneous breakdown
and, as a consequence, the physical particle con-
tent of the theory.

From the definition of the complex doublet Q,
Eq. (4), P' can be written in terms of its real
fields P,. as
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This term breaks down the O(4) &O(4) &
symmetry

satisfied by the rest of the terms in the potential
to an SU(2)«S U(1)

&
8U(1) &

symmetry. Conse-
quently, the full symmetry G satisfied by the
potential P before spontaneous breakdown is

G = O(4) @6SU(2) «S U(1) ~ U(1) q
.

In the potential which Yang wrote down, the
terms involving h„h„h„and h» of Eq. (8) were
omitted and a term of the form (at(+ (tg)' was in-
cluded. His potential is invariant under an O(4}&
O(4) «symmetry group before spontaneous break-
down, and if the electromagnetic and weak inter-
actions are turned off, this becomes the symmetry
of his entire Lagrangian. The O(4)@@O(4)«sym-
metry group contains an O(4) ~& &

subgroup which
is isomorphic to the SU(2)SU(2) group. This
subgroup was interpreted by Yang to be a chiral
symmetry of the Lagrangian in the limit that the
electromagnetic weak interaction is turned off.
For Yang's purpose of identifying the physical
particles and computing the one-loop mass cor-
rection to the pseudo-Goldstone bosons of the
theory, his potential is sufficient. However,
the terms omitted from Yang's potential satisfy
the criteria of being of dimension less than or
equal to four and consistent with the symmetries
imposed on the complete Lagrangian, and thus are
necessary to insure the renormalizability of the
theory. The term of the form (at)+ (tg)' is not
required for renorrnalizability since it is eliminat-
ed with the arbitrarily imposed U(l)&8 U(1) &

global symmetry. The potential of Eq. (8) contains
the minimum number of scalar terms necessary
to ensure the renorrnalizability of the model. But
as we have seen [cf. Eqs. (10) and (11)], the global
symmetry of the Lagrangian with this potential,
in the limit of vanishing electromagnetic weak
interaction, will contain an O(4) && &

symmetry sub-
group to be identified as a chiral symmetry only if

p is set equal to zero.
After spontaneous symmetry breakdown, the

fields of the three doublets, Eq. (4), will acquire
vacuum expectation values. Let us now determine
the number of physically different theories that
are allowed by Yang's Lagrangian. The number
of physically different theories will correspond to
the number of sets of vacuum expectation values
that can be found which are compatible with the
Lagrangian, and which are not related to each
other by the symmetries of the Lagrangian. To
find the number of physically different theories,
we first suppose that each of the fields of the
doublets, Eq. (4), acquire a vacuum expectation
value. However, not all of these vacuum expecta-
tion values are independent of each other. The
number of vacuum expectation values which are

independent of each other and which are determined
by the parameters of the scalar-field potential
will be less than or equal to the canonical number
of Bludman and Klein. ' This canonical number is
defined as the number of independent invariants
contained in the scalar-field potential. For the
potential of Eq. (8}, the invariants are P',
and g~$$tg. Hence, the number of independent
vacuum expectation values for this potential must
be less than or equal to four. Our first step in
determining the number of physically inequivalent
solutions allowed by the Lagrangian will be to
reduce the arbitrary set of vacuum expectation
values developed by the scalar fields to a physical-
ly equivalent set of four or less. We proceed
to do this by beginning with the g doublet and using
the SU(2)~ symmetry of the Lagrangian to rotate
the fields of this doublet until only the new cr field
has a nonzero vacuum expectation value. At this
point, we make use of the definition of the vacuum
state. The vacuum state is defined as the lowest-
energy state of the theory; hence a classical
minimum of the scalar-field potential must be
reached when the fields therein are replaced by
their zeroth-order vacuum expectation values.
A classical minimum point of the potential in the
scalar-field space is characterized by the first
derivative of the potential with respect to any of
its fields being zero and the second-derivative
matrix being positive-definite when evaluated at
this point.

III. FIRST SOLUTION

We will first consider the case when the coeffi-
cient h» in the potential, Eq. (8), is negative.
Turning to the ( doublet, we apply the criteria
resulting from the definition of the vacuum state.
An examination of the scalar-field potential reveals
that the minimum of the potential is reached only
if the fields Z and II, contain the nonzero vacuum
expectation values of the ( doublet, with II, and

II, having zero vacuum expectation values. There
is only one term of the potential that is responsible
for this restriction on the vacuum expectation
values, and that is the term with coefficient Alp.

As a result of the fields II, and II, having zero
vacuum expectation values, the U(1)

&
symmetry

can be used to rotate the fields of the g doublet
until only the new Z field develops a vacuum ex-
pectation value. Finally we consider the P doublet.
There is a little group of the SU(2)~ U(1)&ISIU(1)&

CSU(1)& global symmetry group of the Lagrangian
that can be used to rotate the fields of the (It} doub-
let until only the new p, and p, fields develop
vacuum expectation values, while still retaining
the vacuum expectation values in the new 0 and Z
fields of the g and $ doublets. We shall designate



15 PATTERNS OF SYMMETRY BREAKING IN A GAUGE-THEORY ~ . . 501

the vacuum expectation values of the p„p„o,
and Z fields as &sin6, &cos6, (o), and (Z), re-
spectively; and define new primed fields (I)),', P4,
o', and Z', which have zero vacuum expectation
value s ~ by

j,= ~ sin6+ p'„Q, = ~ eos 6+ Q,',
o = (o) + o', Z = ( Z) + Z '.

A calculation of the classical minimum of the
scalar-field potential using the above mentioned
conditions on the derivatives of the potential shows
that the magnitude of the zeroth-order vacuum
expectation value of each doublet (I), g, and $ can
be determined as a function of the coefficients con-
tained in the potential. Hence, the absolute values
of P., (o), and (Z) are determined by the coefficients
in the potential, and these are the independent
vacuum expectation values of the theory. As a
further consequence of the global symmetry 6,
which the Lagrangian satisfies, we may choose
the vacuum expectation values &, (o,', and (Z) to be
positive without any loss of generality.

The one para. meter yet to be determined is the
angle 6. The scalar-field potential does not put a
constraint on this angle because it corresponds to
a rotation contained in the symmetry group G

under which the potential is invariant. This rota-
tion does not belong to the global symmetry group

G~ of the entire Lagrangian, however, which
leaves open the possibility that there may be differ-
ent allowed values of 6 corresponding to different
physical theories which are solutions of the model.
To find the allowed values of the angle 6, we must
look to the one-loop cox rection to the theory and

apply the previously discussed tadpole condition.
This consists of identifying the pseudo-Goldstone
bosons and then finding the angles 6 for which
these bosons do not develop tadpoles and also for
which their calculated masses are positive real
quantities. We will show by explicit computation
that there are two angles 8 corresponding to two
different sets of vacuum expectation values which
satisfy the tadpole condition. These two angles
will be shown to be 8= 0 and 8=-,"&. For the mo-
ment, however, we will concern ourselves with
the physical content of these solutions. The 8= —,'m

solution can be transformed into the 6 = 0 solution
by the charge-conjugation symmetry operation
on the P and B" fields under which the Lagrangian
is invariant. Thus, we are left with the 6= 0
solution as the physical solution of spontaneous
breakdown. The original set of vacuum expecta-
tion values has been reduced down to a unique set
by using the symmetries of the Lagrangian, and
this set is completely determined by the param-
eters of the model. What we have shown, then„

is that there is only one physical solution for this
type of spontaneous symmetry breakdown of the
model when the coefficient h„ in the scalar-field
potential is negative.

Now, let us examine the symmetry structure of
Yang's model after spontaneous breakdown. By
consideration of P', Eq. (9), and $'tE(tg, Eq. (10),
the presence of the vacuum expectation values can
be seen to reduce the symmetry G of the scala. r-
field potential P, Eq. (6), to

S ' ' = 0(3)~ IgI U(1)~ q
. (13)

,''=d[G] - d[s' '1

=5 —1=4 (15)

vector bosons will acquire a mass, leaving a fifth
to remain massless. This massless vector boson
is the photon associated with the remaining U(1)
gauge invariance. We also find that there mill be

=6 —1 —(5- 1)=1 (16)

physical Goldstone boson which remains massless
to all orders of perturbation theory. In addition,
there wi11 be

pseudo-Goldstone bosons that are massless to
zeroth order but which acquire a mass in higher
order of perturbation theory.

We now turn to verify our group-theoretical an-
alysis of the Lagrangian by explicit computation.
The tadpole condition on the angle 8, Eq. (12), will

The superscript (-) indicates that this result is
obtained in the case when the coefficient h, o in the

I
scalar- field potential is negative. Similarly, the
global symmetry G~ and the gauge symmetry G of
the Lagrangian, Eq. (5), are reduced to

(14)

respectively, after spontaneous breakdown. This
remaining U(l) gauge symmetry is an electro-
magnetic gauge invariance with an accompanying
massless photon. There is an electromagnetic
gauge symmetry of the theory only because the
angle 6 is equal to an integer multiple of —,

'
m. If

the angle 8 dicta, ted by the tadpole condition had
not been an integer multiple of & ~, then there
would not have been a remaining U(1) electro-
magnetic symmetry, and the theory wou1d not have
contained a massless photon.

The physical particle content of the Lagrangian
ean now be derived from the symmetry structure.
From the preceding results, we find that
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be derived, and as a secondary result, the on@-

loop mass correction to the pseudo-Goldstone
bosons will be obtained.

The classica, l minimum of the potential P,

»(@,0, 5)

~i 0=&@&, 4=&@),4=&4&

with g,. any field occurring in the potential, defines
the three vacuum expectation values X, (v), and

(Z), Eq. (12), to zeroth order in terms of the co-
efficients of the potential. I,et us temporarily
include the additional term h»(pt(+ (t(I)' in the

potential, Eq. (8), in order to identify the physical
Goldstone boson. The coefficient, h«must be
chosen negative so that the vacuum expectation
values of Eq. (12) will be compatible with the

definition of the vacuum state as being the lowest-
energy state of the theory. This additional term
breaks the global U(1)„SU(l), symmetry contained
in G down to U(l)«. As a result, the original
Goldstone boson associated with the symmetry
broken by this extra term will now, instead, be
a. massive seal. ar boson with a ma, ss coefficient
proportional to h» allowing us to easily identify
it. There will be three nontrivial relations of
Eq. (18) defining X, (v), and (Z}. These three
relations can be used to repla, ce three param-
eters of the potential in terms of the vacuum ex-
pectation values Xsin8, Xcos8, (v), and (Z).
%e shall choose h~, h„and h, as the parameters
to be replaced. Having done this, the mass term
of the potential P is computed to be

P"'(p, 0, () = 2h, (cos8 0,'+ sin8 p2)'+ 2h, v" + 2h, ~"—2h, [(v) (cos8 y4+ sine y2) —xv']'

—2h, [(Z}(cos 8 $4+ sin 8 P2) —X Z']' —(2h, + 2h„+ Bh») ((Z) v' —(v) Z ')'

—(h„+4h„)[((Z)v, —(v) Ii„)'+((Z)v, (v) ri,)']-4h„({Z)v, (v) ll,)'.
The previously discussed constraints on the coefficeints are sufficient to ensure that the mass eigen-
values of this term are positive.

In general, there are three independent combinations of cos9 Q,'+ sin6 P,', (T', and Z' that are massive
as well as (Z}v, —(v) II~ and (Z}w2 —(v) II2. (Yang's paper had listed one combination of &f&~, v', and Z'
as an unphysical Goldstone boson for the 8=0 solution, when actually it is a. massive scalar boson. ) The
field with mass proportional to h» identifies the physical Goldstone boson (h» = 0) as

(f o=
(( ). ..)„, ((E)v, —(v) II,). (20)

Thus, we have accounted for six of the twelve scalar fields.
From the Lagrangian, Eq. (5), we find that the bilinear derivative coupling of the massive vector bosons

to the unphysical Higgs-Kibble sca,lar fields is

A; 9„[X(cos 8 &f, —sin8$, ) + {v) ~, + {Z ) II,] —g A;9, [X(cos8 &f&,
' —sin8$,') + (v) w, + ( Z} II, ]

-g A; 9, [X(sin 8 Q, + c os 8 (f&,) + {v}v, + (Z}II,] +g'XB"9,(- sine (f&, + cos 8 P,) +g'C'8 „((v)v, + {Z}II,) .
(21)

Four Higgs-Kibble fields can be identified from
this bil. inear coupling for an arbitra, ry angle H.

%e will write these fields as the following orthog-
onal combina, tion:

1
P, = —[X(cos8 P, —sin8 (f&,) + (v}w, + (Z}11,],

[X(cos8 Q,
' —sin8 g,') + {v}w,+ {Z}II,],

~IIII j
Q, = —[X(sin8 P, + cos 8 Q,) + (v) w, + ( Z}II,],

1

[&,'(sin 8 p, + cos8 p, ) —x((v} v, + {Z} II,)] .
1 2

The coefficients x, and x are defined in terms of

the vacuum expectation values X, (v), and {Z} as
r, ' = X-+ ( v)'+ ( Z)' and ~,' = ( v)'+ ( Z)'. The calcu
lation by Yang of the one-loop electromagnetic
weak mass correction to the "neutral pion" was
based on identifying @4 as the neutral pseudo-
Goldstone pion field for the 0 = 0 solution. But, it
is actually an unphysical Higgs-Kibble scalar
field which can be gauged away.

There is a fifth orthogonal field,

Fr, = [r,'(cos 8 P, —sin8 Q,)
1 2

—X((v}v, + {Z} II,)],
which can be found from the bilinea, r coupling when
8 is not an integer multiple of & m. This field 7T„
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however, does not have a bilinear derivative cou-
pling to a vector boson field for (9 equal to an integer
multiple of —, ~. If 0 were not equal t;o ~no, then 8,
would be a Higgs-Kibble field. But, we will show
that 9= & n7& is the proper solution to the model, and
therefore 8, which is massless to zeroth order is,
in fact, a pseudo-Goldstone boson field.

The one remaining scalar field which we have
not identified is

77p = — ['v2 (cos8 Q2 —sln8 @~)

It is massless to zeroth order, and it is the other
pseudo-Goldstone boson of the theory. For 0
= & n&&, there is a remaining U(l) electromagnetic
gauge symmetry of the model under which 77,

and 7T., can be rotated into each other. For these
special values of 6). the fields 7T, and f, can be
combined to represent two equal but oppositely
charged scalar bosons.

Now, let us determine the angles 6 for which
the pseudo-Goldstone bosons do not develop
singular tadpoles. Using Weinberg s notation, '
we will write the tadpole graph as

+gg'(g~ sin28A"B —X cos28A&B —x2 Az'C„) .

(27)

Using the interaction terms of Eq. (26), the
total tadpole-loop contribution to f, and 8, can now

be computed. The vector-boson loops are to be
eva. luated with the vector-boson propagator matrix
of the above free-field Lagrangian in the Landau
gauge. A general form defining the free-field
vector-boson propagator in an arbitrary gauge is
contained in Weinberg's paper. ' The tadpole
loops T[&r, ] and T[&&,] are found to be

(28)
T[rr, ] =- 3i(g~')'X'~, r, 'sin48 de'&

d, (k, 8) '

where d, (Er, 8) is defined as

&f, (k, 8)

=k'(k'+g r, ')

&& ][I'+ (2g'+g'-')A'](k'+g"r, ') —A'g'(X' —r,,')f

(25)
+ (gg')'(X'r, 'sin28)' (29)

where 4'(k) is the propagator of the &&; field carry-
ing four-momentum f&, and T[&&;] is the total tad-
pole-loop contribution for the f,. external line.
There are no scalar-boson loops that contribute
to a tadpole graph with 8, or 77, as the external
line. There are, however, vector-boson loops
that can contribut, e to a tadpole graph with a f,
or 8, external line. The interaction terms for
these vector-boson loop tadpoles, determined
from the Lagrangian, Eq. (5), are

Z&r'=2gg' '[&&,(-cos28A,"B,+A;C„)

+ &7, (cos28A,"B,+ sin28A;B, —A;C„)].

Weinberg' has shown that the part of the tadpole
graph which becomes singular with an external,
zero-mass pseudo-Goldstone-boson line is gauge
invariant. It is this singular part of the tadpole
graph with which we are concerned. Consequently,
we may choose to calculate the tadpole loops in
the Landau gauge without any loss of generality.
There will be no contribution to the tadpole graphs
by ghost loops in this gauge.

From Eq. (5), we find that the free-field Lagran-
gian for the vector bosons is

and the coefficients x, and r2 were defined above.
The integration contour of T[&&,] has been rotated
such that it is a four-dimensional Euclidian in-
tegral. The vanishing of T[&&,] results from the
particular form into which we have rotated the
vacuum expectation values. The field f, would
develop a nonvanishing tadpole if the vacuum ex-
pectation values, Eq. (12), were rotated relative
to the two fields f., and S, by an appropriate glob-
al symmetry rotation.

By inspection of the above form of T[&&,], we see
that the tadpole loop vanishes for 8 equal to an
integer multiple of &~. By our tadpole condition
then, only these values of (9 are allowed as possi-
ble solutions to the model. To further reduce
this number of possible solutions, we will com-
pute the one-loop mass correction to the pseudo-
Goldstone bosons. Only those values of 6) for
which the calculated pseudo- Goldstone boson
masses are positive real will be allowed as solu-
tions of the theory.

The pseudo-Goldstone boson masses can be
easily obtained from the tadpole loop T[&&,] by
making use of the general formalism for pertur-
bative calculations of symmetry breaking derived
by %'einberg. ' The first Weinberg result that we
shall use is that the one-loop calculation of the
pseudo-Goldstone-boson mass matrix can be
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written as we can combine the last four equations to obtain

r~~;, =
( )

—, f [~;]T[v,], (30) 2 1
(2~)' X 8 (34)

where f, [I7,.] is an appropriately normalized Lie
derivative which is associated with the pseudo-
Goldstone boson v;, and T[vI] is the tadpole loop
for 7t J evaluated in the Landau gauge. For the

mass matrix of our two pseudo-Goldstone bosons
to be positive definite, its diagonal elements
must be positive. Therefore, we will compute
the diagonal element m,-'» to determine the con-
straint placed on the angle 8 by this positivity
condition. The normalized Weinberg Lie deriva-
tive for v„Eq. (24), is

1 a . a
r [,i= ', ' case

~ ~

—smR
~ ~)

o + ~ (31)

To be able to use this derivative on the tadpole
loop T[v, ], we would need T[v, ] evaluated with

nonzero vacuum expectation values &v,& and (II,).
But, we have already rotated the vacuum expecta-
tion values of the g and $ doublets in a direction
in which &v,& and (II,) vanish. To get around this,
we construct the Lie derivative L„

f, =&4.&
&~

&-&4,&

&~
&+&o&

&

&+&T&
&U )

(32)

It is a derivative with respect to an SU(2) rotation
of the nonzero vacuum expectation values &Q,&,

&Q,&, &o&, and &Z& of the Q, gl, and $ doublets.
This rotation is contained in the global symmetry
group G of the Lagrangian. We now make use of
a second Weinberg result, that

L, T[7I,] = 0. (33)

We are assuming that the vacuum expectation
values (v,& and (II,) contained in T[v,]have not.
been set to zero until after the derivative L, has
been taken. This last equation is a consequence
of the tadpole loop T[P&] calculated in the Landau
gauge being invariant under a rotation of the
vacuum expectation values contained in it if the
rotation belongs to the global symmetry group
G,. The derivative L[ ], Son the other hand, is a
derivative with respect to a rotation of the (t) doub-
let vacuum expectation values multiplied by one
coefficient, plus a derivative with respect to a
rotation of the P and $ doublet vacuum expectation
values multiplied by a different coefficient. Mak-
ing use of the definition of &P,& and &P,&, Eq. (12),

d~k 1
m =12(gg') (yr, r,

(2 )» d, (k, 0)
' (35)

To obtain the pseudo-Goldstone-boson mass
correction computed by Yang, we follow his pro-
cedure of making the special choice of vacuum
expectation values X' = &a&'+ (Z&'. With this choice
of vacuum expectation values, d, (k, 0) of Eq. (29)
is in a factorized form, and the integral for m-, '
ean be straightforwardly evaluated. As an addi-
tional result of this special choice of vacuum ex-
pectation values, the mass- squared eigenvalues
of the massive vector bosons are easily deter-
mined from the roots of d, (k, 0) =0 to be 2g'X',
(2~ +g")X', and g"A.'. The electric charge con-
stant e is related to the two coupling constants g
and g' in this theory by e = 2gg'/(2g'+g")'~'.
Again following Yang, we define a mixing angle
r by the relation g=e/(2cosr), g'= e/(v 2sinr).
Carrying out the integration for m, and using
the relation for the electric charge constant e and
mixing angle T, we obtain

The one-loop mass correction matrix element
w,-'» is now formulated as a derivative of the
tadpole loop T[v, ] with respect to a, relative rota-
tion of the vacuum expectation values of the P
doublet to those of the g and ( doublets. We can
now use our expression for T[7I,], Eq. (28), in
this last equation to find the matrix element
~n,-'„. The values of ]9 for which the tadpole loop
vanished were integer multiples of &m. Of these
values of 8, our expressions for m ,'» a-nd T[Fr, j
show that only the even-integer multiples of &7t

will result in a positive m». Of these remaining
values of 0, only two values correspond to differ-
ent sets of vacuum expectation values. We will
take these two values to be 0 and &~. The charge-
conjugation symmetry operation involving the Q

and B" fields transforms the 6)= z7t solution into
the 8=0 solution. We are left then with 9=0 as
our solution of spontaneous symmetry breakdown.
For 0 = 0, the two pseudo-Goldstone bosons 8,
and m, will have the same mass since they are
related by the remaining U(1) electromagnetic
gauge symmetry. Hence, the mass matrix of
these two bosons will necessarily be diagonal,
and the matrix element m,-'» represents the full
mass correction for both 77, and f, . We shall
henceforth denote this mass correction as ~n,-'.
Evaluating Eq. (34) with 8=0, we find that the
one-loop mass correction to the pseudo-Goldstone
bosons 8, and Fr, is
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3 e2 2 I 1
m, '7) =——x

2 4v cos'7 sin'r cos'r- sin'7

x (cos 7 lncos r- sin'rln sin'7) .

(36)

This is the result found by Yang for the pseudo-
Goldstone boson mass correction. However, we
disagree with his conclusion that the pseudo-
Goldstone boson mass becomes small as ~ goes
to 0 or &n. We find that the minimum mass occurs
for ~=4m. For this value of 7,. m;" becomes

~n (—,v) =-——m„(1 ln2) .2

2n 4v
(37)

The mass m„=eh. is the mass of the lightest of
the massive vector bosons in the theory, when

1
T f77 ~

@,= A. sin8+ P,', Q = X cos8+ Q,',
o = (o) + o', lI, = (II,) + II,'.

IV. SECOND SOLUTION

We now return to the Lagrangian to determine
what the particle content of the model would be if
the coefficient h„ in the potential, Eq. (8), were
chosen to be positive. Since the procedure for
this investigation will be the same as in the case
h»&0, we will only sketch the major differences
found for the physical content of the theory when

h„&0.
First, let us find the number of physically dif-

ferent theories that can occur when each of the
doublets Q, g, and ( develop a vacuum expecta-
tion value with h]p&0. We again suppose that each
of the fields of the doublets, Eq. (4), acquire a
vacuum expectation value. Then, using the global
SU(2)~SU(1)~SU(I)~SU(l), symmetry group under
which the Lagrangian is invariant, we rotate
away as many of the vacuum expectation values
as possible. The condition that a classical mini-
mum of the scalar-field potential must be reached
when the scalar fields are replaced by their
zeroth-order vacuum expectation values puts an
additional restriction on the number of fields that
can acquire a nonzero vacuum expectation value.
We find in this case that the vacuum expectation
values can be rotated into the (t)„g~, v, and II,
fields. In the $ doublet, the vacuum expectation
value of the II, field cannot be rotated into the Z

field, while still keeping the vacuum expectation
value of the g doublet in the a field. Therefore,
this is a significantly different set of vacuum ex-
pectation values as contrasted to the case when

A1 p was negative. A set of new primed fields
Q4, 0', and II,' having zero vacuum expectation
values will be defined as

n" = d[G] —d[S"]

=5 —0=5. (40)

There is no longer a massless photon in the theory
when the coefficient hyp becomes greater than
zero. There is also no physical Goldstone boson
in the theory

no" = d[G ] —d[S"]—fd[G] —d[S"]j
=6 —1- (5 —0) =0. (41)

The number of pseudo-Goldstone bosons is given

The zeroth-order values of A, (v), and (II,) can
be determined as a function of the coefficients of
the scalar-field potential from the defining rela-
tion of Eq. (18). To determine the allowed values
of the angle 8, we will identify the pseudo-Gold-
stone bosons of the theory and find the angles 8
for which these bosons do not develop tadpoles
and for which their calculated masses are posi-
tive real quantities. We will show bv exolicit
computation that the angles 8 satisfying these con-
ditions and corresponding to different sets of
vacuum expectation values are 8=0 and 8= &~.
The 8= —,'-~ solution is physically equivalent to the
8=0 solution because of the charge conjugation
symmetry involving the P and B" fields. There-
fore, the 8=0 solution can be chosen to represent
the physical solution of spontaneous breakdown.
The original set of vacuum expectation values has
been reduced down to a unique set which is com-
pletely determined by the parameters of the La-
grangian. Thus, we show that there is only one
physical solution for this type of spontaneous
symmetry breakdown of the model when the coef-
ficient h„ in the scalar- field potential is positive.

Next, let us examine the symmetry structure of
the model after spontaneous breakdown. Consid-
eration of the potential terms, especially P', Eq.
(9), and tt t((t(, Eq. (10), and also of the kinetic-
energy terms of the Lagrangian reveals that the

symmetry G of the scalar-field potential and the

global symmetry G of the Lagrangian are reduced
to

~"= O(3), U(I) (, S,"= U(1), , (39)

respectively, after spontaneous symmetry break-
down. There is no remaining gauge symmetryS" of the model after spontaneous breakdown.
The global U(1)o«symmetry is present only for
8 equal to an integer multiple of &n, which is the
solution dictated by the tadpole condition. For
any other values of 8, there would have been no

remaining global symmetry.
From these results, the physical particle con-

tent of the theory can be derived. We find that all
of the vector bosons acquire a mass,
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nc;) =d[G] dPc')] —[d[G,] —d[S,c')]J

=11—4 —(6 —1) =2. (42)

the Higgs-Kibble fields. Hence, following the
same method as in Sec. III, we determine the
pseudo- Goldstone bosons to be

Two pseudo-Goldstone bosons are present only

because the angle 8 is an integer multiple of 271,

which results in a remaining U(1) global symme-
try. If the solution for 8 had not been an integer
multiple of &m, the group-theory analysis of the
model would have indicated that there would be
instead one pseudo-Goldstone boson and one phys-
ical Goldstone boson in the theory.

There are five scalar bosons which acquire a
ma, ss for this solution of spontaneous breakdown.
These scalar bosons can be identified from the
mass term of the scalar-field potential as three
combinations of cos8$,'+sin8$,', a', and H,'

along with {II,)v, + (a)Z and (II,)w, + (cr) II,. There
are also five unphysical Higgs-Kibble fields
which can be identified from their bilinear deri-
vative coupling to the massive vector bosons.

Our main interest is with the pseudo-Goldstone
bosons. The two pseudo- Goldstone boson fields
of the theory can be identified a.s those two re-
maining massless fields which are orthogonal to

II, =—IF,'[2(cr){II,)(cos8 ci), + sin8 ct),)
'V3

—Ic sin28({II,)v, +(o)II,)]
—2lc cos28{a){II,)((o)w, -(II,)II,)),

(43)

II, = [F,'(cos8 Q,
' —sin8 P,') —X((o)v, —(II,)Z) ] .

I -2

The coefficients F, and F, are again defined in
terms of the squares of the vacuum expeeta, tion
values of the doublets Q, p, and $ as
r, ' = X'+ (o)'+ {lI,)' and r, ' = {(z)'+(ll,)'. The
coefficient F', is chosen to normalize the field
II, such that it has unit strength.

Now, let us find the angles 0 for which the
pseudo-Goldstone bosons do not develop singular
tadpoles. Of the fields appearing in the Lagran-
gian, only the vector bosons will contribute tad-
pole loops to IT, and II,. The relevant interaction
terms fromthe Lagrangian, Eq. (5), for these
tadpole vextices are

Z&" =2gg'~ 2—{o)(ll,)II,[r-,'X,"B,+((o)'- (ll,)') cos28A;C. ]
r3

1
+ II, [)",' cos28A;B„+F,' sin28A.,"B, ({a)' {ll,)')A", C, ]

2

(44)

The tadpole loops will be calculated in the Landau gauge. The free-field vector-boson Lagrangian rele-
vant to our calculation is found from Eq. (5) to be

pc &) (F»& ) (F»P )2 (F)L» )2 ~ +~= 2+02 + g l2y2B»2 ~ )gf2P 2C»2

+gg'[x' sin28A;B, —8 cos28A", B,—((o)' (ll,)')A,"C,] . (45)

The vector-boson propagator matrix of this free-field Lagrangian will be used to calculate the tadpoles.
Evaluating T[II,.) of Eq. (25) from the interaction terms of Eq. (44), the total tadpole loop contribution for
H~ and H2 is found to be

T[11,] = O,

7'I)).)=-»(w") —„&',)( )*-()).)*)'~ 4))f s, ') ~ „
(46)

where d, (k, 8) is defined to be

d, (k, 8) = (k'+g'F, ')[(k'+g"Ic')(k'+g'F, ')(k'+g"F, ') (gg')'({o)' —(ll,)')'(k'+g "y') —( g'gX')'( +kg"F,')]

+ (gg'X)'((o)' —(lI,)')'(sin28)'.

Since T[II,] vanishes for values of 8 which are
integer multiples of —,m, these values of 8 are the
allowed possible solutions of spontaneous break-
down. For the situation when {cr)'=(ll,)', the tad-

pole loops vanish for all angles 8, and the physi-
cal solution of spontaneous breakdown is not
determined at the one-loop level for this special
choice of vacuum expectation values. On.e must
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go to higher levels of perturbation theory to de-
termine the correct solution of spontaneous sym-
metry breakdown when (o')' = (Il,)'.

%e now turn to the one-loop pseudo-Goldstone-
boson mass correction. The final constraint on
the angle 8 can be determined by computing the
diagonal element mg'» of the mass matrix, Eq.
(30), for the pseudo-Goldstone bosons IT, and II,.
Proceeding as before, we obtain

chosen such that the Lagrangian i.s arbitrarily
close to the limit of satisfying this larger g, $
doublet rotational symmetry. Assuming that the
calculated mass of the pseudo-Goldstone bosons
II, and II, has a continuous dependence on the
parameters of the scalar-field potential, me infer
that this mass can be made arbitrarily small by
letting the Lagrangian approach the global P, $
rotational symmetry.

(48)

which has the same form as our previous mass-
correction matrix element, Eq. (34). Using our
tadpole loop of Eq. (46) and evaluating this ex-
pression at those values of 8 for which the tadpole
loop vanished, we again find that positive real
pseudo-Goldstone-boson masses mill oeeur only
for 8 equal to an even-integer multiple of &m.

These values of 8 are physically equivalent by the
globRl- I"otRtioQRl Rnd chaI'ge- eonjugRtlon syIIlme-
tries. Thus, our one physical solution of spon-
taneous breakdown may be represented by the
8= 0 solution.

For 8 equal to zero, there is a remaining
U(I)~«global symmetry after spontaneous break-
down under which the pseudo-Goldstone bosons
II, and II, can be rotated into each other. As a
consequence of this global U(l) symmetry, these
tmo bosons mill have the same mass correction
in highex orders of perturbation theory. Hence,
their one- loop mass-correction matrix is dia-
gonal, and the matxix element m„-'.„„is the com-
plete one-loop mass correction for II, and II,.

In this solution of spontaneous breakdown the
one-loop mass correction for II, and II, vanishes
when (8) = (II2) . A general underlying reason
for this vanishing of the one-loop pseudo-Gold-
stone-boson mass correction can be found from
symmetry considerations. If an additional global
symmetry which involves two separate rotations
of the g doublet with the ( doublet is im-
posed upon the Lagrangian, ' we find as a
consequence that (a)' must be equal to (II,)'.
Furthermore, with this additional symmetry im-
posed on the Lagrangian, there mill be tmo extra
global-rotational symmetries which are broken
after spontaneous breakdown. The two extra
broken symmetries are associated with the bosons
II, and II,. Thus these two pseudo-Goldstone
bosons have now become Goldstone bosons which
will remain massless to R1,1 orders of perturba-
tion theory. Returning in our original scalar-field
potential, we note that its coefficients can be

As an illustration of the tadpole condition, me in-
vestigated an SU(2)~SU(1) SU(1) gauge model to
determine the allowed number of physically in-
equivalent solutions of spontaneous symmetry
breakdown. First, the global symmetries of the
model were used to reduce the number of solutions
of a general type of spontaneous symmetry break-
down to a continuous infinity of physically in-
equlvRler1t solutions. Then, the first pRI't. Of the
tadpole condition requiring that the perturbative
expansion of the vacuum expectation values be
well behaved mas shown to limit the model to only
tmo of these solutions. The second part of the
tadpole condition requiring that the calculated
pseudo-Goldstone-boson masses be positive real
further restricted the model to a unique physical
solution of spontaneous breakdown. This solution
was found to have a disjoint dependence upon the
parameters of the scalar-field potential. There-
fore, the physical particle content of the solution
mas determined for each of tmo families of po-
tentials. For each family of potentials the tadpole
condition was found to choose the solution of
spontaneous breakdown which 1,eft the maximum
QurrlbeI' of remaining symmetries of the theory,
For one family of pot;entials the remaining sym-
metry was an electromagnet:ic gauge symmetry.
For the other family of potentials, it was a U(1)
global symmetxy. Also, the one-loop mass eor-
xection to the pseudo-Goldstone bosons was found
to vanish for certain values of the paxameters of
the scalar-field potential. A relationship mas then
shown between the vanishing of this mass cor-
rection and the invarianee of the Lagxangian under
a laxger global symmetry group.
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The two additional global symmetry rotations are

gcos8&+ ( sin8&,

$ cos8& —tt sin8&,

P —
P cos8&+i) sin8&,

( —
$ cos8&+if sin8&.

With this symmetry imposed upon the Lagrangian,
the most general renormalizable scalar-field potential
ls


