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The quantum field theory built upon the SU(2) Yang-Mills pseudoparticle solution is studied in an O(5)
covariant formalism. The gauge ghost and small oscillations of the Yang-Mills field problems are analyzed

completely on the O(5) hypersphere, and it is shown that solutions of the various eigenvalue equations may be

easily projected back into Euclidean space. Zero-frequency modes in the small oscillations are found, and their

interpretation is given within the framework of the O(5, 1) conformal group.

I. INTRODUCTION

Much interest has been generated recently by the
existence of an exact solution to the SU(2) Yang-
Mills theory in Euclidean four-space, called the
pseudoparticle solution, found by Belavin,
Polyakov, Schwartz, and Tyupkin. ' It has been
suggested' that this solution be used to dominate
the Euclidean functional integral of the theory.

Jackiw and Rebbi' have shown that the pseudo-
particle solution respects a certain O(5) subgroup
of the O(5, I) conformal group. 't Hooft, ' working
in four-space, and Ja.ckiw and Rebbi, ' using a five-
dimensional hyperspherical formalism developed
by Adler' for QED (quantum electrodynamics) and
extended by these authors to non-Abelian gauge
groups, have been studying the quantum theory
built upon the pseudoparticle solution. In particu-
lar, they have studied the effects of adding fer-
mions to the model.

Furthermore, Jackiw and Rebbi, ' and indepen-
dently Callan, Dashen, and Gross, ' have developed
an interesting description of the Yang-Mills vacu-
um in which the pseudoparticle solution plays a
central role.

In the present paper, we present details of fur-
ther calculations of interest in the quantum theo-
ry, specifically, we determine the lowest-order
gauge ghost and small-oscillations eigenva. lues and

eigenfunctions for the Yang-Mills model. In this
study, we use the O(5) hyperspherical formalism,
which presents several calculational advantages
over the O(4) formalism. Among these is the
ability to obtain exact, analytic solutions to the
differential equations which appear, while main-
taining manifest O(5) invariance of the equations
throughout the calculation. Furthermore, the O(5)
formalism may be expected to play a major part
in the future developments of the theory, when
problems such as regularization and counting of
states are approached: Since all differential oper-
ators in O(5) possess discrete spectra, these prob-
lems may be handled in a very well-defined,

straightforward way. Finally, since the O(5) and

O(4) formalisms are physically equivalent, one
can trivially obtain the solutions to the O(4) equa-
tions by projecting back into O(4) the simple O(5)
solutions.

The organization of the paper is as follows. In
Sec. II we review the O(4) pseudoparticle solution
and obtain the O(4) equations for the gauge ghosts
and small oscillations of the Yang-Mills field. In
Sec. III, we project these equations onto the sur-
face of the O(5) unit hypersphere, and in Sec. IV,
we solve the resulting equations in O(5). We find

zero-frequency solutions of the small-oscillations
problem, which are easily interpreted within the
framework of the O(5, l) conformal group. Finally,
we present the details of our calculations in two
appendixes, which treat, in particular, the group-
theoretical aspects of the problem.

I[A] = —,
'

' d' xtTrF„,(x)F„,(x),

where

r„,( ) = & „4,(. ) —&,A„(- ) + [A„(. ), 4.(-') ]

and the gauge fields A„(x) are anti-Hermitian ma-
trices in the space of generators of the gauge
group O(4): A„(x) = —iA„s(x)Z z, where A„~(x)
= —As"(x), and an explicit representation of the
matrices Z„,

1
Egv = 4. [op) &v]~

Z

(O o,
i =1, 2, 3 (2)

(O -I)

II. O(4) GAUGE THEORY

We study the O(4) gauge group' Yang-Mills theory
in Euclidean four-space [hereafter O(4)] described
by the action

15 470



qUANTUM FIELD THEORY ABOUT A YANG-MILLS. . .

The 5„,so chosen are block-diagonal, correspond-
ing to the two SU(2) s appearing ln the

decomposit-

ionn of O(4) =SU(2) x SU(2).
A very simple solution P (x) to the classical theo-

ry described by the action I has been found by
Belavin, Polyakov, Schwartz, and Tyupkin':

y„(x)=-, "'., '. (2)

Recalling the block-diagonality of Z„„we note that

((p„(x) 0
@„(x)=

~

"
0 P(x)

where y„(x) and &p (x) are 2X2 anti-Hermitian ma-
trices which represent, respectively, in the lan-
guage of Jackiw and Rebbi, ' the "pseudoparticle"
and the *'antipseudoparticle. "

Jackiw and Rebbi" have shown that the solution

g„(x) is invariant' under a certain O(5) subgroup
of the O(5, 1) conformal group of space-time trans-
for'mations. The ten generators of this Q(5) group
are .lf „„and ,' (P„+K„),—-where tf„, generates O(4)
rotations, P generates translations, and K„gen-
erates conformal transformations. " To make this
invariance of P„(x) manifest, these authors find it
convenient to project the O(4) space onto the four-
dirnensional sur'face of the unit hyperspher'e im-
bedded in a five-dimensional Euclidean space
[hereafter O(5)] and to further extend the gauge
group from O(4) to O(5). We shall find it useful to
make these modifications in the theory, since they
render all equations trivial to solve. For the mo-
ment, however, we remain in the O(4) space with

O(4) gauge group for purposes of reviewing the
theory.

In order to use the pseudoparticle solution for
physical application, ' one writes the quantum Yang-
Mills field as

A„(x) = y„(x) + a„(x), (4)

where a„(x) is taken as a small quantum correction
to P„(x). The complete, quantum effective action
[i.e. , including ghost fields and gauge-fixing terms]
is expanded in a power series in a„(x), and one ob-
tains differential equations depending upon P„(x),
which must be satisfied by the propagators of the
theory continued to Euclidean space. One may
solve these equations, in principle. by determining
complete sets of eigenfunctions of the differential
operators involved. The eigenfunctions so obtained
may be thought of as the linearized fields them-
selves, and we shall refer to them as such in the
sequel. %e proceed, therefore, to the derivation
of the equations satisfied by these fields. The ac-
tual determination of the eigenvalues and eigen-
functions will be taken up in Sec. IV, in the con-
text of the O(5} formalism.

A. The ghost equation

The O(4) ghost field is an anti-Hermitian matrix
in the space of generators of the gauge group O(4):

(x) = —ar„„8„„(x),where 8„,(x) = —8„(x). We ob-
tain a differential equation for 8(x) by the usual
Faddee v- Popov prescription.

First, we specify a gauge condition upon the Yang-
Mills fields A.„(x):

D„(g)A„(x)= 1, (5)

where D„(g) is ,the gauge-covariant derivative in
the field of the pseudoparticle solution: D„(P)G
= &„G ~ [@„(x),G] for an arbitrary field G. The
gauge condition (5), though unconventional in ap-
pearance in O(4), will take on a. very simple form
in the O(5) formalism. Next, we perform an in-
finitesimal gauge transformation ee~" & = 1+ 8(x)
upon the fields 4„(x):

A (x)-A„'(x) = 4 (x) + 8„8(x}+[A„(x), 8(x)]. (6)

Demanding that both A„(x) and A„'(x) satisfy Eq (5),
and evaluating the resulting equation for 8(x) at
A (x) =p„(x}, we obtain

Equation (7a) can now be converted to an eigenval-
ue equation by wrltlng

where p. is a dimensionless numerical constant.
The choice of eigenvalue in Eq. (7b) is not arbi-
trary; we shall see in Sec. III that this equation,
when projected into O(5), takes a very simple and
natural form.

8. The sma11-oscillations equation

The field equation for A„(x) which follows from
the action E[A] is

s„r~"(x)+ [A„(x),F~"(x)]= 0. (S)

If Eqs. (4) and (5) and the fact that p„(x) satisfies
5ff5A (x)~„+ =0 are used, one obtains from Eq.
(8) a nonlinear differential equation for a (x) which,
when linearized in a„(x), takes the form

[D).(4)]'~.(x)-D,(4) 1 „, +2[ax(x),fx,(x)]=0,4x a (x)

where f ~,( )isxthe field tensor formed of g„(x).
We convert Eq. (9a) to an eigenvalue equation ex-
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actly as we did in the case of the ghost equation,
obtaining

~ (2)~

t, (1+x r& 1+x

+ 2[a1~"1(x),f „„(x)]= 0. (9b}

As with the ghost equation, Eq. (9b) will acquire
especial simplicity when it is written in the O(5)
formalism.

III. THE PROJECTION INTO O(5)

In this section we shall indicate how the equations
of Sec. II may be written in the O(5)-covariant lan-
guage developed by Adler' for QED and extended by
Jackiw and Rebbi' to non-Abelian gauge groups.
Our notation will be that of the latter authors.

We first review the details of the projection of
the O(4) space onto the four-dimensional surface
of the unit hypersphere imbedded in an O(5) space.
The O(4) coordinates x„(in what follows, Greek
indices p, , v, ~, . . . take the values 1, 2, 3, 4 and
Latin indices a, b, c, . . . take the values 1, 2, 3, 4, 5)
are projected into the O(5) coordinates r„with
x,x, =-1, as follows:

2xg
1+x

(10)
1 —x 2

Y5 2 )1+x-'

where x' = xp„.
In order that one not venture off the surface of the

unit sphere, it is necessary to require that only
angular derivatives appear in the O(5) theory.
These are given by the angular momentum opera-
tors

notation, place a caret above O(5) fields whenever
any confusion with O(4) fields may arise. The O(4)
fields are characterized by a number d (their scale
dimension in mass units) and two sets of indices,
one set for ordinary spin (i.e. , tensor indices) and
another set for internal symmetry (in our case,
gauge group indices). The projection to O(5) of
these fields only involves the scale dimension d
and the tensor indices; internal symmetry indices
are not affected. O(5) fields are chosen to be di-
mensionless, which is achieved by multiplying the
O(4) fields by factors of —,'(x'+1). This factor" has
dimension -1. Also, tensor indices undergo a
certain transformation upon projection into O(5),
which we shall indicate only for the gauge fields.

An O(4) scalar field g(x) of dimension d becomes,
in O(5), the scalar field

j(r) = y(x). (12)

A, (r}=— + ~2 If-1
x„A„(x).

Using Eq. (13), with d=1 for Yang-Mills fields,
one can exhibit the pseudoparticle solution in O(5),

j,(r):

y, (r) =0.
(14)

The transformation law for an O(4) vector field
,4„(x) of dimension d is as follows. The O(5) field
,4 (r) is chosen to satisfy the constraint equation

r,A (r) =0; then, one defines

2 d

.4,(x) = A 2(r) —x,&,(r),

(13)

8 8
L a 8y'

b a

with

8 8
L = —i x —x"8x "8x

V

8
L, —— " "8x„

1 —x' 8

xp

The operators L„, and L,„furnish a differential
realization of the per ot rsa,1'„„and ,' (P„+K„), —-

respectively. It should be noted that the relevance
of the O(5) formalism to the pseudoparticle solu-
tion lies in this fact: It is precisely these opera-
tors that generate symmetries under which P„(x)
is invariant, as pointed out by Jackiw and Rebbi. '

One further defines O(5)-covariant fields in terms
of their O(4) counterparts. We shall, by way of

( )
1 —22Zy2

(1 2)1/2 (15)

Then, using the general form for a gauge trans-
formation U upon a gauge field A„

Following Jackiw and Rebbi, ' we now extend the
gauge group from O(4) to O(5} by adding to the set
of generators the four matrices 5 5=-,'a . This ex-
tension is merely a mathematical device; it allows
one to write the pseudoparticle solution in a form
in which its spatial O(5) symmetry is manifest,
but the physics of the situation remains unchanged.
Indeed, we shall demand that all solutions we ob-
tain using the O(5) gauge group be reducible by a
specific gauge transformation tothe O(4) group
spanned by Z, .

The pseudoparticle solution p, maybe transformed
into a manifestly O(5)-covariant form by a gauge
transformation U(r) as follows. We let
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A, = O' = U 'A, U+ U '$, U, (16)

where l, =-r,iL„, we obtain

j (r) = y.(r) = —IZ„r,. (17)

It is this form P, which will be extensively used
in Sec. IV for solving the ghost and small-oscil-
lations equations in O(5).

We now make use of the methods of this section
to project Eqs. (7b) and (9b) into the O(5) space.
Since d=o for the ghost field, 8& )u(r) =8&u'(x}, so
Eq. (7b) becomes, in O(5),

1[&.(A]' ) 9'")(r) =0, (16a)

where B, (Q) is the gauge-covariant deriva
tive in the field of the pseudoparticle solu-
tion in O(5) space: S, (P) G= I, G+ [P, , G], for
an arbitrary field G. The form of Eq. (18a)
suggests that we can trivially perform the
gauge transformation U given by Eq. (15). Since
5),(P) is the gauge-covariant derivative, one has

S,(P) = U '$, (&$)U. Thus, if 8~»(r) is chosen to
transform in the same way, 8&» = U '8t»(r) U,

obtain the ghost equation for the O(5) gauge group,

g5), (y)l'+) )8~u)(r) =O. (18b)

The field 8 ")(r) is an anti-Hermitian matrix in
the space of generators of the gauge group O(5),
8" (r)= —i „Z'~8(ur)), where 8~~u)(r) = —8~u)(r).
However, the functions 8~uu) (r) are not arbitrary;
the equation relating the O(4)-gauge-group field
8 "' to the O(5)-gauge-group field Pu) which was
used to derive Eq. (18b),

8( u) (r) —U &8(u) (r)-U (19a)

Equations (19b) then imply the restriction

r.8&u)(r) = 0 (20a)

This restriction can also be written in matrix
form,

imposes a restriction upon the components 8~~u) (r).
Explicitly, the connection (19a) becomes, in terms
of 0~~~~,

et'» = d»~
(19b)

Equations (20) will take on particular significance
in Sec. IV when we solve Eq. (18b).

It should be noted that Eq. (16b) can also be de-
rived completely within the O(5) framework. The
O(4) gauge condition Eq. (5), when written in O(5),
takes the very simple form

n. (j)A.(r) =O. (22)

Applying Eq. (16) to the infinitesimal gauge trans-
formation e~~") = 1+ 8(r), and letting A, (r}= g, (r),
we obtain

[~,(j)]'8(r) = O, (23)

It is possible to show that the O(4) and O(5) field
strengths are related as

F „(x)=, (E, ,+x~F~u, ).1+x' (25)

When this equation is used, along with the other
rules for projection into O(5), one finds the O(5)
field equations

II,,~, ,(r) + [r,Au(r) —ru A, (r), g,~,(r)] = 0. (26)

Performing a similar projection upon the small
oscillations Eq. (9b), one finds in O(5)

([5) (p)]'+ p-2] atu) (r) + 2ru[a~") (r),f„,(r) J
= 0, (27a)

where f,„,(r) is the field tensor constructed of

p, (r). Equation (27a) can easily be placed into the
O(5) gauge group by defining the gauge-transformed
a&»(r) =—U 'a~u) (r) U. Then Eq. (27a) is seen to be
gauge invariant and one has

([K),(p) ] + )), -2 ] a,' " ' (r) + 2r, [a~ u ' (r), f „(r)] = 0,

(27b)

where

which, when converted to an eigenvalue equation,
reproduces Eq. (18).

The Yang-Mills field equations and action can be
written in O(5) by defining the field strengths,
which in O(5) form a totally antisymmetric third-
rank tensor F„,. In terms of the gauge fields A„
one has

i„,( )r=II,„A,(r)+r, [A,(r), A, (r))

+(cyclic permutations of a, 5, c). (24)

[r r, 8&»(r).] =O, (20b) f/'„(&) = & ' fgy, (&) &

where the five matrices I'. , introduced in the pa-
per of Jackiw and Rebbi' for the fermion problem,
are given by

(21)

= i(~.z„+~,z,.+ ~,z.,).
The necessity of eventual reduction back to the

O(4) gauge group, as in the ghost case, imposes
restrictions upon a~»(r). In O(5), a~u)(r) is an
anti-Hermitian matrix in the space of generators
of O(5): g~u)(r) = —ja~&") (r)Z„, where aalu)'= —a/~)'.
The condition of reducibility to O(4) is then
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or

y z«~& =P
b bc

[r I, a~~) ] =O.

(28a)

(28b)

Since [BI)'),r I'] =0

B()))(r) '(r. I B()))(r))
Z

e,~,~,r, B~," (r)Z~,
Of course, Eq. (26) may also be obtained directly

in the O(5) formalism from the action

I(~)= „J'~nTr~,.(~)i,.(.) one has

(33a)

(33b)
where the integration is over the surface of the
unit hypersphere in O(5); this action is identical
to the O(4) action Eq. (1).

In turn, Eqs. (27) may be obtained from Eq. (26)

by writing

A, (r) = (f),(r) + a, (r),

and linearizing the resulting equation in a, (r).
What we have succeeded in proving in this section

is the equivalence of the O(4) and O(5) formalisms,
provided the O(4) gauge group is used in both

spaces. If the O(5) gauge group is used, one must

also satisfy Eqs. (20) and (28). All equations in

O(4) directly correspond to equations in O(5), and

the O(5) equations, which will be straightforward
to solve, possess solutions which can be easily
converted back to the O(4) space. We proceed,
therefore, to the solution of Eqs. (18b) and (27b)
subject to constraints (20) and (28).

IV. ANALYSIS OF O(5) EQUATIONS

The eigenvalue equations derived in Sec. III, Eqs.
(18b) and (27b), have an important symmetry which

aids in their solution and, when properly inter-
preted, allows one to see that the underlying gauge
group is really SU(2), as expected. In particular,
this symmetry makes it possible to exhibit the
SU(2)-gauge-group, O(4)-space solutions to the

ghost and small-oscillations equations, which are
the results one actually seeks in this research.

To exhibit this symmetry, we shall, for definite-
ness, study the ghost equation (18b), though these
considerations will hold for the small oscillations
Eq. (27b) as well. The differential operator which

appears in Eq. (18b) can be shown to satisfy"

We need only mention at this point that, by sim-
ilar arguments, one deduces that if a~»(r) is a
solution of Eq. (27b) with eigenvalue g, then a(")(r)
=(r r)aI)')(r) is also a solution with the same
eigenvalue p, . Further,

a,',"'(r) = — e
Q 4 f v4a / '(r).

A. Solutions to the ghost equation

(34)

B',» (r) = i(r. —I.)~g,
" (r)Z.„

B',"( ) = B',"'( )

=(r r)B&~)(r),

(36)

with )), =n(n+ 3) —2, where g," (r) are the vector
harmonics, whose properties have been given by
Adler. ' We briefly discuss these harmonics in

Appendix A.

B. Solutions to the small-oscillations equations

Equation (27b) may be analyzed in a manner very
similar to that given above for Eq. (18b). Indeed,
one may write equations for the functions a(,",'(r):

(L'+ 8 —)). ) a(,",'' —2 (i L~ a,", '+i L„a~",''+i L,~ a,~')

Using Eqs. (18b) and (20), we can write an equa-
tion which must be satisfied by B&~»(r):

(L'+ 2 —)))BI",) (r) —2i [L„B&~)')(r) —L„B,»(r)] = 0,

(35)

where L = —l, l, =—,'L„L„.
The details of the analysis and solution of this

equation may be found in Appendix A. Here, we

merely state the results. One obtains two degen-
erate unnormalized solutions

(r r)[~.(y)1"(r r) = [n.(y)]', (31)

where Eq. (31) should be thought of as an operator
equation. If we multiply Eq. (18b) on the left by
(r. r) and use Eq. (31), we obtain

f[n.(y)]'+)~)(r r)B'~)(r) =O, (32)

which has the obvious meaning that if B()')(r) is a
solution of Eq. (18b) with eigenvalue u. , then so
is B ")(r) = (r 1)B~")(r) Thus, w.e expect to find
pairs of degenerate eigenfunction solutions to (18b).
One can write 6},b»(r) in terms of 0„" (r) as follows.

—2(a'" '+ a'" " '"') = 0 (37a)

which is equivalent to (27b), and

l g" '+y g" ' —y g" '=p
a bc b ac c ab (37b)

which is the gauge condition a, ((I))a" '=0, obtained
from Eq. (22) by the usual gauge transformation U

of Eq. (15). The tensor a,", ' must also satisfy the

constraints imposed by the 0{5)projection method
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—2~,i„,Z„[()i—1)r, + L,J'g„' (39b)

with p, = ii(ii + 3}—2, n = 1, 2, . . . , I= 1, 2, . . . , d(n, 1),
(» a fa

=~~ec~ef ~~a 4~znm y

with )i=n(n+3)+2, n= 23, . . . , m=1, 2, . . . , d(n, 2),
where Y„are scalar harmonics, with magnetic
quantum number m ranging from 1 through
d(n, 0)= (-„', ) (n+I) (n+2) (2ii+3), and Z„'' are sec-
ond-rank tensor harmonics, with m ranging from
1 through d(n, 2}=(-', ) (n —1) (n+4) (2n+3). The
properties of these harmonics are listed in the

Appendixes.

C. Zero-frequency' modes

Equation (37a), subject to constraints (37b) and

(38), may be solved by considering the complete
set of irreducible representations contained in the
decomposition of the reducible representation
appropriate to tensors of the form At, „where
A,', = -A,'„ i.e. , the direct product
(1,0) (1, 1) (n, 0). This procedure is outlined
in Appendix B. Here, we quote the results of that
study. We obtain the following (unnormalized)
eigenfunction solutions of Eqs. (37) and (38):

(»~~l ~~abCde ~bC ~de ~nm~

a&» =~ r&&»
o 1

with p. = n(n + 3) —4, n = 1, 2, . . . , m = 1, 2, . . . , d(n, 0),

a3"'=i(r, + I, ) ei,~,g Z(„1~,'JJ„

= —(I, —);)A,(r) r,4.(r)—. (42a)

The effects of the gauge-group structure may be
included in (42a) by performing, in addition, the
infinitesimal gauge transformation e '@'&"~ = 1
+ C, P, (i), where C, is infinitesimal. Using Eq. (16)
and afterward dropping C„we obtain

6(') 4,(r) = I, 4. (~) —[y.(r), 4,(r)], . (42b)

as the change in Ai(i) due to the gauge transforma-
tion alone. The sum of Eqs. {42a) and {42b) gives,
then, the complete change in A, (r) due to the gen-
erator S, which includes" both space-time and

gauge transformations:

may focus our attention solely upon aI'I'(i").
These zero-frequency modes may be understood

in the following way. The massless Yang-Mills
field theory we are here considering is invariant
under the action of the full O(5, 1) conformal group,
a group consisting of 15 infinitesimal generators,
which may be taken to be ",f„„R„=——,'(K„+P„),
S„-=-,'(K„P„), a-nd D "J.ackiw and Rebbi' have
shown in addition that the pseudoparticle solution
is invariant under the O(5) subgroup of the con-
formal group which is generated by. 'I' „,and 8„.
Thus, there are five remaining generators, S„, D,
which can be formed into a five-vector S, in the
O(5) formalism, "and which commute with the field
equations but do not annihilate (t), (r) The .five vec-
tors 4(~')(r) =O'Pi(r)—= i[ „Sp,], where the commuta-
tor is taken in the field-theoretic sense, must then
be zero-fr equency solutions of the small-oscllla-
tions equation (27b)."

The action" of S, upon an O(5) vector field A, (i'),
ignoring for the moment; gauge group indices, is

5(') A, (r) =- i[S„4,(r)]

If one examines the eigenvalue spectra of the
ghosts and small oscillations, Eqs. (36) and (39),
one readily sees that the only solutions whose
eigenvalues can vanish are the n = 1 solutions of

Eq. (39a). Since the (1, 0) representation of O(5)
has dimension d(1, 0) = 5, there are five pairs of
zero-frequency modes present in the small oscil-
lations. The five spherical harmonics 7', ~,

»~ =1„.. . , 5, maybe chosen to be

y( m)
m&

so that the zero-frequency modes of Eq. (39) are

a((")'(r) =i(Z. —r.i@, +r rP,.),
a(
(' '(r) = (r I')aI '))'{Y).

%e shall prove in Sec. IVD that the degeneracy
produced by the {y I') symmetry corresponds pre-
cisely to the fact that there are two SU(2)'s in the
decomposition of O(4) =SU(2) xSU(2), so that we

(42c)

indicating that the existence of five zero-frequency
modes is consistent with the requirements of con-
formal invariance of the theory.

D. Projection back to SU(2) gauge group

Our final task is to indicate how the results of
this section may be brought back to the physically
interesting O(4) space and SU(2} gauge group.

It is clear that one may bring oneself from the
O(5) to O(4) gauge groups simply by applying the
gauge transf or mation V ' = U, where U is given
by Eq. (15). Then, using the projection methods
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of Sec. III, one can move from the O(5) space back
into O(4) space.

All that remains is to prove that what one obtains
t)y these opel'Rtlolls 18 'two versions of the SU(2)
gRllge theory ill O(4) spRce, olle of wlllcll 18 ex-
panded about the pseudoparticle solution {{)„(x)and
the other of which is expanded about the antipseudo-
particle solution {)t„(x).

The double degeneracy of solutions we have found
in the O(5) theory, which is completely accounted
for by the (I" 'r) symmetry, can be understood as
follows. If two degenerate solutions of one of the
equations of this section (we need not distinguish
here between ghosts and small oscillations, since
the only objects of importance are the Z matrices),
8{")(r)and 8{")(r)= (I"r)8{")(r) are projected
back to the O(4) gauge group by the transformation
U-', one obtains

t){»(r)= Ve{&)(r)v

e{~)(r) = It(l .r) I{-"Ve{»(r)U-'

{I g{tt)(r)

where Q-, 18 the 111R'tl'lx defllled i)y Eq. (21), Rnd ls
explicitly given by

Thus, the combinations -'. (8{")—8{"))
=-,'-(I- n, }8{~)(r)and ,'(8{»+—e«)) ,'(I =++-,)8 {(t))r
are solutions for the upper and lower SU(2) gauge
groups, respectively, and are derived for the
pselldopR1'ticle Rlld RntlpseudopRI'ilcle SU(2) Yang"
Mills theory, r espectively.

The (I"r) symmetry apparent in the O(5)-gauge-
group theory is therefore completely accounted for
by the fact that two SU(2)'s appear in the decompo-
sition of O(4) =SU(2) xSU(2). It is simply a mani-
festation of the mathematical device used to treat
simultaneously the pseudoparticle and antipseudo-
particle; it has no physi. cal content.

The final step in this study is to find the SU(2)-
gauge-group solutions to the O(4)-space equations.
Using the plocedUres outllnecl ill this pRpel", this
last step is trivial to accomplish, and we do not
carry out the details.

V, CONCLUSIONS

%e have presented the details of two calculations
pertaining to the expansion of the quantum Yang-
Mllls theory RboUt the pseuclopartlcle solution;
namely, the solution of the lowest-order gauge
ghost and small-oscillations differential equations.
The method used, the O(5) formalism, ha, s made it
possible to obtRln RQRlytlc solUtlons to tllese

equations, which can then be transformed back
into ordinary Euclidean four-space by a mell-
deflnecl procedure.

It 18 ciear that the O(5) formalism will also allow
for simplifications of further calculations, notably
regularization and counting of states in the theory.
In addition, it should be possible to solve directly
for the ghost propagator using methods similar to
those developed by Jackiw and Rebbi' for the fer-
mion problem.

These further investigations of the theory, how-

ever, we defer to a separate publication.
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APPENDIX A: THE GROUP THEORY OF THE GHOSTS

In this appendix we discuss the details of the so-
lution of Eq. (35) of Sec. III, and some aspects of
the group theory of the solutions. Our treatment
of the latter topic follows closely that given by
Adler' in his study of the free photon propagator
in O(5) QED.

The gl ollp O(5) 18 R Slnlple Lle gl'ollp of I'Rllk 2.
The irreducible representations of O(5) are speci-
fied by two llltegel"8 ' (Qt, {12), with Qt~ Q2. Tile
dimension of the representation (n„a,), denoted
by d({I„n,), is

d( „{1{)I=~t({lt —{I., + l)(n, + {1,+2)(20, + 3)(2u2+ I).
(Al)

Fol exRlllple, tile (n, 0) I'epl'eselltRtlon 18 spanned
by 'tile O(5) spilel'icRl 11RI'IIloIlics I „(r), which Rl6
eigenfunctions of I,' with eigenvalue n(n+ 3),

I,'I „(r)= n(n+ 3)I"„(r),
where the magnetic quantum number m satisfies
I~ I ~ d(n, 0).

To solve Eq. (35), 0116 nllgilt look for Rll possible
antisymmetric, second-rank tensors which a,re
eigenfunctions of I '. These must all be contained
in the set

8{k{)nm(r) +{ttt)y (r) (A

where v{~t) =-,'(5", 5,' —5,5,'), It, I= 1, 2, 3, 4, 5, is a
set of 10 constant tensors, since

&(&r 0)

P 8{kt)nm(r) 8{ttt) nm4(rt)

neo m=& k= & )=1

= -'(5'5' —5'5') 5 (r —r')

(A4)
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where 6s(r —r') is the surface 6 function on the
unit sphere. However, the tensors 8(„")" (r) trans-
form according to the reducible product represen-
tation (1, 1) $(n, o), so we must deduce the irre-
ducible representation content of (1, 1) (2) (n, 0):

(1, 1) 4() (n, 0) = (n+ I,il) P(n, I}g3(n - 1, I) (j}(n,0).

(A5)
We may check the correctness of (A5) by com-

puting the dimension of each side. Using Eq. (Al),
we find

which implies that the ghost eigenvalue equation (35),
when written in terms of C„ takes a particularly
simple form:

)ab, elf 8(ll) (+ 4) 80J) (Al 1)

The eigenvalue of C, in an irreducible representa-
tion (n, s) is well known in group theory:

C, (n, s)=n(n+3)+s(s+1},
so, for the representations listed in Table I, we
have

d[(1, 1)8(n, o)j

= [d(1, 1)j[d(n, 0)]
= 10 && 4 (n + 1)(n+ 2) (2n + 3)

= d(n - 1, 1) + d(n, 1) + d(n —1, 1) + d(n, 0),

C, (n, 0) =n(n+3),

C, (n+ 1, 1)= (n+ 1) (n+ 4) + 2,
C, (n, 1)= n(n+ 3) + 2,
C,(n —1, 1)= (n-1) (n+ 2)+ 2 .

(A121))

(A6)

so that (A5) checks dimensionally.
We exhibit explicitly tensors transforming ac-

cording to the four irreducible representations of
the direct sum Eq. (A5) in Table I. We also speci-
fy there an additional eigenvalue A. , which serves
to split the different representations.

The eigenvalue X is defined as
4 [I L ] y(&)nm ) y.().)nm

(A7)

where the eigenvalue equation (A7) is relevant to
the splitting of irreducible representations since
it is rotationally invariant.

The vector harmonics p," which appear in Table
I span the (n, 1) representation of O(5).' They have
the properties

~.y,'™(~)= o,

iL,„&," (r) =p." (r),

r.'g () ) =n(n+3)y," (r).

We may now stu(iy the ghost equation (35) in terms
of this group-theoretical apparatus. A unique
property of Eq. (35) makes this analysis very
simple. This property is the following. We con-
sider the first Casimir operator of O(5) for the
set of tensors of the type (A3), which is explicitly

~ gab, C(d j. gab, gh ~gh, cd
( ) eg ef

gab, cd 1 gab L Sg&,Cd
ef ~ cd ef 8f

Equations (All) and (A12) now permit us to deduce
the correct p, eigenvalues for these representa-
tions; however, not all these representations are
admissible solutions to the physical problem,
since they do not all satisfy the constraint
)', 8,", = 0. Only the (n, 1) representation in Table I
satisfies this constraint without modification. To
find other solutions of the physical problem, we
must form linear combinations of the remaining
representations in Table I. These combinations
must not mix different representations; thus, since
there is only one (n, 0)-type representation, we
may not mix it with anything else, and, since the
(n, 0) functions in Table I are not orthogonal to r„
we conclude that there can be no (n, 0)-type solu-
tions to the physical problem. This is not true of
the remaining (n, 1)-type solutions since, by shift-
ing the eigenvalue n, we may bring their p, eigen-
values into coincidence, according to Eqs. (All)
and (A12). Indeed, if we form

8nm
( 1) y(n+g) n+ z, m

( 2) y(z-n) n-1, m

= (2n+ 3) [(I, ),) (f„"—-(I, —r, )')f'„„], (A13)

we may easily verify that 6,", is an admissible
solution to the physical problem. This is the first
solution quoted in Eq. (36). The second solution
given in Eq. (36) is just the (n, 1) eigenfunction in

TABLE I. Irreducible representations of the product
(1,1) S (n, o) .

[n, , n „)

where 5,'„=5,' 5„—5d 5„and S,'&' is the spin ma-
trix appropriate to tensors of the type (A3). Equa-
tions (A9) may be rewritten in the form

(A 10}

[n, 0)

(n —1, 1)

[n, 1)

[n+ 1, 1)

[E.—(n + 2)r, j&)", ' —[a-~)
'a~Cd e &LCd'ge

C l, + [n + 1)~, j~g ~
' m —[g—b)

+ (n+ 3)
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Table I which, as we noted above, does not need
to be mixed with anything else to be orthogonal to
+a

APPENDIX B: THE Ci ROUP THEORY OF THE SMALL
OSCILLATION S

In this appendix, we apply the same techniques
that were used to solve the ghost problem in the
previous appendix to analyze the small oscilla-
tions equations (37) and (38}. Thus, we study tensors
of the form A;„with A'„= -A,', . These tensors
are contained in the set

Aa~ j"t) —pa( jh&) ybc bc nm p

of 50 constant tensors, since

tensors, of which Z'„' is the (n, 2) member.
Just as in the ghost case, we can construct the

Casimir operator appropriate to tensors of the

type (Bl). We have

qa, d 1 ~a, bc;g, hi ~g, hi;d, ef
( )1~bc ef & jh jh r

~a, bc;g, hi 1
g abc L Sa, bc;g, hi

jh ag hi jh+ jh

where S,'„'""h' is the spin matrix appropriate to
tensors of the type (Bl). Explicitly,

(Ci)bc, ef Aef

= (L'+ 12)A'„—2(i L„A„+iL~~ Ad, +i L,~ A;, )

n=0 m=1 j=1 A'=1 1=1

= —,
' 6~ 6,'f' 6, (r —r ') . (B2)

d(n, o)

g A~&~'»~ (r)A+ J~~~* (r ~)

—2(6,~A~, —6„A~,}—2(A~, +A,', +A'„), (B6)

for an arbitrary tensor A'„of the proper symme-
try. A glance at the small-oscillations equation (37a.)
reveals that it may be written

The tensor (Bl) transforms according to the re-
ducible product representation (1, 0) I3 (1, 1) Ig (n, 0),
which can be decomposed into a direct sum of ir-
reducible representations as follows:

(1, 0)CE (1, 1)IE (n, 0}

= (n+ 1, 2) + (n, 2) 83 (n —1, 2)

(n+ 2, 1)$2(n+ 1, I)+ 4(n, 1) 2(n —1, 1)

6 (n —2, 1)8 2(n + 1, 0) (n, 0)+ 2 (n —1, 0) .

(»)
The new features that appea. r in the decomposition
(B3) are the (n, 2)-type representations. These
are the second-rank tensor harmonics, which are
symmetric tensors Z„''„(r} satisfying

L'Z„'= n(n+ 3) Z„'

Zaa =0nm

(B4)

We do not explicitly exhibit these harmonics; how-

ever, we note that all completeness relations and
the like satisfied by Z'„' may be deduced in prin-
ciple from the decomposition of (2, 0) I82(n, 0)
= (n+ 1, 1)+(n —1, 1)+(n+ 2, 0) B(n, 0) $(n —2, 0) 8 (n, 2),
being the set of all traceless, symmetric second-rank

(C, )~", ,ya f——(p. +4) a,", ', (B7)

so that the eigenvalues p. may be directly deduced
from those of the Casimir operator, which [cf. Eq.
(A12)] depend only upon which irreducible repre-
sentation is be ing conside red:

C, (n, s) = n(n+ 3)+ s(s+ 1) . (B8}

We may find functions transforming according
to the irreducible representations appearing in the
decomposition (B3) by simultaneously diagonaliz-
ing the two operators I.' and A, where

(AA)„=i L~A'„+s L,„A„+)L„AM . (B9)

We do not exhibit this rather lengthy set of eigen-
functions. Instead, we describe the procedure one

uses to find functions satisfying the small-oscilla-
tions equation (37a) and the constra, ints (37b) and (38).
'The procedure is the same one used in the ghost
case: Form linear combinations of eigenfunctions
which, if only the same irreducible representations
are mixed, are automatically solutions of (B6), and

which are chosen in such a way that they satisfy
(37b) and (38). In this manner, one finds the eigen-
function solutions listed in Eqs. (39).

Finally, by these group-theoretical arguments,
it is clear that there can be no other solutions
satisfying all the necessary conditions.
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