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Quantum-field-theory calculation of the two-dimensional Ising model correlation function
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The equivalence between the two-dimensional Ising model and a free fermion field theory is used to rederive
various results for the two-spin correlation function in the critical region.

I. INTRODUCTION nr/4= p, —p, (2.2)

The utility of the relation between the two-di-
mensional Ising model and a relativistic free Fer-
mi field theory' for the computation of the spin-
spin correlation function, (e„o„,), has been noted
recently by several groups. " In Ref. 2 this tech-
nique was used to evaluate the scaling part of the
correlation function at T = T, as well as leading
corrections in (T —T,)

~

r —r'~.
The expressions for the correlation functions at

T = T, have been known for some time, 4 as has
been the leading term in the (T —T,)

~

r —r'~ ex-
pansion. ' The entire perturbation expansion, as
well as a closed solution for the scaling region
correlation function, was presented in a monu-
mental work of Wu, Mccoy, Tracy, and Barouch'
and earlier references. "'

In this article we obtain a perturbation expansion
for the correlation function for T- T„~r —r'~ -~,
and (T —T,) ~r —r'~ fixed. This result has been ob-
tained previously. ' ' It may be useful to rederive
these results using an approach other than the one
of Refs. 6-8. We stay completely within the
framework of a relativistic field theory. These
techniques may prove to be of use in the study of
other lattice field theories, especially in perform-
ing mass perturbation where infrared difficulties
are severe.

II. MAJORANA FIELD FORMALISM

Bnd retain only leading terms in n~; n~ positive
(negative) corresponds to T& T, (T& T,).

In (1) it was shown that this correlation function
is given by [Ref. 2, Eq. (29)]

(2.3)

In the above c„and c„' are fermion annihilation and
creation operators attached to site y. . The sites x
and v' are along the same row and the expectation
value is in the vacuum state of another set of fer-
mion operators, (, and ('„defined on the recipro-
cal la,t tie e q = 2 p P/L, p = 0, + 1,+ 2, . . . , + L /2a.
The ('s satisfy the usual anticommutation rela-
tions

(2.4)

We still need a relationship between the c s of
(2.3) and the $'s. In order to achieve this we in-
troduce a set of fields defined on a particular row
of the lattice:

1/2 ~ +q 1/2
|t,(r) = — Q ' e(q)((,e""+t',e-""),

2(d

(2.5)
1/2 ~ 1/2

i(~, (r) = —' g "'
~(q)(t,e""—]',e-""};

a a

We wish to review some of the results of Refs. 1
and 2. No details will be presented as this section
is intended to establish notation. Qur interest is
in the two-spin correlation function near the criti-
cal point for a square Ising lattice of L/a points
on a side; a is the lattice spacing. The critical
temperature 1/p, is obtained from the transcen-
dental equation

z(q)=q/~q~ and u is related to m [Eq. (2.2)],

(u, = (q'+ m'-}'~'.

Finally,

~-i fr/4

c„= ~ [&,(r)+ ig, (r)] .

(2.6)

(2.7}

sinh 2p, = 1.
Near this temperature we define

(2.1)
In the thermodynamic limit (L -~) the summation
over q may be replaced by an integration,

15 463



464 M YRON BANDER AND C. ITZ YKSON

~/a ~ + 1/2

P, (r}= ~ dq ' e(q)($,e""+&te ""},
-ft/ a 2(d

(2.8}

(c„e,,) = exp —— dx [tt, (x), (~,(x)]
r

(3.4)

s/a ~ 1/2
iP, (r}=

~2 dq ' e(q)($,e""-$', e ""),
2 7t' q/ ~ 2 cog'

where the $'s satisfy the anticommutation rela, —

tions similar to those of Eq. (2.4) with the Kro-
necker 5 replaced by the Dirac 5 function. As we
shall be interested in large separations we shall
lei a tend to zero whenever no ultraviolet diver-

When dealing with square roots of various quan-
tities, we keep in mind thai the correlation func-
tion is positive, ' and ensure this by taking the ab-
solute va. lue in (3.4).

Rewriting (3.4) as

gence occurs.
The natural connection between the fields defined

on different rows is through the transfer matrix.
The relevant part of this matrix W is

with

A(x, t}= x6(t)H(x- r)8(r'- x)

(3 5)

(3.6)
W= exp(- H),

H=g ~,(t'tt', --').
(2.9)

( (r, t) = e"'tt (r)e "',
we find that in the limit n-0 the tt)'s satisfy

Bg, B(—i '+ ' =nzg, ,
BE Bx

BP B|t)
Z' '+ ' = nZlt

Bf. By

(2.10)

(2.11)

g, and |I), may be viewed as the two components of
a Euclidean Majorana, field of mass P1l.

Introducing the Euclidean time development of the
fields by

suggests the interaction representation for the
coupling of the Majorana field to an external po-
tential A(r, t). Connecting (3.5) to an anticommut-
ing path integral, it becomes apparent that

(cr„o„,) =fdet[S '(m, A)S(m, 0)])'t'. (3.7)

S(ni, 0) is the propagator for the free massive field
while S(m, A) is the same propagator in the pres-
ence of the external potential A." Normally, when

dealing with Dirac fields it is the determinant and
not its squa. re root that would appear in (3.7);
however, we are dea. ling with a Majorana field
with half the degrees of freedom of a Dirac field.
As discussed above, we will take the positive
square root. We shall study some of these pro-
pagators in the next section.

III. CORRELATION FUNCTION —GENERAL FORMULATION

Returning to Eq. (2.3) we observe that

I

(c'„- c„)(c'„,+ c„,) =i exp ——(ct —c„)(c"„,+ c„.)

IV. PROPAGATORS

The form of Eq. (2.11}suggests that we introduce
the complex variable z and its complex conjugate

and that the correlation function is

(3.1)
z = x+it,
z =x —it.

Equation (2.11) takes on the form

(4.1)

(c„c„,) =i
t r '-1

xp ——'"(c'„-c„)(c„'+c„,)+tv g c,'c,
s= r+1

(3.2)

2Btt), = nlrb,

28$, =m
(4.2)

From (2.5) and (2.7) we note that the c's are pro-
portional to un and in the limit x'- r large the
first term in the exponent of (3.2) may be neglec-
ted, while the second one becomes an integral.

As 2ag, = (m —A)p, ,

2a gz = (m —A) P, .
(4.3)

where a = a/az and a = a/az. The interaction with
the external potential implied in (3.5) adds A(x, t)
to the mass terms and the field equations become

we obtain

(3.3) From these we deduce that the propagator
S(m, A;z, z') satisfies
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28 A —m'
S= 5'(z —z')

A —m 2&
(4.4)

A = 0. Writing

with 6'(z —z') = 6(x —x')6(t —t'). We shall now con-
centrate on the propagators for the case A =0 and
for the massless case in the presence of A.

A. A(L, I)=0

We are interested in the propagator for a free
Maj orana field, S(m, 0; z, z'), satisfying (4.4) with

we find that

1 k' —ik' —ms.((. =, , ', '
„. . .)

(4.5)

(4.6)

,(m fz — 'f) f~, (»m f. "f)
'm

S(m, o; z, z') =-
27T

(4.7)

K, and K, are the modified Bessel functions. For
small values of their arguments these functions
have the expansions

I,et us introduce the complex-conjugation operator
K, and as A is real and concentrated on the real
axis, i.e. , EA=AK=A, we note that the matrix

Jf,(x) = —(ln-,'x + y)(l+-,' x' + ~ ~ ~ )+-,'x'+ ~ ~ ~,

(4.8)

E,(x) = —(1 ——,'x' + )+(ln-,'x+ y)(-„-'x+. ~ );
diagonalizes the differential equation (4.11):

(4.12)

y is Euler's constant equal to 0.577. . . .
In the m = 0 limit the propagator becomes

28 A 25+ A 0
(4.13)

/(z z )
1

S(O, O; z z') =-
27t

0

(4.9)

1/(z —z '))

0 29-A

(2 8 + A)S,' = 6'(z —z') . (4.14)

The propagator may be expressed in terms of the
solutions to

Comparing the above with (4.4) we find that

1 1
s —,= 6'(z —z'),

7T z —z

(4.10)

This suggests that

S;(z, )=f,(z)—,f (z')1 1

with f,(z) satisfying

(25+A) f, =o

(4.15)

(4.16)

which are just a restatement of Cauchy's theorem.
or

28 ln f, =+A. (4.17)

B. m =0, A(x, t)WO

The equation for the propagator in this situation
ls

As (4.10) provides us with Green's functions for the
differential operators in the complex plane we ob-
tain

2B A
S(0,A; z, z') = 5'(z —z') .

A 2&

(4.11)
ln f,(z) = + — dx'dt'1, , A(x', i')

27T z —z

With A(x, i) as given in (3.6) we find that

(4.18)
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I

ln f,(z) = v —,In (4.19) tion; returning to the discrete case, it is easy to
see that the correct replacement in this limit is

or lim S(0, 0; z, z') - —i la .
Z~Z

(5.1}

f,(z) = f '(z) = f '(z),

z —r' "'
f( )=, ,

Summarizing, the propagator is

f '(z)f(z')
Z —2

G
S(O, A; z, z') =—

277

(4.20)

G-1

f(z)f '(z')
z z J ln(a„, cr„,) =-, Tr In[s '{0,XA}s(0,0)], {5.2)

In order to make the above more precise we would
have to treat both x and t as discrete. We do not
pursue this further and thus abandon the calcula-
tion of the overall magnitude of the correlation
function, and satisfy ourselves with its functional
dependence. This is analogous to any renormali-
zation calculation in a local field theory, where
the magnitude of the field itself is arbitrary and
fixed only by placing some conditions on the pro-
pagators.

From (3.7) we infer that for /// =0

(4.21)

It will prove useful in the next section to general-
ize the above results to the case where A is multi-
plied by a real constant X. It follows immediately
that

f "{z)f'(z')

(0 Ai
s-'(o, ~A) = s-'(o, o)+ ~~

(A 0/
(5.3)

where for the moment we treat the more general
case discussed at the end of the last section. With-
out any loss of generality we may take x=0 and
'V = P.

Now

G
S(0, XA; z, z') =—

/7

G-1

f (z)f (z')
2 —z

(4.22}

(0 A)
s '(0, xA)s(0, 0) = 1+ xl s(o, o) .

A Of
(5.4)

It would be tempting to differentiate (5.2) with re-
spect to A and thus obtain

V. CORRELATION FUNCTION —CRITICAL TEMPERATURE,
m=0

—ln (a,a,) = —,T r8

(A of
s(0, /A) . (5.5)

Though this situation was discussed in Ref. 2, we
repeat it using the Majorana formalism. As we
shall be discussing singular products, we must at
times remember that in reality we are dealing
with a cutoff field theory, the cutoff provided by
the lattice spacing a. For example, we shall en-
counter the massless propagator at zero separa-

However, the quantities on the right-hand side of
(5.5) are too singular for these manipulations and
thus we have to isolate these singular parts first.
These difficulties occur only in the first few terms
in the expansion of (5.2) in power of X. We deal
with the identity

(0 A

In (a,a,) ——,
' Tr X S(0, 0) + /P —,

' Tr

(. oJ

0 A)
S(0, 0)

(AO

0 A o A
= ——,

' Tr
~

S(0, XA) —S(0, 0)+ Xs(0, 0} S(0, 0) . {5.6)
A oi A 0
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A little manipulation using (4.22) shows that the
right-hand side of (5.6) vanishes as well as does
the term linear in A. on the left-hand side. We are
left with (A = 1)

-(O A)
ln (o,o,) = ——,

' Tr
f

S(0, 0)
(A 0)

Parenthetically, we may remark that this result is
analogous to the observation that in two-dimen-
sional QED only the one-loop contributions to the
propagator are nonvanishing.

Returning to (5.7) and remembering the discus-
sion at the beginning of the last section regarding
the regularization of the free propagator, we ob-
tain

Vl. CORRELATION FUNCTION —PERTURBATION ABOUT
m=o

x/v

(o,cr,) „„constx — F (»~p) .
p

(6.1)

%e shall now derive an expression suitable for a
perturbation expansion in powers and logarithms
of wp.

Combining (3.7) and (5.2) we obtain

1 F (&» p}= -.' Tr in[S-'(»i, A)S(~», O)S-'(O, O)

Noting that

x S(O, A)]. (6.2)

S-'(m, A) =S-'(O, A) S-'(0, 0)+S-'(m, o), (6.3)

Having obtained, in the last section, the correla-
tion function at T = T„we take this into account
and write

P

ln ((zoo'p) —g dx dv )~ ( )~
(5.8) we find" that

with q of order unity and a the lattice constant.
The evaluation of (5.8) is straightforward yielding
(p» g)

ln F= —,
' Tr in[1 —S '(0, 0)[S(0,A) —S(0, 0)]

x S '(0, 0)[S(m, o) —S(0, 0)]j. (6.4)

%'e remind ourselves that

a '~4
(o c ) =const x0 p

p
(5 9)

(2s O

s-'(o, o) =
f

(0 2s)
(6.5)

This result agrees with Ref. 2 and Ref. 6." while S(»i, o) —S(0, 0) may be brought to the form

S(m, 0) —S(0, 0)

=m -1= —G2'

fz —z' ffC, (m fz —z'f) —1/»z f, f)
Zt Z

0

where G has been defined in (4.12).
Let us now evaluate

6 = S '(0, 0)[S(O,A) —S(0, 0)]S '(0, 0) .
With S' defined in (4.15) and (4.20) we have

(28 O ) (2s 0) 2s 0)

(0 2sf (0 2sj O 2a)

A double dispersion relation may be written for the terms occurring in S',

(6.6)

(6.7)

p —z "' z'
8 —z zl

p —z
I ' P

p + dx dx
o P o Z ~ X X ~ X X ~ Z

I z

p —x '~' x'
x p —X

(6.9)
and an analogous expression for the other term. An application of (4.10) to (6.9) yields



j.f 2 &r x/g 2 p-x "' x'28— 2S 2a = —6(f)e(x)e(p x-) p 6(t') e(x') e( p —x') .
2')T z ~ zi 8 p~ g x ~ x x p —x

(6.10)

The singularity at x=x' is to be intepreted as the Cauchy principal value in both x and x'. Returning to
(6.8) and applying (6.10}we find that

G-'Z G = —6(f)e(x)e( p x)6—(f')e(x')e( p- x')

(6.11)

The 6 and e functions imply that the evaluation of (6.2) may be restricted to operators acting on the one-
dimensional interval t = t' = 0, 0 & x, x' & p.

Combining all the above we find" that

x —x x p-x
lnZ=-,'Trln r

i

x'- x"
f
Z, (m

f
x'- x"

f
) 1/m

x p —x'
P

x x p —x x

(6.12)

Again, the above operators are restricted to the real interval (0,p). The lower line in (6.12);s the trans
pose of the upper one and contributes the same value to the trace removing the factor —, in front of (6.12),

ln F(mp) = Trln(1 —o't},

where 0, t are one-dimensional operators

1 1
(p

—x)'~'( x' )'~'

The expansion of the logarithm in (6.13) yields the desired perturbation in powers of m and lnm agreeing
with that of Ref. 6.

We may also note that the calculations for T & T, of the two-point connected correlation functions (i.e. ,
with the subtraction of the square of the magnetization, a quantity vanishing in the scaling region) a.re given
by the same formulas as above, with n~ treated as a negative quantity.

As an example we shall calculate the first term in this expansion:

InF, (mp)= ——,P I
dxdx' ln +y

(} x~xx p —x 2

mp 1 x '~' 1 y
'~'

P dxdg (ln)x —y~+y+ln~mp~).
7T o x-y I —x V

= Ampln~mp(+Bmp. (6.15}
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The evaluation of the integrals is tedious and gives

A = —,', B = —,'(y —3 ln2) . (6.16)

As remarked by the authors of Ref. 6, it is easy
to see that the leading term of order» is
(A»~plnI »Ip)", which implies that

Ii (ni p) = 1+6 m p ln
I
"'

I
p+ Il"' p

+ 0(an' p ln
I

»&
I
p) . (6.17)

Further terms in the series require skill in analy-
tic integration. "

VII. CONC' USION

P
0'

)
7| X~ X

(7.1)

where the inverse is taken in the functional sense

Equation (6.13) provides for a systematic evalua-
tion of the correlation function in the scaling re-
gion. In Ref. 4 a closed expression for this corre-

r
lation function was obtained in terms of Painleve
functions. We have not found a way to do this di-
rectly in the continuous limit. However, sugges-
tive results may be obtained. Note that

over the interval (0, p). Thus, returning to (6.13),
we find that

lnE(»~p) = Trln(o ' t)+ Trlno.

Likewise,

1 a
o ' —&= —— —+»g If,(»gIx ~'I).

~X

(7.2)

(7 3)

Separately the two terms on the right-hand side of
(7.2) are singular and some regularization scheme
has to be introduced to give them individual mean-
ing. If we were to reintroduce a lattice for this
purpose the evaluation of (7.2) would parallel the
discussion of Ref. 6. Furthermore, it seems
reasonable to expect that the methods of this paper
can be extended to higher-order correlation func-
tions, yielding a systematic series expansion.
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