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Equation of motion in classical electrodynamics~

J. C. Herrera
Brookhaven National Laboratory, Upton, New York 11973

(Received 16 June 1976)

It is proposed that an equation derived as a first-order iteration of the Lorentz-Dirac equation be considered
as the exact equation of motion for classical electrodynamics. The added force term which is quadratic in the

applied field is shown to be equivalent to a Poynting-like momentum being transferred to the particle. %'e

apply this equation to the motion of a particle in a uniform magnetic field and also in a uniform electric field.

In both cases the particle trajectory exhibits the essential physical behavior, while the accompanying
electromagnetic radiation is supplied by the interaction with the external field.

I. INTRODUCTION

Classical electrodynamics is the theory of Max-
well's equations for the fields and an equation of
motion for the charged particles. Though the elec-
tromagnetic fields obtainable from the first set of
equations are universally accepted as being cor-
rect, the same cannot be said of the trajectory of
the charged particle when an attempt is made to
include the effect of radiation. The Lorentz-Dirac
equation, which is the most favored choice, is not
only derived on the basis of some unphysical, or
difficult to accept, ideas (advanced fields and mass
renormalization), but once it is assumed as basi-
cally correct, it results in runaway solutions' or,
alternatively, noncausal behavior in the particle
motion. " This unsatisfactory situation is evi-
denced by the continued appearance of new equa-
tions of motion in the literature. Thus, recently
Bonner' has put forward an equation according to
which the radiated energy is supplied by a reduc-
tion in the proper mass of the particle, while Mo
and Papas' have proposed an equation wherein an
external force proportional to the four-accelera-
tion of the particle is included.

In this paper we would like to suggest that the
equation obtained by a first-order iteration of the
Lorentz-Dirac equation be considered as exact.
Though quadratic in the applied fields, this dif-
ferential equation involves only the first derivative
of the particle velocity, and therefore does not
have the undesirable properties of the Lorentz-
Dirac equation. In addition, as we shall show, the
total force acting on the particle is easily inter-
preted physically, since it is the sum of the Lor-
entz force and a, generally smaller, force arising
from the Poynting momentum of the applied field.
Lastly, the solution to this equation in the case of
simple fields exhibits, as one would expect, the
essential physical features of the solution of the
Lorentz-Dirac equation and, interestingly enough,
can be expressed in closed form. We shall not

consider the motion of particles under the action
of gravity or other forces since this would involve
other kinds of radiation.

II. EQUATION OF MOTION

The Lorentz-Dirac equation for a particle of
charge e and rest ma.ss w~ in an electromagnetic
field, expressed by the antisymmetrical tensor

2 8 .. 2 8 vv„8

The units are Gaussian, and we denote differentia-
tion with respect to the particle proper time & by
a dot over a variable. The four-velocity has the
components

v, (&) =(v, =x,(&), icy(&)), (2)

where the Latin subscript k takes on values 1 to 3,
in contrast to the Greek subscripts which assume
values 1 to 4.

If we iterate Eq. (I), assuming that the coeffi-
cients of the second and third terms are small and
that the applied field is constant in space and time,
we find to first order in & that

v„(r) =aF„„v„—&—," F„,v+„y ~+ eF„g„v

in which a=e/cv~ and &=2e4/3c'm~ It is this. equa-
tion of motion which we now propose to be exact
in classical electrodynamics for all values of &

and for an arbitrary applied electromagnetic field,
F„„.We note that Eq. (3) is of the Newtonian type
in which the right-hand side is the total applied
four-force made up of the Lorentz force linear in
the applied field and two other terms quadratic in
this field. As emphasized by Mo and Papas, 4 such
a Newtonian equation of motion has none of the
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problems of the Lorentz-Diracequation. There are
no runaway solutions and no preacceleration.

In order to study in more detail the nature of
this equation, it is desirable to write it explicitly
in terms of the component electric E and magnetic
H fields. To facilitate manipulation, we initially
express the field tensor as

(4)

where e,.» is the total antisymmetric tensor with

Eyog 1, and the repe ated Latin indic es denote a
summation from 1 to 3. It is well to note that for
the Kronecker 6's 6„,.6„„=6,.„, while 6„,.6„,. 46„„.
Equation (3) now takes the form

+ e(E~vg»+ H~v +»+ cye, „EQ. ,) (5a)

y(&)=, vP» —ey (y' —1)(EQ»+ Hg») — " — " +»(2y' —1)&,.» —' EQ, . (5b)

We complete this section by presenting the rate of radiated four-momentum which is consistent with the
equation of motion. Since Maxwell's equations are unchanged, this rate is given in covariant form as'

dP~ 6'w 'U ~v ~
V

g2

According to Eq. (3), this becomes

c
rad

V f/7 6

(6)

or, as a function of the E and H fields,

(
rad

'M f
+ v~ y 1 H;H; + y 2y 1 E~E; H ~+ y 1 E.E. —y E

+
'

~ ~ + ~ ~ ' 2y2

-2y'E.E. ~ + 2 E.H. ~ ' ' —2 —1 E.E

E H-2y(2y2 —l)(E,E,+ H,H, )e», » E,H + 4y ' ' + ' '
e»} E,H

2

~ (4y' —1}(t;„—' EP,
C

III. PHYSICAL INTERPRETATION

The equation of motion as developed in the pre-
ceding section is referred to an arbitrary inertial
system. In order to see the significance of the
various expressions, it is best to consider the
equation with respect to the instantaneous rest
system of the particle, that is, one in which the
particle has v„=O and y=1. Thus, in this proper
frame, Eqs. (5a) and 5(b) are represented by

{9a)

y=O (9b)

The first part of the force term on the right-hand
side of Eq. (9a) is evidently the Lorentz force
dependent only on the electric field in the rest
frame. Instead, the second part of the force term
has been written in such a way that it equals the
product of the Thomson cross section (for a par-
ticle of mass m and charge e) and the equivalent
Poynting momentum per unit area and time of the
applied field in the rest frame. With this interpre-
tation, one might say that the particle acquires
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momentum due to the electric field and the Poyn-
ting momentum which it intercepts in its rest
frame. The equation of motion, Eq. (3), is then
the covariant generalization of Eq. (9).

The rate of radiated four-momentum also takes
on a simple aspect when viewed in the instanta-
neous rest frame, for Eq. (8) becomes

of »)c') givenby

y, '=1/[1 «, '(0)/c'].

For a particle with an initial transverse four-ve-
locity of w(0) and a total initial energy specified
by y(0), Eqs. (12) now yield the solution in closed
form:

and

dP
d7

(1oa)
y'(0) y'(0)

y(7')/y(0) =, — ', —1 exp(-2)).~r) I,

YL — YL

(15a)
1'Rd

=i,cn7 &E' 1+ —IP sin'6
d7 02

4 ~~~
~

2
2

~ 2
~ (10b)

Here the variable 0 is the angle between the di-
rection of the electric and magnetic fields in the
proper frame.

IV. MOTION IN A UNIFORM MAGNETIC FIELD

2
V3

v =(dv —&(dv1 2 1 (11a)

The relativistic motion of a particle in a field
specified by E, =0 and H„= (0, O, H) has been the
subject of some discussion of late, ' ' and, conse-
quently, it is a good testing ground for applying
an equation of motion. Writing ~=eH/)))c and

&1P = A~, we find that Eqs. (5a) and (5b) are then
expressed as

w(r) = w(0) exp[-(i+ x)(ur].y(r)
yo (15b)

These results should be compared with Eq. I(5)
of Ref. (7). It is clear that the present solution
possesses the essential physical properties of the
perturbation solution obtained there for the Lor-
entz-Dirac equation. This is particularly true for
realistic magnetic fields presently achievable,
since the expansion parameter A is very small for
such fields (~ A

~

=10 "H for an electron). How-
ever, we must emphasize that the physical inter-
pretation of the solutions of Eq. (3) is very dif-
ferent from that of the Lorentz-Dirac equation.
This is best illustrated in this instance by consid-
ering the energy balance for the motion in a uni-
form magnetic field. Applying Eq. (8), we find
that the rate of radiated four-momentum is

2
2 '3

2 y (1 lb) rad )

2
V3

V3 = —A. MV3 c2

2
2 V3y= -A.&y y" —1 ——

c2

(11c)

(lid)

The fourth component of this four-vector can now

be integrated from zero proper time to infinite
proper time, that is, over the complete trajectory
of the particle. One thereby arrives at the total
radiated energy:

With the aid of Eqs. (llc) and (11d), it is readily
shown that the three-velocity (u, = v, /y) along the
direction of the magnetic field is a constant, as
expected. Under this condition„ the equations re-
duce to

ZC777

y'(0) y (o)
-yL yL

(17)

R + X(d'M = -2(d10
YL

(12a)

2 2

y+ X~y, L = O.
yL

(12b)

w(T) = v) (T) + iv2 (T) ) (13)

and the constant longitudinal energy yz (in units

In these relations we have introduced the complex
velocity variable

This relationship shows that the radiated energy
consists not only of the total change in energy of
the radiating particle, [y(0) —yz], but also of an
additional energy depending on the magnetic field
strength through the parameter A.. While here the
added energy is contributed by the extra. force
term appearing in Eq. (3), the analogous energy
radiated during the motion according to the Lor-
entz-Dirac equation is due to the unphysical Schott
energy" " term which depends on the particle
acceleration.
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V. MOTION IN A UNIFORM ELECTRIC FIELD

v, = -ev, E'(1+ g),

v2 = —ev~E (1+ i),
(18a)

(18b)

e 2v = —yE —evE&3
rye

3 ) (18c)

Another example in which the radiated energy,
according to the Lorentz-Dirac equation, is drawn
from the Schott energy is that of motion in a uni-
form electric field."'" In contrast, though Eq.
(3) necessarily predicts a. similar motion, the
radiated energy is derived from the applied field.
Since the general solution is in this case also ob-
tainable in closed form, we shall briefly outline
the pertinent steps.

Given the electric field E~= (0, 0, E), we have for
the equation of motion

wherein k=eE/n~c and

g(w)/g(0) =( [1+g(0)] exp(2eE r) g(0)/-

The accompanying rate of momentum-energy
radiated is, according to Eq. (8),

(20)

1 RQ g2

d~
a E'(5 ~ 1) 1 ~ —Z 0) .

0
(21)

For the special initial condition when the motion
is lined up with the electric field, that is, when

f(0) =0, we see from Eqs. (19) and (20) that the
motion is hyperbolic and corresponds to motion
under the Lorentz force alone with no radiation. "
However, consistent with Eq. (3), a radiated mo-
mentum is predicted [Eq. (21) with i = 0], and
the requisite energy is supplied by the applied
external field.

y= v E —zymc' (18d)
VI. DISCUSSION

rf( )rI/2
v, (r) = v, (0)

(0)
(19a)

(19b)

&(&) '"
v, (r) = exp(eE'v)

&0

& [v, (0) cosh(kr)+ cy(0) sinh(kr)], (19c)
—

g(r)
- 1/2

y(&) =
~(0)

&&fy(0) cosh(kr)+ [v,(0)/c] sinh(kr)},

exp(EE T)

{19d)

In writing these relations, we have introduced the
abbreviation K = (v, '+ v, ')/c' corresponding to the
square of the transverse four-velocity. The exact
solution with the proper time 7 as the independent
variable is

A theory of classical electrodynamics based on
Maxwell's equations and the equation of motion
proposed in this paper would be a consistent and

satisfactory one as regards specifying both the
trajectories of particles and the associated elec-
tromagnetic fields. The property that each par-
ticle moves only under the action of the external
field due to the other particles can be viewed as
an asset, since, under these circumstances, the
concept of self-field interaction does not arise.
Whether this equation of motion or, for that
matter, the Lorentz-Dirac equation is in agree-
ment with experiment is an open question. '" In
conclusion, it is of interest to mention that our
interpretation of the added force term in the equa-
tion of motion is reminiscent of the fundamental
idea employed by Weizsacker and Williams'~ in
their method of virtual quanta in which the per-
turbing field is treated as an incident electro-
magnetic radiation.
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