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We give a summary of the results we have obtained in this series on the Bhabha first-order wave equations for
arbitrary spin. On the basis of these and other calculations, we present a set of conclusions about their
physical implications, especially with respect to the possibility of finding and properly interpreting a
mathematically consistent field theory of particles with arbitrary spin.

I. INTRODUCTION

In this paper we close our series' ®on the Bhabha
first-order wave equations for arbitrary spin.
These equations are defined by

B-a+x)y=0, (1.1)

where the a, represent the J,, generators of the
so(5) algebra’

a,=d,=~Jg,, Jw=-i[au,a,], Js=0, (1.2)
[Jab’ ch]= i(éac‘]bd+ 6deat: - Gchad - 6aclch) ’ (l ‘3)
Jop=—dps (a,0)=1,2,3,4,5. (1.4)

For a particular equation (1.1), the matrices a,
are taken to be a particular representation (8, S)
of the so(5) algebra. For example, the (3, 3) rep-
resentation yields the Dirac equation and the
(1,0) and (1,1) representations yield the Duffin-
Kemmer-Petiau (DKP) spin-0 and spin-1 equa-
tions. Also, we define “Bhabha equations” to
mean the @, are of necessity so(5) matrices,
not any first-order wave-equations matrices,

a definition that is sometimes used.

In Sec. II we will present a summary of our
own results on the Bhabha first-order wave
equations.!”™ From this and the information
available from other calculations®'? we will
present in Sec. III a set of physical and mathe-
matical conclusions about the Bhabha first-order
wave equations. We have special interest in
what can be said about the possibility of finding
a high-spin field theory which is both mathe-
matically consistent and has an acceptable phys-
ical interpretation.

Detailed lists of pertinent references can be
found in this paper and in our previous works.'?
In Appendix A we list as a convenience the errata
we have noted in our already published articles.
Also see Appendix B on mass and spin.

Finally, as this paper concludes our series,
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elsewhere!* we will take the opportunity to de-
scribe from published works, letters, and per-
sonal reminiscences, the historical development

of these first-order wave equations. This story
involves many of the great physicists of the first
quarter-century of quantum mechanics, and in-
deed the credit for these equations does not be-
long only to Bhabha.

II. SUMMARY

Beginning with the mass and spin composition,?
the general so(5) algebra of Egs. (1.2)-(1.4) has
(for a particular algebra labeled by 8) irreducible
representations (irrep’s) (8,S), with (0, 3)
=S=§ of dimensions

dy(8,5)= L(25+3)(25+1)
x[(8+1)(8+2)=S(S+1)]. (2.1)

8 is the maximum spin of a particular representa-
tion. As discussed in paper II, simply because an
irrep of so(nz) can be broken up into certain sums
of irrep’s of so(n —1), one knows that the so(5)
irrep’s have dimensions which are given by sums
of quantities 2(2S+1), where the (2S+1) are spin-S
degrees of freedom and the “2” is for particle-
antiparticle. That is, the system is ingeneral multi-
mass, multispin. Inparticular, analgebra contains

(0,2)=S=s, (2.2)
1,3)=s=s. (2.3)

spin states S,
mass states +x/S,

The above two statements are related since, for
example, the S, generator

S,=d,= —i[au az] (2.4)

can be rotated into the o, generator. One can in-
vestigate the mass and spin composition of a par-
ticular algebra indetail, as was done in Ref. 2, with
important additions in the present Appendix B.

A particular example, which we studied in papers
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V and VI, is the 16-dimensional (3, 3) representa-
tion. It is composed of a ground state of mass
2x/3 with spin % and two sets of excited states of
mass 2x with spin 3 and spin 3. [Note in particu-
lar that a single-mass y/8 single-spin-s ground
state will be contained in the representation (8,5 ).]

For integer spin, there are built-in subsidiary
components due to the fact that the o, (like S,
have zero eigenvalues. Thus the matrices do not
have inverses and these components must always
be handled specially. As shown in paper II, the
decoupling of these components can be accom-
plished by a generalization of the Peirce decom-
position which Sakata and Taketani'®"'7 (ST) first
performed for the special DKP case (which is the
8 =1 Bhabha algebra).

The decomposition can be done with a set of
projection operators.? First, there are projection
operators onto the physical “particle components,”
9'P)(8), whose dimensions are sums of quantities
2(2S+1). Similarly, there are projection oper-
ators, 9‘8’(8), onto the “subsidiary components”
(built-in, not external). 9‘?)(8) can also be de-
composed into projection operators onto the indi-
vidual mass states, 9%(8). With the above oper-
ators one can then derive a set of decoupling equa-
tions to obtain only the particle components, or
even only the components of a particular mass
state. The procedure for this last type of calcula-
tion was set up in paper II, but actually it would
physically correspond to a Foldy-Wouthuysen (FW)
transformation which we discussed in a more
standard vein in papers V and VI.

Coming to the space-time symmetries, in paper
I we described the C, P, and T operators. They
are linear products of the operators 7,(a,) which
were defined functionally in the Appendix of paper
I and are such that

CPT =1, n,n,1,et® . (2.5)

Specifically, the 1, are polynomials of order 28
in the a,. Therefore, one can always take a rep-
resentation where a particular a,, and hence
n,(a,), is diagonal. Let ;£=4. Then 7, is, up to
a phase, represented by a “+1” in the space

9%(8) spanned by the ground state of mass x/$,

a “~1” in the space 9} _,(8) spanned by the first
excited state of mass x/(8 — 1), oscillating back
and forth. Since 7, is the parity or adjoint oper-
ator these properties mean two things.

First, note that the space 93(8) of a particle of
mass x/8$ is an odd-integer number of mass blocks
|eigenvalue blocks of & u] from the space 9;(8) of its
antiparticle states. Therefore, antifermions have
opposite intrinsic parity to fermions.*”5 Further,
because of the added block of zero eigenvalues for

bosons there is an added change of sign so that
antibosons have the same intrinsic parity as
bosons.*®

Secondly, since the metric operator M is the
product of the adjoint operator 1, with the fourth
component of the current operator, a,,

1”-‘3774(14 ’ (2.6)

M has the sign property of 7, with the one addition-
al change of sign in going from particles to anti-
particles because of the sign change in a,. This

is the indefinite metric which has occupied so much
of our discussion and which only is positive-defi-
nite for the Dirac case whenn,=2q,. Evenfor spin-

0 and spin-1 DKP there is a negative norm for
antiparticles. There one can use the Pauli-Weiss-
kopf ansatz of saying one has a charge probability
density, but for S>1 the norms and parities alter-
nate with each excited state, so such an ansatz
does not follow.

The Poincaré generators were given in paper III
and shown to satisfy the associated Lie algebra, but
their properties brought in both the ST decomposi-
tion and the indefinite metric. For half-integer-
spin fields, the Bhabha Poincaré generators satisfy
the Lie algebra, “algebraically.” However, for
integer-spin fields, this is not the case. When the
integer-spin Poincaré generators are inserted in
the Lie algebra there are terms left over. How-
ever, it could be shown from the “consequent equa-
tions” that these terms are zero if they operate on
the fields. That is, the necessity of having oper-
ators on the fields is due to the subsidiary com-
ponents. When one performs an ST decomposition
on the integer-spin Poincaré generators, the par-
ticle-components Poincaré generators satisfy the
Lie algebra “algebraically.”

Further, because of the indefinite metric, the
Poincaré generators § are not “Hermitian,” but
rather “metric-Hermitian” (pseudo-Hermitian),

M9 =(MS) . 2.7

Equation (2.7) holds as is for half-integer-spin
fields, but again only as an operator equation on
the fields for integer spin. However, as before,
when one does an ST decomposition, the particle
components of the integer-spin Poincaré genera-
tors are metric-Hermitian “algebraically.”

In paper IV (Ref. 4) we demonstrated the impor-
tant result that the Bhabha fields are causal with
minimal electromagnetic coupling, both in the ¢-
number theory and in the g-number theory. Again,
a special handling of the integer-spin subsidiary
components is necessary. In the c-number theory
this is because the integer-spin algebra matrices
are singular. Thus, instead of taking the deter-
minant of the wave equation to investigate causal-
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ity one has to utilize the KG (Klein-Gordon) divi-
sors, (which were constructed for arbitrary spin).

The g-number theory is interesting for two rea-
sons. First, the quantization fas to be with an
indefinite metric. Without the indefinite metric the
theory would have been noncausal. The extra mi-
nus signs of the indefinite metric have to be part
of the theory. Secondly, the subsidiary components
again necessitate a special handling. This is be-
cause when one calculates the Heisenberg fields,
they each contain a new piece which apparently
introduces noncausality into the theory. However,
a detailed investigation showed! that the new pieces
are multiplied by the projection operators onto the
subsidiary components, 9,(8). This means that the
commutation relations among the physical particle
components are preserved, so those fields are
causal. (This has long been known for the special
DKP case.)

In coming to the FW transformation, there was
a question of principle involved. Since the Bhabha
system is an indefinite-metric system, an FW
transformation does not have to exist a priori.°
This led to a separate series of four papers
(FW-L,° FW-II,'° FW-0I," and FW-IV'?) on the
general problem of FW transformations in an in-
definite-metric space.

Applied to the Bhabha system in paper V,° those
papers in Refs. 9-12 implied that an FW transfor-
mation U™ does exist, since the eigenvalues of the
system are real and the norms of the eigenvectors
are not zero.®> The FW transformation U™ is
metric-unitary (pseudounitary),

wHYmMvut=Mm, (2.8)

and is composed of columns of the metric-ortho-
normal eigenvectors 7,

Ut =[fy, fiy, ..o, 1,), (2.9)
satisfying

T Mity=Mpd,y (2.10)

We then pointed out,’ on the basis of FW-III,'!
what the exact, FW-transformed Poincaré gen-
erators were. As to the transformation itself, we
gave as a first calculation a method for generating
the FW transformation as a power-series expan-
sion in ¢~!. The power-series expansion offers
physical insight since it is the easiest representa-
tion with which to discuss relativistic corrections
to the nonrelativistic forms, such as the Zitter-
bewegung. In particular, we demonstrated that
the FW transformation we explicitly wrote in a
power series up to order (¢™')® transformed the
original Bhabha Poincaré generators into the
exact, FW Poincaré generators to that same
order. A detailed discussion was included on the

SUMMARY... 447

importance of the indefinite metric in correctly
generating this series-expansion FW transforma-
tion. Also, we derived the functional relationship
of the particle-components, integer-spin trans-
formations to the half-integer-spin transforma-
tions,

Finally, in paper VI, we derived the exact,
closed-form FW transformation and the solutions
to the wave equation. A separate method was nec-
essary to find the exact FW transformation since,
contrary to the simple Dirac and DKP cases, the
power-series expansion in (¢™!') does not lend
itself to summation. This is because the Bhabha
algebra $ has 28 terms before it starts to close on
itself. For 8§>1, the closure properties rapidly
become horrendous.

The method of obtaining the exact FW trans-
formation was discussed in detail in FW-III and
FW-IV. It is based on the observation that the
solutions to the wave equation are the Lorentz-
transformed rest-state eigenvectors. Thus even
in an indefinite-metric space the FW transforma-
tion is related to the Lorentz transformation L(6)
by (p12)

U '(B)=GL(6)=Ge %% | (2.11)

Using a theorem of FW-II, the normalization G
was found,® and a matrix theorem discussed in
FW-IV allowed L(6) to be written as a finite poly-
nomial in J,,; of order 28, instead of an infinite
power series. With the proper identification of
the 6 in terms of energy, momentum, and mass
quantities, this gives the exact, closed-form FW
transformation for arbitrary-spin Bhabha fields.
Therefore, one also has the form of the eigen-
vectors,

Special case FW examples were discussed at
length in papers V and VI. In VI we also used the
eigenvectors to study expectation values of physi-
cal currents. These are of interest since other
work™!€2% has shown that there can be a dif-
ference in the expectation values of currents in
symmetry-breaking situations when calculated
with first-order fields instead of with second-
order fields.

Throughout the entire series, we have given
numerous physical examples, and described in
detail our results as specifically applied to special
representations (Dirac, DKP, $=3, etc.).

III. CONCLUSIONS

Many of the troubles afflicting certain high-spin
field theories do not occur in the Bhabha case.
For example, the theory is casual with minimal
electromagnetic coupling. Furthermore, since
one can make physical and mathematical argu-
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ments in favor of first-order field theories, a
unification of high-spin fields in a theory such as
Bhabha theory would be esthetically pleasing.
(Again, we are not declaring that Bhabha theory
is the answer but rather that the study we have
undertaken can provide insight as to what direc-
tion the answer might lie.)

But a theory like Bhabha’s demands its dues.
The first price one must pay is that the theory is
multimass and multispin. However, as such spec-
troscopical concepts are part of the entire frame-
work of modern particle physics this represents no
conceptual impediment, at least to the present
authors. (Indeed, Hietarinta has developed a
supersymmetry formalism using the Bhabha first-
order fields.®)

The second and ultimately real price is the in-
definite metric. Except for problems of re-
normalization, the whole question of this type of
theory lies in understanding what physical mean-
ing, if any, there is to an indefinite metric.

Through the indefinite metric, the adjacent mass
states of, in general, different norm are coupled.
(In fact, this coupling of adjacent mass states
physically exists in the only positive-normed
space, the Dirac case. There it is the Zitler-
bewegung and, of course, in quantum field theory,
the virtual coupling to antiparticles.) One could
hope to take the negative-normed states out of the
theory,® but as the FW discussion indicates (see
below) this does not appear to be possible.

Given the indefinite metric, then, what are the
interpretations that it and the other work in high-
spin field theories could be suggesting?

The first possibility is simply that there does
not exist a mathematically and physically con-
sistent high-spin field theory because nature does
not have (massive, quantum) fundamental high-
spin fields. The problems with high-spin field
theories would then be a mathematical indication
of this fact. Physically one can observe that
there are no stable high-spin fields (ignoring the
hypothetical graviton®+3%), Perhaps, then, the
only stable and free high-spin fields® allowable
in nature are either composite fields (such as
nuclei) or massless, fundamental fields (also
see the next paragraph). Fundamental high-spin
fields with an indefinite metric might be allowed
in confined situations, if one could show proba-
bility problems are avoided.

To mention other possibilities, one perhaps
should consider the space-time structure,3* and/or
include gravity directly,®® and/or consider the
gauge field forms. Any of the above programs
might be necessary in finding a consistent high-
spin field theory, be it Bhabha’s or another set of
fields.

—
[

Along this line, an interesting proposal has been
raised in the context of supergravity theories. In
a recently discussed version,®®"®° a massless,
Rarita-Schwinger spin- field is coupled to a mass-
less, spin-2 graviton. Because the fields are
massless many of the ad hoc causality problems
are absent. (A Higgs mechanism could be called
upon to yield the physical mass.) However, par-
tially because the theory is no longer in flat space-
time, proving that there are no causality problems
in the fully interacting theory will be difficult to
do.*>*! Whether or not this particular idea even-
tually works, it does emphasize the obvious (but
usually ignored) fact that a totally consistent
theory would have to include gravity. But if the
origin of all the problems involving high-spin field
theories stems from the necessity for a “funda-
mental” theory to involve the most fundamental
physical interaction, gravity, then why does the
Dirac equation work?

The last, and admittedly most radical, possibility
suggested by our results is that the indefinite
metric is physically meaningful and must be
understood via a new interpretive link. One would
want to change the normal probability interpreta-
tion in such a way as to understand the indefinite
metric yet keep standard quantum mechanics*?™%
in the regimes where it has proved so successful.

The FW transformation, which decouples the
mass states, goes to the heart of the situation.

By decoupling the mass states, the Poincaré
generators, and in particular the Hamiltonian,
become infinite polynomials. Thus when minimal
electromagnetic coupling is introduced in this
representation, the theory becomes noncausal.
This is a manifestation, in our language, of
Wightman’s observation®® that for a wide class

of high-spin theories, the theory is either non-
causal, or if it is causal, it can be shown to be
unstable; this related to ghost states.*® (Note that
the same comments hold for Dirac, but there one
does not need the FW representation in a ¢g-number
theory because the metric is positive-definite.)

The choices appear to be either that (i) in some
way the correct physics lies along other lines
(such as there are no fundamental high-spin fields
or the space-time structure must be modified), or
(ii) the indefinite metric is physical and nec-
essitates an as-yet-not-obtained generalization
of quantum mechanics for spin # 3 fields; per-
haps even both.*” The above is for speculation.
The hard content is that for the Bhabha system
to be causal with minimal electromagnetic cou-
pling, the indefinite metric is necessary in this
multimass, multispin field theory.

Ultimately we return to the nagging question:
Why is there such a beautiful first-order field
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theory for a massive interacting particle of spin
é, the Dirac theory in QED, and none for high
spin?
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APPENDIX A: CORRECTIONS TO THE SERIES

Paper 1.} In Eq. (3.7) insert a “+i” inside the
square brackets.

In Eqgs. (5.1) and (5.2) change the normalization
in front of the spinors from (4mE)™* to (4mE)=*/2,

Paper 117 In Table I, inthe (8,8)=(Z, %
representation, in the row labeled by (I, ,, 1)
=($, %) and column labeled by df, there is a
“14.” Change that to “12.”

Paper III.3 In Eq. (5.31), the term [ a,, a;]
should be [a,, a;].

In Ref. 36, the citation to Ref. 24 should be to
Ref. 35.

Paper IV.* In the first paragraph and in Ref. 9,
Lubarniski was spelled with the accent over the “a”
instead of the “n” .

In Eq. (A1), the “0=" on the left can be deleted.

On p. 929, first paragraph, lines 3 and 4, re-
spectively, the factors (28) and (28+ 1) should
read (28 — 1) and (28), respectively.

Paper V.° In the first paragraph and in Ref. 10,
Lubanski was spelled with the accent over the “a”
instead of the “n”.

In Ref. 110, the second page number should be
447(E), not 451.

Paper FW-II.2 On the right-hand side of Eq.
(2.19) an 7, should be inserted after the “—¢.”
(Note that the minus sign there is due to the
opposite convention for 6 used in that paper.)

APPENDIX B: PHYSICAL SPIN
AND MASS DECOMPOSITION

In Tables I and II of Ref. 2 the table headings
should start with “The Lorentz and so(3) spin

i

decomposition. . .,” instead of “ The mass and

spin decomposition...,” and the “Mass” columns
should be deleted (with appropriate changes else-
where). The physical spin and mass decomposi-
tion is given below and comes about because of the
following:

Although the so(3) decomposition listed in those
tables is correct, the so(3) spin representations
so obtained are not in general the physical spin-o
representations.*® This is because, as R. K.
Loide has kindly emphasized to us,*® @, mixes the Lo-
rentz representations, so that the Lorentz rep-
resentations, and hence the so(3) representations
obtained from them, contain different mass states.
This yields so(3) representations which are mixed-
mass and not the physically interesting single-
mass so(3) representations usually associated
with particle spin. Thus, although the number
and type of so(3) spin representations obtained
from so(5) via the Lorentz representations are
the same number and type as the physical spin-o
representations obtained from so(5) directly, it is
the 0 representations which always can be assoc-
iated with the mass.

To obtain the 0 and mass decomposition, one
can use the results of Lubarski,*® who showed that
the number of physical spin-o representations for
a particle of mass ty/j, in the so(5) representa-
tion (8,5), is (j=0)

Z(8,5,+j,0)=min{[ ;8- j-|5=0))+1], [0 ~e+1],
[S-—e+1],8-0+1,8-5+1}, (B1)

where the value of (Bl) is taken to be zero if the
formula yields a negative number, [x] denotes the
greatest integer < x, and

€=5(8~j—-S+0)=[3(8=j=S+0)]. (B2)

One also can use as a check the formula®® for the
multiplicity of the eigenvalues +j of o, in the rep-
resentation (8,S), which is

38 —j+1)(8—j+2)(25+1), S<j<8§

M3, S, )= (8 =S+1)(8 =S +2)(25+1)+(8*=5%),

0sj<s, (B3)

Tables I and II below give the so(5) decomposi-
tion into physical spin-o and mass states.

Note, however, that all of our general calcula-
tions and conclusions remain the same. Further,
all of the detailed special-case calculations of
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TABLE I. The mass and physical spin decomposition
of half-integer-spin Bhabha fields up to maximum spin
%. The notation is as before, and we include both the
particle and antiparticle states in the counting.

Number of physical spin
representations with dimensions
@2 o+1) for o=

(s, S) dg i 4 0 1 Mass
1.4 4 2 2x
&9 20 2 2x/3
2 2 2x
¢ 3 16 2 2x/3
2 2 2%
C 56 2 2x/5
2 2 2x/3
2 2 2 2x
53 64 2 2x/5
('z-a'z_ X
2 2 2 2x/3
2 4 2 2x
&3 40 2 2x/5
2 2 2x/3
2 2 2 2
33 120 2 2x/1
2 2 2x/5
2 2 2 2x/3
2 2 2 2 2x
3 3) 160 2 2%/
2 2 2 2x/5
2 2 4 2 2x/3
2 4 4 2 2
G35 140 2 21/
2 2 2 2x/5
2 4 2 2 2x/3
2 4 4 2 2y
5 80 2 2x/7
2 2 2x/5
2 2 2 2x/3
2 2 2 2 2x

this series remain the same. Technically this
latter observation is because the mass-spin-state
counting from the original Table I would differ from
that of the present Table Ionly in the (£,%)and (£,%)
representations, which were not discussed as
special cases. Thus, for example, the (3,3) de-
composition of @, in Eq. (II4.15) is correct. Also,
realizing that our original integer-spin discussion
was from the viewpoint of mixing subsidiary com-
ponents and physical components, the integer-spin
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TABLE II. The mass and physical spin decomposition
of integer spin Bhabha fields up to maximum spin 3. The
notation is as before, and for mass # x/0 =« subsidiary
components we include both the particle and antiparticle
states in the counting.

Number of physical spin
representations with dimensions
(20+ 1) for o=
(8,S) ds 0 1 2 3 Mass

(0,0) 1 1
(1,1) 10 2

r
no

(1,0)

(2,2 35

A o]
g <

(2,1) 35

no
LSVER AR SV I WV
>
~.
3]

(2,0) 14

0

[N

= o=
)

(3,3) 84

- N

- DN N Do
>
~
(8]

(3,2) 105

oo
1O W D D = D D
>
~
w

- N o
<

(3,1) 81

[S-]

e i SV SV VI W
[S<I iVl
]
~< >~
~
w

o
8

(3,0) 30 2 x/3

[8V]

- DN DD
no
>

special cases discussed had the correct mass-
spin counting.

We now give as Tables I and II, the so(5) de-
composition into physical spin-0 and mass states.
(Loide*? also calculated Table II.) Note that the
tables have takenfor the mass states y/j both the par-
ticle and antiparticle components. Thus, to get
just the particle-components mass =+ /j states,
divide the o representation numbers by 2, except
for j=0. The patterns of representation numbers
in the tables can be considered “tableaus,” of the
type Lubafiski®® touched upon.
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