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+e give a closed-form, finite-polynomial expression for the Foldy-%outhuysen (F%) transformation U ' for
arbitrary-spin Bhabha fields. Our result is obtained by appropriately normalizing the Lorentz transformation
operator, expressing this transformation as a finite polynomial, and then properly interpreting the energy, mass,
and especially momentum operators involved. For integer-spin fields the built-in subsidiary components are
projected out. An algorithm is given which allows one to easily write the expression for the F%
transformation of any Bhabha field. %'e comment on the properties of U ', %e note that the columns of the
F%' transformation are the metric-orthonormal eigenvectors of the Hamiltonian, uf, , and provide the relation
of the u„ to the solutions of the wave equation, Qt, . Special cases up to 3 = 3 are listed and investigated. Some
physical and mathematical applications of our method and results are also given.

I. INTRODUCTION

In our series' ' on the 9habha first-order wave
equations, we discussed in the previous paper'
how to generate the power-series expansion in e '

of the Foldy-Wouthuysen (FW) transformation for
arbitrary-spin Bhabha fields. The power-series
expansion is more useful for understanding the
physics of the situation, but contrary to the Dirac
and Duffin-Kemmer-Petiau (DKP) special ca,ses,
in general it is not easy to sum the series into a
closed form. This is because with each additional
maximum spin allowed in particular so(5) rep-
resentations of the Bhabha n, matrices, the algebra
is increasingly complicated.

However, it is possible to obtain a general closed
form for the FW transformation by another tech-
nique. This technique was developed in a separate
series of four papers' ' on Foldy-Wouthuysen
transformations in an indefinite-metric space.
When applied to the particular Bhabha system it
yields the exact, closed-form, Bhabha FW trans-

formationn.

The idea is that since the columns of the FW
transformation U ' can be shown' to be the metric-
or'thonol mal e1genvectors of the Hamllton1an 2E&

one canconstruct the implicitmatrix U '. One uses
theorems' to renormalize the implicit Lorentz
transforma. tion matrix' f. (8) to metric-unitary form
and relates the parameters involved in the Lorentz
transformation to the physical energies, momenta,
and masses. " Finally, by using an elegant ma-
trix theorem, the Lorentz transformation matrix
can be expressed in closed form. '

In Sec. II we will apply the above technique to the

Bhabha system. Our application will be somewhat
physically motivated. A more mathematical dis-
cussion, which includes the Bhabha system as a
special case, is given in Refs. 8 and 9. There the
precise relationship between Lorentz and FW
transformations of first-order wave equations in
indefinite-metric spaces is developed. (Note that
the use of the Lorentz transformation is a general-
ization of the observation'" '-' that the original
Dirac FW transformation can be related to the
I orentz transformation of the rest-system eigen-
vectors. )

In Sec. III we will discuss a number of special
cases, up to 8=3. These will include demonstra-
tions that for 8 =& and 1, our results reduce to the
exact Dirac and [Sakata-Taketani (ST) version]
DKP forms. Also, we will show that the columns
of the exact FW transformation for the special
high-spin case (S, S) = (—,', —;)are indeed the eigen-
vectors of the Hamiltonian, and that the exact re-
sult agrees with the power-series result calcula-
ted to order c ' in Sec. VI of V' for this special
case.

In Sec. IV we will describe some applications of
this work. We begin by studying Hepner's"*" use
of the rotation which connects the so(5) generators
J„and 4, IIe used the special-case algebras for
these rotations up to 8= —', to obtain the unnormal-
ized, Lorentz-transformed, rest-frame eigen-
vectors. We shall elucidate the connection to our
general FW transformations. We will also discuss
use of the eigenvectors for calculating kinematic
factors in current divergence matrix elements and
how our method is an implicit solution to the in-
version of the Vandermonde matrix made up of the



R. A. KRAJCIK AND MICHAEL MARTIN NIETO

matrix elements of the Lorentz transformation.
The last article" of our series on the Bhabha

first-order wave equations will present a summary
of and set of conclusions on the results we ha, ve
obt, alned.

II. EXACT, CLOSED FORM FOR U '

A. Derivation of U '

As we showed in paper FW-I, ' the PjV trans-
formation U which will diagonalize the Hamilto-
nian JI in the Bhabha indefinite-metric space is
given by

(V-')'MIJ '=M (2 Io)

or equivalently that (2.5) satisfy the metric-nor-
malization (2.3), implies a precise determination
for the normalization G. Using Theorem IV of
FW-II (Ref. 7) this constant was found' to be

tailed ca.leulations that, with an understanding of
8, Eq. (2.9) is correct for a wide class of first-
order wave equations (which include Bhabha equa-
tions).

To begin, the necessity that U ' be metric-uni-
tary (pseudounitary),

U '=[u„u„.. . , u, ], (2.1) = (cosh8) 'i' (2.11)
(2.2)

(2.3)

The u„are the j independent eigenvectors of H,
normed to +1, where

(2.4)

u, (p) =GL(8)u, (0). (2.5)

G is a normalization to be given below and L(8) is
the I orentz transformation operator

L(8) = s-""~, (2.6)

where for the Bhabha system, J,~ is the Lorentz
generator

7„=—i[ „oo], (2. '7)

and 8, is the boost velocity (or rapidity operator)

tanh8=P, y=-(I —P') 'i'=cosh8 . (2.6)

[For ease of calculation, in Eq. (2.8) and below we
have taken p parallel to the z axis so that 8~-Hz
and O',„-Z„.] There is an arbitrary minus sign in
the exponential (2.6) which has been chosen so as
to transform particle states to positive momenta
vs antipa. rticle states (see below).

Comparing (2.5) with (2.1) one would suspect that
one can write the F%' operator U ' as

V-' = GL (8). (2.9)

In paper FW-IV (Ref. 9) we showed in a set of de-

BiI taken diagonal, is the metric operator. Also,
the proper interpreta. tion of the above operators for
integer-spin fields is that they are the particle
components, with the built-in subsidia. ry compo-
nents having been removed by the generalized Sa-
kata-Taketani decompositions described in paper
II.

Since the rest-state eigenvectors 6,(0) can be
written as just a "1"in the kth rom of the eigen-
vectors, then a particular eigenveetor can be writ-
ten in an arbitrary frame as

Specifically, (2.11) hoMs for the Bhabha case.
The meaning of 8 was a.iso derived in FW-III.'

Since 0 is the rapidity operator, we must have that

P=tanh '8

—(p/g (2.12)

)
+Pa +At

(I lt E (P 2+~ 2)l/2 &
(2.14)

where E~, n~„, and p~ are the energy, rest mass,
and momenta, of the kth eigenvector. The added
point is that since an antiparticle solution is the
charge-conjugated (or "negative energy") solution
of the particle solution, Eq. (2.14) should imply the

plus sign in a column k which represents a. particle
solut, ion and a minus sign in a column k which rep-
resents an antiparticle solution. Then all the ei-
genvectors so formed would represent +P eigen-
vectors and hence would be metric-orthonormal
and constitute the proper columns of U '.

In fa.ct, the detailed examination of FW-III (Ref.
8) shows that the above arguments are in the end
the correct mathematical results.

The rema, ining problem is to write down the
closed form for the Lorentz-transformation oper-
ator L(8). The method for doing this was de-
scribed in FW-IV (Ref. 9) and uses the following
theorem of matrix algebra. "

Theorem. Consider a matrix 8 with n distinct
eigenvalues X, . Then there also exist n idempo-
tents e, ,

(2.15)

where (P and 8 are momentum and energy quanti-
ties. Since in a particula. r k column U is propor-
tional to the Lorentz-transformed rest-state eigen-
vector, /~(8),

(2.13)

one could suspect tha, t in the kth column of
y
"'L (8), (P), becomes
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8 -x,I
ej=gy

n=l ~j —~n
(2.16)

Further, B can be represented by

n

@=ax,. e„., (2.17)

which in turn implies that

f(B)= g f(x,.)e, (2.18)

The above theorem is, in essence, the matrix
form of the Lagrange interpolation formula with
zero remainder term that was used by Madhavarao
et al." to obtain the formulas for the g, , as dis-

cussed in the Appendix of paper I.' Equation (2.16)

Each idempotent is the space of eigenvectors for a
particular distinct eigenvalue, and they all are de-
fined by and have the properties

is also the algebraic form of the 8&(s), the
idempotents of the matrix n4. But since J43 like
o,„ is a generator of so(5), they have the same
eigenspectra, and so the idempotents of J„are
algebraically the same. Thus, the idempotents
of J43 for a particular algebra 8 are given by

e,.(S)= ". , -S&j &S.J4, —kI
(j —k) i'

kwj

(2.19)

But now we just have to combine (2.6), (2.18), and
(2.19) to obtain

L(O, S) =e ' ~~

8 3
J4, —kf

j —k
(2.20)

and that is it.
A little algebraic manipulation puts (2.20) into the

specific half - integer and integer -spin forms

L(8, S=n+ ~) = Z coshj8 — —". sinhj8
j=1/2— 0=1/2

owj

J„-'—k2
(2.21)

2 ~ J 2 Q2l(9, 8= )=]$(l —J '/k'I „." i bj8 ~ —." shj6
k=1 j=l

(2.22)

Useful formulas for cosh( j8) and sinh( j8) are
given in Eqs. (3.7) and (3.8) of FW-IV. ' (2.27)

B. Algorithm for U '

We summarize the derivation of U ' in the fol-
lowing algorithm which gives a concise descrip-
tion of how to write the FW transformation for
arbitrary-spin Bhabha fields.

The exact, closed-form FW transformation for
arbitra. ry half-integer-spin and (particle-compo-
nents) integer-spin Bhabha fields are

U '(S=n+-,') =y "'L(8, S=n+-,'), (2.23)

U '(S =n) =[1-8,(s)]y ' 'L(9, S=n)[1-8,(s)].

(2.24)

L(8, S) is given by Eqs. (2.21) or (2.22) for half-
integer- and integer-spin fields, respectively.
One also has

Finally, in each and every kth column of U '('g/'W,

'W/Ã) make the replacements

I=Ix/(&.)„I, (2.28a)

+P for particle column,

-p for antiparticle column,

nz 2)ii 2

(2.28b)

(2.28c)

where m„ is the rest mass of the state represented
by the kth eigenvector. In the representation we
have been using, the particle columns are the first
half of the columns in U ', and the antiparticle
columns are the second half.

An alternative method to (2.28b) for dealing with

Q is to take every algebraic factor involving Q to
the right of all matrix operators, and then to make
the substitution

tanh8 =P, cosh8 =y,

y=(1 P') "-
In U '(P, y) make the substitutions

(2.25)

(2.26)
(2.28b')

The 8,'(S) are the projection operators defined in
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Eq. (II 3.9c}. Thus» ill our representation» t~ is the
diagonal "Pauli-like" operator with +1 in the upper
left corner block and —1 in the lower right corner
block. [For integer spin, r, can be considered
surrounded by 1-8,(S).] As we observed in FW-
TV,

' this exactly corresponds to the extra y, in the
Dirac FW transformation with respect to the Dirac
Lorentz transformation.

(p) &»i»:
&

(&»»z- st ) (2.30)

where 8 and (P represent the ground state 4-mo-
menta,

viz the eigenvectors of the Hamiltonian matrix.
W'hen specified to the Bhabha system, the results
of FW-III (Ref. 8) allows one to write

C. Comments on the properties of U ' h» —(s»2 + ~2/82)1/2 (2.31)

(s ~ n+){)/=0 (2.29)

Before proceeding to specific examples, there
are a number of comments we wish to make on the
properties of V '.

The first is that care must be taken with the
normalizations +1 and M» for the eigenvectors u~

and 6~ which are the starting point for constructing
U '. For example, the normalization +1 is usually
desired to yield a probabilistic interpretation for
quantum mechanics, and generalized to + I for an
indefinite-metric space. This means that one has
already taken the measure into account. Here the
metric operator M does not have eigenvalues of
+1, so that one is implying a different measure
for different mass states if one demands the + 4

normalization. For example, in the special Dirac
case, one should use the u~ eigenvectors, which
correspond to the usual probabilistic normalization
of the Dirae y matrix representation. Using the u~

eigenvectors would mean a different measure. %e
mention this to make sure that the reader is con-
scious of the delicate bookkeeping which is neces-
sary to keep track of the measure. It is the u~ no-
tation which corresponds to the more usual quan-
tum- mechanical normalization. Ultimately that is
why the columns of U ' are composed of the j ei-
genvectors u~. In principle, one could choose for
one's theory the u~, but the physical meaning would
be different.

The next observation is that the F% transforma-
tion U ' which we have constructed is indeed the
transformation which diagonalizes the original
Bhabha Poincare generators of Eqs. (III 1.5)-
(III 1.9) and (Ill 5.28)-(III5.31) to the Bhabha FW-
Poincare generators we gave in Eqs. (V4.2)-(V4.6}
and (V4.44)-(V4.47). The change of forms be-
tween original Poincare generators and FW-Poin-
care generators was derived in FW-III (Ref. 8) for
a large class of first-order wave equations. W'hen

those general results are restricted to the Bhabha
system, our above statement ensues.

Further, the connection between Lorentz trans-
formation and FW transformation allows one to
construct the solutions g to the wave equation

and c„converts the exponential into the appropriate
excited state

(2.32}

The relationship of g~ to u~ gives another way to
look at the crucial signs in the relationship between
the Lorentz and FW transformations. U ', com-
posed of the u„, is a matrix which diagonalizes
another matrix, 8, via

(2.33)

That is, the matrix elements of U ' and hence the
objects inside can be considered "numbers. " How-
eve r, the Lore ntz trans formation ac ts on the solu-
tions to the wave equation (2.30), including the ex-
ponential in the wave equation. Hence, in that
sense the objects in the matrix elements of the
Lorentz transformation are "operators. " It is this
difference in going between the FW and Lorentz
transformations which, when studied in detail,
mathematically accounts for the replacements
(2.28), which we have argued for on the basis
of Lorentz-transformed particle and antiparticle
state properties.

Finally, a comment is in order on what one' s
chances would be of explicitly summing the ex-
panded infinite series for L, (8) if one did know of
our theorem. At least in principle, this would be
simpler than trying to sum the infinite power
series in c ' generated in paper V (Ref. 5) be-
cause here we have each term of the sum trivially
generated by expanding the exponential. But just
as in V, summing the generated series for spe-
cific increasing 8 rapidly becomes horrendous.
For 8 = 2 and 8 = 1 (Dirac and DKP) the series can
be summed to yield answers equivalent to these
known special cases (see Sec. III). Already for 8
= &, where the characteristic equation has four
terms, summing the series becomes monumental.
W'e have done it for 8=&, but the method involves
summing staggered binomial expansions. For 8
& & obtaining special eases by explicitly summing
becomes a semi-infinite process.



III. SPECIAL CASES

The special cases of Eqs. (2.21) and (2.22} up to 6 = 3 are

1.(8, —,) = cosh — —2 J„sinh—9 . 8
(3.1)

I (8, 1)= (1 -J„')-J„sinh 8 +J„'cosh 8, (3.2)

L(8 —,) = —cosh — ——, cosh—9 1 39
8 2 2

1+ 8' --' sinh —+—' sinh — + 7 ' —
& cosh — +& cosh — + J' ' sinh — —3 sinh—43 4 2 12 2 43 2

2 2 " 2 '
2

(3.3)

&(8, 2) = (I --', J„'+-,' J'„')+ J'„[--', sinh 8+-,' sinh 28]+ J„'[-,'cosh 8 - —,', cosh 28]

+ J~3 [3 stnh 8 —
6 slnh 28] +»J~~ [- 3 cosh 8 + ~~ cosh 28]» (3.4)

8 „ 38 , 58 „ . 8 , 38 , . 58L(8 —,') = —"cosh — ——"cosh —+—' cosh — + (J ) ——"sinh —+—' sinh ———' sinh-p 128 128 2 43 ; 32 2 192 2 320 2

8 „ 39 . 58 , „ . 8 „ . 39 , , 59+(J )' ——"cosh —+—". cosh —— cosh — +(J' )' —"sinh — ——"sinh —+—' sinh—43 24 16 48 2 43 12 2 24 2 24 2

9 38 , 59 , , 8 , . 38 , . 58
+ (J )' ~

—' cosh — ——,
' cosh —+—' cosh — + (J )' --' sinh —+—' sinh ———' sinh43 12

. 2
24 43 6 2 12 2 60

(3.6)

+ (J'„)[-—,
' sinh 8+—,', sinh(28) ——,', sinh(38)] + (J„)'[-,' cosh 8 ——,', cosh(28) +,—', cosh(38)]

+ (J„)'[—,", sinh 8 ——,
' sinh(28) +—,', sinh(38)]+ (J'„)'[-—,", cosh 8+-,'. sinh(28) ——,', cosh(38)]

+ (J„)'[-—,,', sinh8+ —,'„sinh(28) ——„', sinh(38)]+ (J„)'[—,', cosh8 ——„', cosh(28}++, , cosh(38)]. (3.6)

As an illustrative exercise, the reader can con-
vince himself that Eqs. (3.1)-(3.6) are indeed the
correct, exact expressions. Take Eq. (1.6), giving
L(8) as e' ~~4~', and expand the exponential as a,

power series in J„. [Expand up to J43'~ for the
easiest verification. If one expands higher, then
the characteristic equation (I 2.31) for 743 shouM
be used to reduce the maximum power in J', to be
28.] Then compare this result with Eqs. (3.1)-(3.6)
with the sinh and cosh terms expanded as power
series in 9. The numerical coefficients for any
product 8"J'43, w ~ 28, will be the same.

Now we illustrate the cases 8= 2, 1, and 2 in
detail.

First. , take 8=2, the Dirac case. Using the rep-

res entation

, 01 0 0

0 0 1 0

LO 0 0 —1
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as

If -I ~"1/2 I (8
&

)

0 0 0 0
v2

0 0 0 0 0

1 0

0
-&

0
V7+%

0 0 0 0 0

00 '00
M2

(3.8)

If one uses the interpretation of Eqs. (2.28), espe-
cially t) = —P in columns 3 and 4, then Eq. (3.8) is
exactly the FW transformation U ' defined by Eq.
(V3.9), taking care not to confuse that Dirac no-
tation with the present Bhabha notation.

Now consider the DKP (S, S) =(1,0) spin-0 case.
Taking the representation of the n = p„matrices

1 0 0 0 0

0 0 0 0 0

Q4=p4= 0 0 0 0 0

0000 0

0 0 0 0 —1

one ob ta1.ns

(~+5)I) 0 iv 2 $ 0 (-m+5)I)

0 2% 0 0

(3.10)

(-% +5)I) 0 —i2'g 0

2 (5II~)"'
(-w+ 5g) (tv+ 5|I)

(3.11)

Again this is exactly the FW transformation for the
ST version of DKP given in Eq. (V3.40). In other
words, with the algorithm of Sec. IIB, the columns
of (3.11) are the two ST eigenvectors given in Eqs.
(5.1) a, nd (5.4) of Ref. 18, or the properly normal-
ized" version of Eqs. (I5.1) and (I5.2).

Note that we did not use the original Kemmer"
representation of the P matrices, but rather one

Surrounding the above with the projection operators
onto the particle components [I -80(1)t removes the
middle three columns and rows, and yields

similar to the p representation of Dirac for the y
matrices. " The reason is that, as observed in

paper I, ' the Kemmer representation mixes up
particle and antiparticle states, whereas we want
a representation which keeps them separate, as
comes out in the ST two-component form.

Finally we consider the (S,S) = (2, ~) high-spin
case. This representation is 16-dimensional. If
we consider only momenta, in one (z) direction, the
cy3 and a4 matrices can conveniently be written in
the (8 x 8)SI(2 x 2) form given in Eqs. (V6.2) and

(V6.1), which again is analogous to the Dirac p
matrices. [I(2 x 2) is a two-dimensional unit ma-
trix which multiplies every element of an (8 x 8)
matrix or eigenvector. ) Using this representation
for the n, matrices of Sec. IIB yields
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~+% ''
U-1

c 2% 2%'

('w+%) 0 —M3(m gg) 0

2%
i2$~

(~+ 3ri.')

(3~~- 3}1) 0 —M3(W %)

—M3 (~ - 3}l)

—i2 JR&

(~+%)

3~+%
2

23M

(3m 3}f)

i29
(~+3}t)

—i29ltg
(~+K)

vS(~ 3if) 0 —iv'3 0 (&&+ 3}t)

Ef(2 x 2). (3.12)

The interpretation of Eq. (2.28) applied to (3.12) is

(p2+4}(2)1/2 cols
'W(8 x 8) =

(p'+ 4lt2)'/2, cols. 2-7 (3.13)

cols. 1, 8
5R(8 x 8) =

2X, cols. 2-7
(3.14)

g(8x 8) =
+P, cols. 1-4

—p, cols. 5-8.
(3.15)

The reader can now explicitly verify for himself that with the above interpretation the 16 columns of Eq.
(3.12) are the metric-orthonormalized eigenvectors u, .

u,-Mu, . =M, ,6,, , (3.16)

Hu, . =E,. u, , (3.17)

+ (p2+ 4 ~2)1/2

+ (P'+ 4X')" ',

(p2+ 4~2)1/2

(p2+ 4~2)l/2

] «j

3«j«8
9 «j «14

15 «j «16

(3.18)
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of the Ha, mi. ltonian

H = o. , '(iP o., + )()

3X
2 lP 0

v3

0 2g 0

0 0 0

0 0

VYp o 2X o o 2p o

0 jp ef (2 && 2). (3.19)
0 -ip 0 0 2X 0 0

0 0 —i2p 0 0 —2X 0 —imp
0 0 0 —ip 0

0 0 0 0 0 0
v3

Further, if each element of (3.12) is expanded as a.

power series inc ' (substitute p-pc, )(-)tc'), then

(3.12) agrees element by element with the FW
transformation generated as a power series to or-
der (c ')' for this special case in Eq. (V6.5).

IV. APPLKATIONS

A. Hepner's transformation

Some of our specific results are related to the
work of Hepner, ""who used the canonical trans-
formation [rotation in the (x„x,) plane] between
the Bhabha so(5) generators Z„and Z„ to help ob-
tain the unnormalized Lorentz transformed eigen-
vectors for particular so(5) algebras. The con-
nection between his work and our general method
provides insight into the Bhabha formalism.

Using our notation, Hepner observed that the
canonical transformation S [not to be confused with
either the spin S or the power series F% coeffi-
cients S, of V (Ref. 5)], which relates Z„ to 8',„ is
given by

.It „=SJ'~, S

n~ —kI
2 ~ j —k

(4.5)

Looking at the free wave equation

(-wo. , +fgn, +)()g = 0, (4.6)

Hepner observed that if one took the unrenormal-
ized Lorentz transformation of the rest. state,

has been emphasized for Dirac part:icles, ""and
recently observed experimentally.

"
The matrix theorem of Eqs. (2.15)-(2.18) com-

bined with the definition of t) given in Eqs. (13.47)
immediately tells one that

q„S= integer

iq„S= half-integer.

Equa. tion (4.4) could be solved for S by using the
polynomical expressions given in Eqs. (13.47). The
more direct method, though, is to use the ma. trix
theorem of Eqs. (2.15)-(2.18} to give S in closed
form,

=SG~S ', (4.1a)

(4.1b)

(- 5iltt. + x)0(o) = o,

4 = Tt(o), 4(o) = T '0,

(4.7)

Hepner showed that the solution to (4.1) is defined
by

Eq. (4.7) could be multiplied on the left-hand side
by T ' and combined with (4.6) and (4.8) to yield

S 4, e (2ffi eg) (4.2) O=[-%Tv,T ' —iso. , +Wn, ]p.

+1, S = integer

S = half-integer. (4.3)

Equation (4.3) is another manifestation of the fact
that rotations of 2v produce a (—1}multiplicative
factor for spinor wave functions, something which

The quantity in the square brackets in Eq. (4.9)
was taken as an operator equation to be solved for
T.

Up to this point, . Hepner's work was general.
Here he specia, lized, in particular, to the S = 2 case
of T, which we will now connect to our 1,(8, —', ). Be-
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cause of the characteristic equation of J„for 8
= &, Hepner knew that he could write T in the form

T =1+A J43+BJ43 +CJ43 7 (4.10)

where A, B, and C were to be determined. Putting
(4.10) into (4.9), multiplying on the left-hand side
by S and on the right-hand side by S ', and using
(4.1) eliminates the J43' and J„' terms and gives

However, for ha. lf-integer spin, Eq. (4.16) implies
that (4.13) is a direct-product algebra, and thus
the g„and the g are all independent. This means
that all the Eqs. (4.18) and (4.19) must equal zero,
and hence that Eqs. (4.18) and (4.19) separately
form two sets of three equations in three unknowns:

A, B, and C. The two solutions are identical, and
specifically are

0=Fe, + — —n, +i —J„F,
F = 1-Aa, +Be.,' —Cn, '.

(4.11)

(4.12)

2 Q ~-13%
3 W+% 5% (4.20a)

(4.20b)

o.„=q,(, = (,t)„(no sum) (4.13)

Then Hepner used the fact" that for a particular
so(5) algebra the ct, can be written as the product

3 'N+% 5% (4.20c)

where by virtue of the algebra of the t)„(upper sign
for half-integer spin)

g, g, +g,g„=0, p. v

'g 0 + Q„'g =0,

one has

(4.14)

(4.15)

=0. (4.16)

+ (a,(,+5,(,],+c2(,(,) (4.17)

With (4.13), one can write Eqs. (4.11) a.nd (4.12) as

0= (a,],+b, &,&, +c,&,(,)t),

Putting Eqs. (4.20) into (4.10) and comparing to
(3.3) with 8 defined by Eqs. (2.25)-(2.27), one finds

f (8, ~2)=
w+% "'

2% T, (4.21)

which completes the connection between the two
methods.

Clearly, because of its generality and ease of
calculation, our method is preferable for obtaining
general FW transformations and normalized eigen-
vectors. However, Hepner's method deserves
credit for being the first to try this mode of attack,
and the canonical transformation S does yield in-
sight into the algebra.

a, = 1 —— 1+4 B ———A —4C,

5, =B+——(A+ ~ C),1y

c = — B ———(A———C)
qg 1$

2%

a = —~C 1+————B,2=--
% 2

(4.18a)

(4.18b)

(4.18c)

(4.19a)

B. Current divergence matrix elements

In using the DKP spin-0 formalism to describe
the symmetry-breaking meson-decay processes

K( p, m) -v(p', p)lv, (4.22)

it was found"" that the matrix elements of the di-
vergence of the meson currents P, and q~ = (P,
-p„') had "kinematic" zeros in momentum transfer
squared (t) at the unphysical point t„

5, = —A ——,'C ——(1 —g B),

c,=-—(A--,'C)-~(1 ',B)--
(4.19b)

(4.19c)

t= —q q=t, —2(EE' —p p'),

t, =-(m+ y.)'.

In particular, "
(4.23)

(4.24)

1/2 1/2
DKP(+/ pp)pgDKP(t)xgDKP(t)QDKP(E

pm�)(m+)VDKP(t)+DKP

(4.25)

g DKP(t) g DKP(t) g DKP (t) (4.26)

(4.27)
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where the g's are form factors. (Such zeros have
also been derived in a current-algebra formal-
ism. ")

The above observation generated a fair amount of
controversy, ""essentially on the questions of
how many independent form factors are involved
and what their smoothness properties are. (We
refer the reader to Ref. 34 for a detailed mathe-
matical discussion of all the "possible" currents. )

We wish to emphasize here that complicated "kine-
matic" factors are a characteristic feature of cur-
rent divergence matrix elements taken with the
eigenvectors of Bhabha first-order wave equa-
tions; thi. s includes the Dirac equation, although
it is not generally realized.

The analogous Dirac nonconserved currents are
to be found in the description of the semileptonic
decays of baryons,

o'zg' v(f)+ g s(tW+P.

1 E'+ ir,
'/' 'E+m

= —(rn —I/, )= '-"[4
I

g, (f)Z,

(4.32)

g o'(f) = 3g v(t) —
~ g ~(t)
2t

(4.33)

Z = [E'(2 E —M) + I/, (2 M —E)]

x p p' E'(2E+m)+ p(2rn+E)
(E'+ p)(E+ m) E'(2 E —rr&) + ic(2nr —E)

normalized eigenvectors. Taking, in particular,
the expectation value between i =1 states [first
column of Eq. (3.12)], one finds (p ~~p' ~~z)

B(p, m) -B'( p', I/)I v. (4.28) (4.34)

s, y, g', (f)+ ' g', (I)Pl+ P.

+ I/ &/2E+m&/2
= —(m —p)

4rr/ i/, 2 ic 2' g D(t)ZD

(4.29)

g, (t) = g (t) —,—,g ~(t), (4.30)

However, there one standardly does not," calculate
the current divergence matrix elements, and so it
is perhaps of some surprise to note that

The coefficients 3 and 2 in the Bhabha 8 = ~ scalar
form factor (4.33) are due to the metric. If we had
used the Bhabha notation for the Dirac case, there
would have been a factor of 2 inside g, (f).

For even higher spin, one can at will get an in-
creasingly complicated structure. One can con-
sider matrix elements between different high-spin
eigenvectors which are coupled by the current
[such as the first. and third columns of the (8 &c 8)
matrix in Eq. (3.12)]. Next, other independent
form factors from other independent currents can
be used. Finally, one can consider form factors
from axial-vector currents, obtained mathemati-
cally by simply multiplying the analogous vector
currents by the pseudoscalar operator of Eq.
I2.18),

(E'+ I)(Ecm+) (4.31) (4.35)

In the above equations we have gone to the y matrix
formulation in Sakurai's notation, '" used a frame
where p

~

~p'
~
~z, and taken the expectation value be-

tween spin-up states (the "1"eigenvector). The
reader will note the similarity to the DKP result,
although now, with higher spin, the answer for Z
is more complicated. (Of course for nonconserved
spin-& currents there are, in principle, three in-
dependent form factors, '" more still for higher
spin. " For comparison, we will use only the n~
and q, current form factors in this discussion. )

For higher spin, where the eigenvectors can be
obtained from the columns of the FW transforma-
tion, the situation becomes more complicated, but
remains similar. Consider the (S, S)=(—„-,) re-
presentation where, with the interpretation of
(2.28), the columns of (3.12) are the metric. -ortho-

The point we are making is that "kinematic" fac-
tors in current divergence matrix elements occur
naturally in the Bhabha first-order formalism.
The surprise at their discovery in the DKP spin-0
case was due to two causes: (i) Current. divergence
matrix elements had only been widely studied in
the spin-0 case; (ii) those studies had only been
done in the second-order Klein-Gordon formalism,
where the kinematic zero does not occur (assuming
always that the form factors involved are smooth).

C. Vandermonde matrix

An interesting sidelight of the matrix method de-
scribed in Sec. II is that its use gives us the solu-
tion for the inverse of a particular Vandermonde
matrix. A Vandermonde matrix is one of the
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form"'"

X
n-1

1

X n- I
2

n
1

n-2
2

~ ~ x I
1

~ x 2

and is usually discussed as a determinant. "
Refering back to Sec. II, one knows immediately

from the characteristic equation for the J„,that
one can write

(4.36)
e '~~3 = QA„(8)J'„", (4.37)

n-1
Xn-1

n-1
n

xn-l

n
n

~ ~ ~ Xn, 1

~ ~ a x ]
n

with the A„(8) to be determined. Choosing a rep-
resentation where J43 is diagonal allows one to
write the diagonal matrix elements of (4.37) in the
Vandermonde form

e-88

e -8($ -1)

[&-e(n}]

e+8(& -1)

82$-1 1 A, (8)

(6 —1)'~ (6 —1)" ' (6 —1) 1 A, ,(8)

(-6+1)" (- 3+1)" ' ~ (- 6+1) 1

( g)28 ( g)28-1 . . . ( 6)

A, (8)

A, (8)

=—V [A („}]. (4.38)

One can now see that our general solution, Eq.
(2.20), in effect gives the inverse Vandermonde
matrix V ', to that in (4.38). The coefficients
multiplying the J','", ' in Eq. (2.20) are the A(„}, and
these are expressed as numerical factors multi-
plying the e '"'. Thus, these numerical factors
are the matrix elements of the inverse Vander-
monde matrix V ' of

[A ] V-1 [e 8(n}] (4.39)

Observe that because of their product form, the
matrix elements of V ' are related to the symme-

tric functions discussed in the Appendix of paper
IV.' This property is known.
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