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%e use a powerful matrix theorem to derive the closed-form, finite-polynomial, matrix expression of a

Lorentz transformation for the class of relativistic, first-order wave equations described in the preceding paper.

Combined with the method developed there, this theorem allo~s the exact, closed-form expression to be given

for a Foldy-%outhuysen (F%') transformation. An algorithm is given which is a simple procedural prescription

for writing down the F% transformation results we have obtained. %e discuss two specific examples which

illustrate our results, and in a third example show that our method must be modified if the wave equation is

not first-order in space.

I. INTRODUCTION

In the preceding article (FW-III) of this series, ' '
we developed a, method' by which a Foldy-Wouthuy-
sen (FW) transformation could be derived from a
Lorentz transformation. In this paper, we use an

elegant matrix theorem to determine an exact,
closed-form expression for the Lorentz trans-
formation. Together with our method, ' this then

yields an exact, closed-form expression for the
FW transformation of any relativistic wave equa-
tion which satisfies the following criteria: (i) It
must be a first-order equation with no external
constraint equations. (ii) The adjoint equation
must exist, or, equivalently, the parity operator
must exist. (iii) The wave equation must be rela. —

tivistically invariant, so that it possesses wel1. -
defined Lorentz transformation operators. (iv) If
there are built-in subsidiary components, then it
must be possible to decouple them from the parti-
cle components by a generalized Sakata-Taketani
transformation. ' The exact FW transformations
so constructed will have the properties determined
earlier from general principles. '

Section II contains a quick resume of the pertin-
ent results' which relate an FW transformation to
a. Lorentz transformation and to the solutions.

In Sec. III we present our derivation. The use of
the above matrix theorem allows us to show how
the Lorentz transformation can be written as a
closed-form, finite-polynomial, matrix expres-
sion. Combined with our method of FW-III, this
yields the closed-form FW transformation. Qur
results can be combined in a.n algorithm which is
a simple procedure for writing down the FW
transformation. The algorithm is described in
Sec. IIIB, along with a physical a.rgument for

understanding its basis; this argument comple-
ments the mathematical derivation. '

In Sec. IV, we give three examples. The first
example illustrates our algorithm for the FW
transformation of the Dirac equation in two space-
time dimensions. ' ' The second example lists
specific results for the Bhabha system of equa-
tions" "; the details are described elsewhere. "
Qur final example illustrates that our method must
be modified if the wave equation is first-order in

time but not in space. This example is the Weaver-
Hammer-Good (WHG)" and Mathews" single-mass,
high-spin wave equation.

This, then, concludes the present series.

11. RESUME OF PROPERTIES

A. FVf transformations

From FVj-lll, the class of equations we are con-
sidering is represented by'

(9 ~ ( +x)g =0, (2 1)

I, ( P) —= e e ~~3, tanh8 = P (2.3)

The Poincare generators are well defined, ' and if
there are subsidiary components then they can be

where the g &
are matrices whose dimension must

contain a, particle-antiparticle spin space 2(2S +I),
or combinations of such spaces, and there a,re no
external constraint equations associated with (2.1).
The adjoint equation exists,

4=4'n 0(& 4-x)=o
or equivalentl. y the parity operator e'~q exists.
Equation (2.1) is relativistically invariant, and a
pure Lorentz transformation along the 2 axis is
given by
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[ff ']„=- [u,]i,
m

uk r -j h 4(Ck P)E L~k P)

where

(2.4a)

(2.4b)

decoupled. '
Through several theorems, 3 we showed that if

the infinite-series expression (2.3) for the pure
Lorentz transformation can be written in closed
form as a single matrix with columns lk((P), then
an exact, closed-form expression for the FW
transformation U ' is given by

eigenvalue s,
n B —Xk Ie. =j )

kwj

n

Ajej
j= 1

which in turn implies that

f(&) = f(~g)ei .
=1

(3.1)

(3 3)

k [L4 ]kk r (2.4c)

E(ck 'p) —= [(ck 'p)'+ m']' ' (2.4d)

and lk(ck 'p) is determined from l„((P) by replacing
(p with the operator ick -'(S/ez) -=ck 'p. Here m,
6', and 8 represent the ground-state mass, mo-
mentum, and energy, and P =(P/S.

As it should be, the FW transformation U ' so
defined is metric-unitary,

tanh8 =- P, cosh8= y . (3.5)

A little algebraic manipulation puts (3.4) in the
half - integer-spin and intege r- spin forms

Since the generators J43 have the same eigenvalues
as the spin matrices, we immediately have in

terms of S, the maximum spin contained in the
algebra we are considering,

S

L(C) = ~ c-" g (3.4)
k&j

B. Relation to wave-equation solutions

(2 5) S

Ljjj, e=e ~, j= g hje — ~ i hje]
j = 1/2 j

The solutions to (2.1) are given by

«(ck 'P) ' -;.,(~. sk)uke k
m

where the uk are metric-orthonormal spinors,
~rrh f
uj &uk = Mkk5jk,

(2 6)

(2 7)

„lj (e„*-4*
—k

L(P, S = ) =rr (1-&.,'/&')
k=1

(3.6a)

and I is the (indefinite) metric. From (2.4a) and

(2.5), the uk satisfy the completeness relation

-J J
+ .4' sinhj 8 + ~ coshj&

j=l

(un)i(uee)k —
ik .

n nn

(2.8) (3.6b)

Note that gk here has the Lorentz-invariant nor-
malization.

III. FW TRANSFORMATIONS

A. Derivation of the closed-form Lorentz transformation

For S = n + —, one can write

1/Z y 1/2

coshj8 = cosh j 8+ sinh j 8

(3.7a)

y 1/2 +y 1/2
sinh j8 = cosh j 8+ sinh j 8

For the method outlined in Sec. IIA to be suc-
cessful, the infinite-series expansion in J43 for
the Lorentz transformation of Eq. (2.3) must be
expressed in a closed form, so that a single ma-
trix with columns lk((P) can actually be constructed.

The closed form of L()8) can be obtained from
the matrix theorem' which states that a matrix B
with n distinct eigenvalues Aj can be represented
in terms of the n idempotents of the spaces of the

and for S = n one can write
Ej 2]

cosh j8 =y j
P ",

2k

(3.7b)

(3.8a)

(3.8b)
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where [x] denotes the largest integer ~x. Equa-
tions (3.8) for eoshn6 and sinhn6 follow from using
De Moivre's theorem,

coshn6 +sinhn6 = (cosh6 +sinh6)" (3.9}

letting e- —0, adding and subtracting, respec-
tively, and using (3.5).

It is clear from Eqs. (3.6)-(3.8) that a single
matrix for I, (P) can be calculated in a straight
forward way for any representation of J,, %'ith

y=—(1-P') 't' and P =d'/8 the columns of I.(P) can
be explicitly determined as a function of 6',

[4(6')]y =[I (tp)]pa . (3.1Q)

Then, as outlined in Sec. II, u&, U ', and P& can
be constructed.

B. Algorithm for writing an exact, closed-form
FW transformation

The following interpretation provides a conveni-
ent algorithm for working out exact F% transfor-
mations and hence solutions. Since the Lorentz
transformation depends only on p =(P/h, the re-
placement iP-e~ 'p in each column I„((P) implies
that each column depends only on

.a 'p (le~I/")p
E('» 'P) (P'+ma')"' ' (3.11)

where m„=—me, and (2.4d) have been used. For ex-
ample»

E( 'P) (P'+ma')'t
m m lml

(3.12)

Because e& changes sign with respect to the ground
state only for antiparticles (the ground-state mass
is positive by definition), the replacement (P —e„'p
is identical with the following algorithm.

Al gorithm for the EW transformation. Recalling
that

cosh6 =y, sinh6 =Py, y=(1-P') 't', {3.13)

determine I, {P) from Eqs. (3.6)-(3.8} and explicitly
write out

~- l(P'+ma') "I=IEal, (3.16c)

where m„ is the rest mass of the eigenvector
which represents the kth column. The above then
is the F% transformation U ' which diagonalizes
the Hamiltonian.

An alternative method to (3.16b) for dealing with

g is to take every algebraic factor inv'olvingg to
the right of all matrix operators, and then make
the substitution

(3.16b')

where w., is a "Pauli-like" matrix. In a represen-
tation where g, is diagonal and the particle states
are ordered to precede the antiparticle states, 7,
will be completely diagonal with + 1 in the upper
left block and -1 in the lower right block. As an
example, observe that this alternative description
of the algorithm exactly gives the algebraic differ-
ence between the normal forms of the Lorentz and
F%' transformations in the Dirac case. Thus, if
one compares Eqs. (3.7) and the equation fore's
on p. 4'1 of Ref. 17, then besides the normalization,
it is the extra y, (there P) in the second term of
the equation on p. 47 of Ref. 17 which corresponds
to our y, .

|II''hat the above algorithm says is that, with the
correct overall normalization, the FW transfor-
mation is composed of columns which are rest-
state eigenvectors that have been Lorentz-trans-
formed in the same direction. However, since the
antiparticle states are charge-conjugate states,
the Lorentz-transformation matrix which takes a
particle from energy m, to energy E„=(p'+m, ')' '
and momentum P will transform an antiparticle to
momentum -P. The above algorithm reverses this
extra minus sign in the three-momentum of the
I.orentz-transformation matrix. [Note that if the
matrix g, is such that the first half of the (diagonal}
elements are positive while the remaining half are
negative, then for Eq (3.16b) simp. ly replace g
with +P in the first half of y 't'1, (P) in (3.14), and
with -P in the second half. ]

Finally, the solutions to (2.1) are given by

ft '=y "I-(P-)= U-'(P, y) .--
In U '(p, y) make the replacements

(3.14)

(3.15)

1/Z

e iRI (6'z $ t)
Qg, e

where u& is the kth column of U
' determined from

Eqs. (3.14)-(3.16).

Then in each and every Ath column of
U '(g/'VP, V7/Sit) ma. ke the substitutions

3}I-lm„l,

+P for particles (e,/le~i=+1),

-p for antiparticles (e,/le„l = -1),

(3.16a)

(3.16b)

IV. EXAMPLES

A. Dirae equation in two dimensions

The Dirac equation in one time and one space
dimensions was originally investigated' ' as a
case study in model field theories. There is now

a revival of interest in it as a tool to study ab-
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normal states of nuclear matter and quark con-
finement. " With only one space direction in the
energy square-root operator E = (p'+m')'~', the
method of breaking the square root which yields
the Dirac algebra in four dimensions yields the
Pauli algebra in two dimensions, so that

and

E+m 'I2 E+m

1
g &( + -8t) (4.7b)

(a ~ v+m)g =(a,r, +ipse, +m)g =0,
which means that the Hamiltonian is

-s, H=-r, '(ipT, +m) =pq, +q, m .

(4.1)

(4 2)

B. Bhabha fields

(8 &+X)0=0 ~ (4.8)

Elsewhere" we have discussed in great detail
the application of our method to the Bhabha system

Thus, L(P) is

L(tl)=e p(~ r)
(9 . 6)

= cosh —+ v sinh —.
2 ' 2

(4.3)

(4.4)

Combining (4.4) with the algorithm (3.14)-(3.16)
yields

6 'N+9g 'i' 9

2 2K ' 2 [2%('vv+ 3R)] 'I'

It is to be noted that Iachello" has derived a
very similar equation for spin-0 particles in four
dimensions. The Hamiltonian is the same as in

Eq. (4.2) except thatp in two dimensionsbecomes
~p] in four dimensions. " lachello also obtained an
FW transformation for his spin-0 equation. Mod-
ulo the subtle absolute value in his equation, this
FW transformation is functionally the same as the
one we now derive.

From the free equation (4.1) one can see that the
generator "J,„"analogous to the Dirac four-dimen-
sional J,„has the commutator of the T matrices
multiplied by the same & which multiplies the corn-
mutator of the y matrices in the original. This
gives

Foragiven so(5) algebra of order 2S, the method

applies with S-S, g-g„g„-~„=J„„J,,
=-i[~4, a,], and It~'-8, (S) for integer spin, where
the above quantities are described completely in

Refs. 8-13. The Bhabha system is a multimass,
multispin system where, for a given 8, the mass
states a.re given by +X/j, (-, or 1}cjc 8, the energy
states E& by a(P'+X'/j')'~', and the possible spin
S by (2or0)cS~S.

We refer the reader to Ref. 13 for the explicit
FW transformation results and solutions, mention-
ing here that they are given in closed form for
arbitrary spin and special cases up to S =3 are
studied as examples. These eases include detailed
discussions of the (&, 2) representation, which re-
duces to the Dirac equation, the DKP (Duffin-Kem-
mer-Petiau) spin-0 equation (1, 0) representation
in both the 5X 5 and the Sakata- Tahetani "particle
components" 2~2 forms, and the high-spin 16-
dimensional (2, 2) representation, where it is dem-
onstrated that the 16 columns of the FW U ' ma-
trix obtained by our method are indeed the metric-
orthonormal eigenvectors of the Hamiltonian. We
also show that the exact FW expressions agree
with the power-series expansions in c ' discussed
in Ref. 12.

C. Wave equation of Weaver, Hammer, and Good

and thus

or

E +@2

kP
(E +m)

p
(E +m)

(4.6a)
to I » 1/S 0

(I o
' sio -sj' (4.9)

Some time ago, Weaver, Hammer, and Good
(WHG}" developed a single-mass, single-spin,
relativistic wave equation in terms of the 2(2S+1)-
dimensional matrices

E+m 'j" . p
U '= ~ Isis,

(E )

From (3.17), the solutions to (4.1} are

1E+m 1./2
e k(gs —Bt)

p
] 8+m

(4.6b)

(4.Va)

where S are the usual (2S +1)-dimensional spin
matrices and I is a (2S +1)-dimensional unit ma-
trix. The idea was to Lorentz-transform a Ham-
iltonian which was given by mP in the rest system,
and thereby find a single-mass, single-spin Ham-
iltonian in the boosted frame. Later, from a dif-
ferent point of view, Mathews" derived a poly-
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nomial expansion of the form

(E + p)'" —m"
H= 4u 4v @~v(E +p)'"+m""

2Em'"(E +P)"
P ~ (E P)4U mcv v (4.10)

VCMV=M . (4.16)

For S = 2, I is just a normal iz ation constant, but
for S&-,' it is a nonconstantmatrix. Inourlanguage
this means that allowed transformations, V, of
this basis will not be unitary; rather they will be
metric-unitary, satisfying the equation (as 1' does)

where the C, and B„are certain projection opera-
tors M.athews observed that" the "agreement [of
the above Hamiltonian with that of WHG] is, in fact,
to be expected for any spin since their starting
point is the assumption that the rest-system Ham-
iltonian is H, =Pm=—gm (which we have shown to be
the only one consistent with covariance and reg-
ularity conditions), and they utilize an integrated
form of [Mathews's Eq.] (3d) to pass to an arbi-
trary reference frame. "

Weaver, Hammer, and Good" proposed that
their equation would, in principle, have an FW
transformation related to the Lorentz transforma-
tion in a manner analogous to the Dirac case,
which their Hamiltonian reduces to for S =2. In
particular, they considered the operator

Y(8) =cosh(z8) —P sinh(z8),

z =Ski li, 8 =ta, n '(P/E),

(4.11a)

(4.11b)

which in the Dirac case transforms all the eigen-
vectors in the same direction. Thus, in our set of
definitions, vs that of WHG, Y is proportional to
the FW transformation U, not the Lorentz trans-
formation L, in the Dirac case.

For all spin Y has the property

YHY-'= EP, (4.12)

8i —O' = EP4'
Bt

(4.13)

then the WHG equations and solutions are given by

. a
i —tI) = H(I)

at
(4.14)

Thus, in the g basis we are dealing with a metric
space, since

QtQ =g Mg, M=(Y ) 'Y '=(YY ) '=cosh2z8 .
(4.15)

yet for higher spin a great deal of sometimes
seemingly contradictory literature has arisen con-
cerning these transformations. "" The confusion
has been clarified by recent work, "'"and it can
be further elucidated with the language of our
series. This is because the crux of the problem
involves the nonunitarity of Y for S&&, and this
amounts to having a metric operator.

If one starts with what WHG call the "Foldy wave
functions" Q, which are solutions to the wave equa-
tion

Now looking at expectation values of the Hamilto-
nian, one finds

iji~EPQ =~Ii [Y (Y ) '](Y 'Y)PE(Y 'Y)Q

=g~MHf . (4.17)

Then since (MH)"=MH, H is not only self-adjoint;
it is metric-Hermitian in the g basis. This is the
origin of comments often found in the literature
which state that the FW transformations for the
WHG Hamiltonians are not unitary. In the g basis
they are not, they are metric-unitary.

However, since this metric is Positive-definite,
it can be removed by going to the proper basis. In
particular consider a transformation X, which
commutes with P and M such that

[p, x] = [I,x] = 0, xx' =xtx =I . (4.18)

Then one can obtain a unitm1) transformation U

which transforms H to EP and which has the uni-
tary basis 4 given by

U= Y 'X ', UHU '=EP, U4=y . (4.19)

U = exp[c, (zP8) +c,(zP8)'] (4.20)

One can equivalently write things in the form of

The discussions of unitary FW transformations
of the WHG system are therefore using the 4 ba-
sis, or an equivalent one. Each basis has its ad-
vantages. The g basis has the FW transformation
as the simple form given in Eq. (4.11), but it must
deal with metric - He rm itian and metric -unitary
operators. The 4 basis, on the other hand, has the
advantages of dealing with a normal Hilbert space
and with Hermitian and unitary operators. Further,
in this basis there is a connection to our Lorentz
transformation L which yields a further unde rstand-
ing of the nature of the FWtransformation U, com-
paredto Y.

In the unitary representation, the FW trans-
formation should be related to f, (j„)as before.
However, because for S & & the Hamiltonian is not
first-order in space and the n matrices cannot be
rotated into the P matrix (as one would have for a.

first-order wave equation), J„ is no longer sim-
ple. For higher spin J,~ must be modified. This
is the origin of the form of the unitary FW trans-
formation for S =~ which Weaver has proposed,
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(4.19) as Tekumalla and Santhanam" have ex-
plicitly done for up to S =-', , a form which Jaya-
raman" observed was implicit in Mathews's
work. " Note that the polynomial form of the ex-
ponential in (4.20) as well as the fact that X is a
polynomial of certain order in z' is related to the
fact that the o. matrices have eigenvalues from +S
to -S in integer steps, whereas P has eigenvalues
+1 and -1.

It would be interesting to see if the generalized
forms for the U of Eq. (4.19) and that of (4.20) are
equivalent„and if they can therefore be given in

terms of L(j„)operators. One could perhaps use
the spin-matrix polynomial formalism, "'"and
should carefully understand the transformation
properties of the Poincare generators and wave
funct ions.

Finally, we recall" that the term FW trans-

I a.„
QP Q =P EC

=
W2 g„

(4.21)

The additional transformation (4.21) can be used
to completely diagonalize the Hamiltonian.

One can, however, perform the complete dia-
gonalization by brute force with the aid of few
tricks. We will now give the S =-,' case as an ex-
ample. The S =-,' WHG Hamiltonian is

formation is used in many senses, including not
only transforming the Hamiltonian to PE but also
completely diagonalizing it. Note that the WHG
representation is "Majorana-like" so that P is not
diagonal, contrary to the "Pauli-Dirac-like" rep-
resentation where P is diagonal. The transforma-
tion connecting the two algebra representations is

(9W' —7»')»P +2(13W' —10»')o ~ p —9»(o, p)'I3 —18(o p)'
3/2 2(4W' —3»') (4.22)

where obtain the representation

tV =P +m~, (4.23)

Note that W' has to be interpreted as Eq (4.23).,
and not as E'. Otherwise the wave equation would
be third order in t, and there would be 24 solu-
tions, not eight. In addition to the two solutions

E =~ (P'-+ m')'/' (4.24)

each with multiplicity 4, direct calculation would

yield eight other solutions, each with multiplicity
2.

E =+[3(p') +»']'i', E =+[(—',P)' m'+]'i',

(4.25)

E =~ [(-'P)'+ (-'»)']' ', E =+ [(-'P)'+ (-'»)']" .

On the other hand, taking W =P + m does indeed
give only correct solutions (4.24). [Remember, how-
ever, that because the equations for high spin are
polynomials in P but the matrices have only
2(2S+1) components, minimal electromagnetic
interaction will make the solutions noncausal. ]

Now one observes that by making ~&~iz and then
rearranging the rows and columns of (4.9) one can

1 0 0 0

0 3 0 0

0 0 3 0

0 0 0 -1

I8 f(2x2),

(4.26)

0 0 0 1,
0 0 1 0

S f(2x2),
0 1 0 0

100 0

W =+ (p'+ m')'i', T = 8P'+2»',
R =(8p'+6»')P+WT,

a = [2W(W+p)] ' ', b =(2WA)

(4.27)

so that effectively one may work with 4~4 ma-
trices. Further, when these are put in the Ham-
iltonian, the first row and column are coupled only
to the fourth row and column; similarly for the
second and third rows and columns. That means
that to obtain the eigenvectors one only has to
solve two 2&&2 matrix equations. When one does
that and normalizes the eigenvectors, and then
makes them the columns of the matrix U ', by in-
spection this U ' can be written in terms of the
new matrices z and P. Specifically, the answer,
in terms of the quantities
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1S

t; ' = —[27(W+P)n+9mtij(l —n')
8

case which can be compared with any general
formulation which may be obtained.

ACKNO'(ht LEDGM ENTS

+—(Ao +2in'P)(9~ ' —-1) .
8

(4.28)

By explicit multiplication one can verify that

(4.28) is unitary and diagonalizes the Hatniitonian

(4.22). The above expression, then, is a special
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