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We show that there exists a definite relationship between a Lorentz transformation and a Foldy-Wouthuysen

(FW) transformation for any relativistic wave equation in an indefinite-metric space which satisfies the
following criteria: (i) The equation is first order with no external constraint equations. (ii) An adjoint equation

(or, equivalently, a parity operator) exists. (iii) Lorentz transformation operators and related Poincare
generators are well defined. (iv) Any built-in subsidiary components can be decoupled. Our result allows us to
obtain the explicit forms of the FW-transformed Poincare generators from the original generators and in

principle allows us to determine the exact, closed-form FW transformation.

I. INTRODUCTION

In the first two articles (FW-I, FW-II) of this
series, "we demonstrated the necessary and suf-
ficient conditions for the existence of a Foldy-
Wouthuysen (FW) transformation in an indefinite-
metric space, ' and then derived some theorems
for practical calculations, ' especially useful for
power-series expansions in c '. In this paper, we
will establish a connection between Lorentz trans-
formations and FW transformations for a class of
relativistic wave equations in an indefinite-me-
tric space. This connection provides the method

by which an expression for the FW transforma-
tions can, in principle, be obtained, and the means
by which the properties of the FW transformations
can be studied. In the following paper, ' we will
use a powerful matrix theorem to derive the exact,
clos ed- fo rm express ions for the Lo re ntz trans-
formations of this class of relativistic wave equa-
tions. That, together with the method (connec-
tion) introduced here, will then yield the exact,
closed-form expressions for the FW transforma-
tions.

The wave equations we consider have the follow-
ing properties: (i) They must be first-order equa. -
tions (at least in the time derivative) with no ex-
ternal constraint equations. (ii) The adjoint equa-
tions must exist, or, equivalently, the parity
operators must exist. (iii) The wave equations
must be relativistically invariant, so that they
possess well-defined Lorentz-transformation
operators and related generators of the Poincare
group. (iv) If there are built-in subsidiary com-
ponents, then it must be possible to decouple them
from the physics-carrying particle components by

a generalized Sakata- Taketani transformation. 4

Note that we are considering only first-order
wave equations with no external constraint equa-
tions, so that we are not talking about the Rarita-
Schwinger'' (RS) system, for example. Our anal-
ysis does not rule out FW transformations for such
equations; we only say that our analysis is not
concerned with them even though an analogous
treatment may be entirely possible.

As a positive example, our analysis does apply
to the entire system of Bhabha equations, ' "which
includes the Dirac and DKP (Duffin-Kemmer-
Petiau) equations as special cases. In fact, the
present series was undertaken as an outgrowth
of the necessity to demonstrate as a. matter of
principle the existence of an FW transformation
for the indefinite-metric Bhabha system (see Refs.
11 and 12).

Section II describes the formalism which we will
later use to obtain FW transformations from Lo-
rentz transformations. We construct the wave
equations which satisfy our above criteria in Sec.
IIA and the implicit Lorentz transformations and
Poincare generators in Sec. IIB. In Sec. IIC we
discuss the generalization needed to handle built-
in subsidiary components, if they exist.

In Sec. III we present our method of relating the
FW transformation U ' to the Lorentz transforma-
tion L(P), P the boost velocity (or rapidity opera-
tor). We begin with the observation in Sec. IIIA
that one can construct all the eigenvectors of the
Hamiltonian by Lorentz transforming the rest-
state eigenvectors. Since, from FW-I, ' the FW
transformation U ' has as its columns all the in-
dependent metric-orthonormalized eigenvectors,
properly handling L(P) will yield U '.
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II. FORMALISM

A. Fifst-ofdcf and adjoin t eqUatlons

Consider the class of first-order wave equa-
tions represented by"

(s 0+}t)4=0 (2.1)

In (2.1) X is R. fixed parameter and the different
mass states are proportional to X. The g, are
matrices whose dimensionality must contain the
particie-antiparticle spin space, 2{25+1) dimen-
sions, or combinations of such spaces, and gt

Also, from our criterion (i), there are no

external constraint equations associated with Eq.
(2.1). (Formalisms with built-in constraint equa-
tions, such as those of Duffin, Kemmer, and Pe-
tiau, are allowed. )

To have an adjoint equation, we need an adjoint
matrix q which will satisfy

7=@'ll, 4(s &-X)=0,

where

[q, r, ]=0, (q, t)=0.

(2.2)

The conditions for I) of Eq. (2.2) are also those

This "proper handling" of I.(fl) involves two
things: (i) obtaining the correct overall normaliza-
tion needed to make U ' metric-unitary (pseudo-
unitary), and (ii) understanding the functional
significance of fl. [Since in general S will involve
different mass states and a Lorentz transforrna-
tion can be thought of as boosting antiparticle
states in the opposite direction from particle stat:es
{the antiparticle states are the "negative energy"
solutions or t:he charge-conjugated states), this
point also must be taken care of.] In Sec. III B
the above two points are resolved mathematically
by three theorems, which are proved in Appendix
A.

Given the above, we then derive in Sec. III C on
the basis of a fourth theorem, proved in Appendix
A and in part in Appendix 8, the explici] form of
the FW-transformed Poincare generators. As we
have emphasized elsewhere, " an FW transforma-
tion may have more than one meaning. The theo-
rem of Sec. III C will show on general principles
that our FW transformation is so defined that the
transformed space-time generators (the Hamilto-
nian in particular) are diagonal, while the trans-
formed rotation-boost generators are diagonal in
the sense that they do not. connect states of dif-
ferent mass (including antiparticles).

Our short discussion in Sec. IV touches upon the
relation of this paper to previous work a,nd to the
physical implications for high-spin field theories.

(M6)'=Me,

and conversely.

(2.6)

B. Lorentz tfansformations and Poincafe generators

For Eq. (2.1) to be I.orentz invariant, the com-
mutation relations among the Lorentz generators
Z„[or more properly in our notation the so(4)
generators], the matrices i„, and the parity op-
erator g must be

[J,„,Z„]=i(t1,„8„,+6„,Z —6„J',—l„l„),
(2.7)

[z,„,g, ] = —i(g. t „, g„f„),
where p. , v, X, p=1, 2, 3, 4, and,

(~„., q) =0, [Z„,q] =0,

(2.8)

(2.9)

where j, k = 1, 2, 3. If a prime denotes a trans-
forrned quantity„ then

I('(x') =I (A)lt(x),

L(A) = exp(+-,'O, „Z,„),

(2.10R,)

(2.10b)

(2.10c)

where the A„, and 8 „are numbers which ehar-
aeterize the transformation. "'" J,„ is self-adjoint
and antisyrnrnetrie in p, a, nd v.

The Poincare generators P, J, 0, and K as-
soclR'teel wltll Eq. (2.1) Rl'e thell obtained 111 'tel'Ills

of the operators and parameters f„, X, x, p
= —i8, 4,„, and t by adding t;he generators of
space-time translations and rotations to the J'„,:

Pk @ft (2.11)

~ff = —~~a&f +r~m+ ~~m

'(s K+X)

KI = xf H - tP„+i Z,

(2.12)

(2.14)

where we have assumed for now that f~ is non-
singular, so that its inverse g, ' exists and may be
determined from the Cayiey-Hamilton theorem by

needed for the parity operator e "I}(f,), as can be
shown by a standard procedure. "

We use the usual definitions of the norm of a
state and the expectation va, lue of an operator 6,

I I All' =7&,4, (2.4)

so that the metric M is

(2.5)

where M'=M, since 11 =1}(t',) and 0, = r, Th. e ex-
pectation value is real whenever the operator 8 is
llletl'IC-Hel'IllltlRll (pseudo-Hermltlan),
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a standard procedure. " The Harniltonian equation
then becomes

-6,4=HI=K. '(8 8+X)P=E0 (2.15)

The generators defined in (2.11)-(2.14) can easily
be shown to be metric-Hermitian from Eqs. (2.3),
(2.8), and (2.9), and, in a more tedious calcula-
tion that also requires (2.7), can be shown to satis-
fy the Lie algebra. " Also note that since we are
using the complete definition of K in (2.14), with
tP on the right, if we substitute —8, for the right-
hand side of (2.13) and for the H in (2.14), these
new generators still satisfy the Lie algebra.

C. Subsidiary components

If f4 does not have an inverse because of the
zero eigenvalues of the spin and other matrices
(as will often occur for integer-spin fields), then
one will have built-in subsidiary components which
are to be decoupled. By criterion (iv) we assume
that this is possible.

The subsidiary components will correspond to the
singular pieces of the metric, and hence of g4. Re-
moving these singular pieces allows a proper in-
definite-metric FW transformation, ' and can be
done by replacing the columns of eigenvectors zi„
in the FW tra, nsformation U ' by columns of the
particle-components eigenvectors u~(~) defined
by4~ 8~ 1 1

and the elimina, tions of built-in subsidiary com-
ponents. ) This means that an FW transformation
which diagonalizes H exists, and is composed of
the metric-orthonormal eigenvectors of H. The
purpose of this section is to give a precise pro-
cedure for constructing this FW transformation by
means of four theorerns and a lemma about the re-
lation of Lorentz transformations to FW trans-
formations and about the form of the FW-trans-
formed Poinca, re generators.

Without loss of generality, we simplify our dis-
cussion by conveniently choosing f, diagonal and
the momentum in the z direction. A pure Lorentz
transformation along the z direction then becomes

tanh6= P ~ 0. (3.2)

There is an arbitrary sign in the exponential of Eq.
(3.1) which we have already chosen so as to have
particles at rest (vs antiparticles) be transformed
to positive momenta.

The eigenfunctions of H are now easily construc-
ted. The mass spectrum associated with Eq.
(2.15), s»m, is given by the rest frame of Eq.
(2.15),

(3 1)

where one can easily see from Eq. (2.10) that the
velocity P of the boosted frame will be related to
8 by

u' ' =I' 'uk = (I —I' ')u (2.16)
—s, p»(0) = g

' xpk(0), (3.3a)

(U-l) I(P)U-)I(P) (2.17)

where I' ' and I' ' are the projection operators
onto the particle components and subsidiary com-
ponents. (If there a, re no subsidiary components,
then I' '=I. ) This means that the particle-com-
ponents FW transformation (U ')'P' can be ob-
tained by the substitution

where

)() (0) =f (0)& '" '

m = min[i, ']»» X,

[ 4 ]kk
ml. tl [f4 ]k»

(3.3b)

(3.3c)

(3.3d)

This is equivalent to replacing the metric M with
I' 'MI' ', and rederiving all the results above and
below. The operators I' ' and I' ' are a.ssumed to
exist for the class of relativistic wave equations
being considered.

III. LORENTZ-FW TRANSFORMATIONS
AN D FW -POIN CARE GENERATORS

A. Lorentz- transformed rest-state eigenvectors

Since we are dealing with free relativistic wave
equations, the eigenvalues of Eq. (2.15) are the
free (real) energies and the solutions of Eqs. (2.2)
a.nd (2.15) have nonzero norm. From the discus-
sion of Sec. IIC, we can assume a nonsingular
metric M, so that the criteria of FW-I is satisfied.
(Consult Sec. IIC for the case of singular metric

P —
g

—
@

&)7„—C„i&7
k'

and we have, in the new frame,

—84 4~ =He's = &a ~4&

(3.4)

(3.5a)

Min[& ']kk is the smallest positive matrix ele-
ment of g, ' and the f»(0) are column matrices
which are everywhere zero except for a "1"in the
kth row. Thus, m is the ground-state mass and
the s» are the k/ground-state mass ratios. Note
that whenever f, ' has dissimilar diagona, l ele-
ments (other than a, sign change for antiparticles),
a rnultimass theory results.

Because the Lorentz transformation can only be
a function of P [e.g. , y=—1/(1 —P')'~'], each coln-
ponent of mass m~ mustmove with the same velocity



FOI, DY-%OUTHUYSF. N TRANSFORMATIONS IN AN. . . III. . .

C, =L(~)~t. (0) E(c, 'p) -=[(c, 'p)'+m']'i', (3.8b)

( tp )
+ I E p ((P 8 g t ) (3.5b)

and M is the metric. (ii) The l, (c„'p) are metric-
or thogonal,

(3.5c)

so that l~(d') are the columns of L(tP), P and 8
are the ground-state momentum and energy, and
the Lorentz-invariant rest-frame phase —mt has
been replaced by g,x„=G'z —8t. The g, are eigen-
functions of H with eigenvalue c,S, where 8 = (&'

m2)1/2

Observe that the l„(g ) are clea. rly related to the
metric-orthonormalized eigenfunctions «, de-
scribed as the columns of U ' in FW-I. The con-
nection will be explicit in Theorem III below.

The object is to show that with the correct nor-
malization and the proper interpretation of P and/
or tn/h, the Lolentz transformation (3.1) or (3.5c)
can be equated with the FW transformation U '.
For now, we only need to know that the infinite-
series expression for L(P) can, as a matter of
principle, be reduced to a single matrix from
which the f~((P) can actually be determined. [The
exact, closed-form expression for L(fl) will be
given in the following paper. '] In the three theo-
rems of Sec. IIIB we will prove this equivalence.
The theorem and lemma of Sec. IIIC will show
the form of the FW-transformed Poincare gen-
erators which is implied by U '.

The proofs of the theorems in Secs. IIIB and
IIIC are given in Appendix A, with some of the
specially detailed calculations for Theorem IV
given in a separate Appendix B. Each theorem is
dependent upon the previous theorem.

B. Construction of U ' from L(P)

Theorem I Let M be t.he (indefinite) metric
given by Eq. (2.5), and let L(P) be the Lorentz
transformation (boost) given by Eq. (3.1). Then, "

(3.6)

l,' (c, 'p. )Ml„(c, 'p) =0, jwh.

Theo&en~ III. Let «, and U ' be defined by

n~

E(Cl, P)
(3.10a)

(3.11)

where the + (-) sign is for particles (antipa, rticles).
The identification can be understood on physical
grounds. Since the antiparticle equation is the
charge-conjugated equation, the Lorentz trans-
formation which boosts a, particle in the positive
direction "boosts" the "negative-energy" anti-
particle in the reverse direction. Our three theo-
rems have verified the validity of the above physi-
cal argument and shown that the identification
(3.11) is correct.

(3.10b)

where l,(c„'p) and E(c, 'p) are given above. Then
we find the following: (i) The u„are metric-ortho-
normal. (ii) The u~ are eigenvectors of the Hamil-
tonian H. (iii) U is metric-unita. ry (pseudouni-
tary) and has an inverse U.

Theorem III provides a. method of constructing
the metric-unitary operator V ' for the class of
relativistic wave equations considered here. The
existence of an operator U ' was established earli-
er. ' Also, as we will see in Sec. IIIC, U ' is
indeed the transforma. tion which diagonalizes the
metric-Herrnitian Ha. milt. onian.

At this point we reemphasize an observation
which will be made clearer in FW-IV. ' It is that,
in addition to the normalization, the main change
in going from the Lorentz transformation to the
FW transformation is the identification

(3.7)

Theorem II. Let l~(G') be the columns of I.(tP),
the Lorentz transformation given above with lt = e'/
8, and let II be the Hamiltonian given by Eq.
(2.13). Then, replacing each 8 in f, (tP) by the
operator —ic„'9,=- r~ 'p yields the set of operators
l~(c„'p) with the following properties: (i) The
l~(c~ ' p) are normalized such that

(3.8a)

C. FK- transformed Poincare generators

Definition. An operator 8 is called "c-diagonal"
if 8,.~=0 whenever c,. Wc„, where c~ is defined in
(3.M).

Observe that in a multirnass theory such as the
Bhabha theory, ' "where the representation of f,
can be taken such that all j with the same c,. are
g rouped toge ther, c-diagonal cor responds to mass-
block diagonal.

Them"em IV. I.et U ' be defined as in Theorem
III, and let P, J, H, and K be defined by Eqs.
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(2.11)—(2.14). Then (i) U ' diagonalizes H such
that

HFw =UHU-'= g -'E
py (3.12a)

E = (P'g»+ It' )
'i'

(ii) U ' leaves P diagonal and leaves J s-diagonal,

(3.12b)

PFw —UPU-1 P

J Fw UJU -1

and (iii) U ' s-diagonalizes K such that

-1
K '"—= UKU '= ' g, E }—lp—

Ep+X

where

(3.13)

(3.14)

(3.15a)

IV. DISCUSSION

Through several theorems, we have developed a
method by which an FW transformation can, in

principle, be derived from a Lorentz transforma-
tion. '""" In the following paper (FW-IV)' we
show that this method can in fact be explicitly
implemented. With a combination of a matrix theo-
rem and our method, an exact, closed-form FW
transformation is written for our class of rela-
tivistic, firs t- orde r wave equations in an indef i-
nite-metric space. "

We have also shown how any relativistic wave
equation which satisfies the criteria of the intro-
duction can be decoupled into unconnected mass
states, including particles and antiparticles, by
this FW transformation. In fact, we have deter-
mined the explicit form of the transformed Poin-
care generators.

Our method basically is the recognition that,
with the proper renormalization and understanding
of the meaning of the quantities we have called 6'

and 8, an FW transformation U ' can be related
to a Lorentz transformation L(P). It is therefore
appropriate to note that our method is in fact a
generalization, to a large class of multimass and

(3.15b)

It is the proof of Eq. (3.15) which is especially
detailed, and so also involves the calculations of
Appendix B.

Lee~ma. The transformed generators P ", J
H ", and K w do not connect states of different
mass.

To see this, observe that if (mass), . c (mass)„
then from (3.3c) and (3.3d) s, gs». Thus, from
Theorems III and IV, 8,.„=0, where 6 represents
any of the transformed generators. This argument
includes particle-antiparticle pairs.

APPENDIX A: PROOFS OF THEOREMS

Theorem I. From Eq. (3.1) and Theorem IV of
FW-II, ' and remembering that J43 J43 we have
directly L ( P) = L ( P) and

L (P)ML (t3) =Q
i

((J',.„)"M(})",
n=O

(Al)

where M is the (indefinite) metric defined in Eq.
(2.5), and again' our notation is that quantities in
the parentheses are written out n times. Because
of Eqs. (2.8) and (2.9), the nested anticommutators
in (Al) close on themselves. In particular,

((J„,)'M(})—:M,

(J„,(Z„,M }}= M,

so that

(A2a. )

(A2b)

(A2c)

L (P)ML(P) =M csoh ging, si hng
=yM +i Pyg/3, (A3)

where Eq. (3.2) has been used in the final expres-
sion.

Theorem II. Parts (i) and (ii) will be proved in
the same order as given in the theorem.

(i) Since 1, is taken to be diagonal, the jk ma-
trix elements of Eq. (2.8) imply that (q = 1, 2, 3)

so that f, is necessarily nondiagonal. Taking the
diagonal matrix elements of Eq. (3.6) in Theorem
I then gives [note that q = rl(f, ) is diagonal]

l»((P)MI»((P) =yM»». (A5)

multispin, first-order wave equations, of similar
and related observations which have in whole or in

part been used by other authors, """especially
for the Dirac equation.

Throughout this paper, we have seen that the
larger class of relativistic wave equations dis-
cussed here formally retains a similarity to the
Bhabha equations' "; a system of equations which
is free from many of the problems which usually
occur in high-spin theories. Whatever problems
this larger class of relativistic wave equations may
have, "we have shown that a well-defined FW
transformation is not one of them. This opens the
way for an interpretation and understanding of the
operators in the theory and the negative-normed
states which result from an indefinite metric. The
latter is a remaining problem of the Bhabha equa-
tions. To this end, our results provide insight
not only into the particular subset of equations
which make up the Bhabha system"'" but also
into this larger class of equations.
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Since only the kth column is involved, 6' is a dum-
my variable and may be everywhere replaced by
gk 'p to yield

(A5)

where y=S/t)t =(a"+m'}It'/m has been used, and

E(c, 'p) = [(c-, '/))' +))')] It'. This establishes the
normalization of the /~(c~ 'p).

(ii) Here, there are two oases: (a) Suppose c,.
=c„jc/t. Then from Eq. (3.3d)

so that whenever c, =c„[f,],, =[/, ]» and [/, ],,
=0 by (A4). Hence /', is c-nondiagonal. Since M
is diagonal, the j/z matrix elements of Eq. (3.6)
are ~ust

lf (f )3,~=0, then replacing tP with c, 'p in (A13) and
multiplying by exp[+ic,.(IPz —/) I)] on the right-hand
side and exp[-ic„(IPz —SI}]on the left-hand side
implies that

/; M/„(&P) =0, c, I-'ct„j Wlz.
Cj

(A14b)

(ii) From (3.10a) and (A10), the It~ satisfy the
equat, ion

Now let 6'-ck 'p.
Equations (A9) a.nd (A14) then establish (ii) for

all cj and ck, and hence for all j tk.
Theorem III Par. ts (i) through (iii) will be

proved in the same order as given in the theorem.
(i) From definition (3.10a) and Theorem II, the

uk are metric-orthonormal,
A

u j Muk =Mkk&;k.

/,'(tP)M/, (IP)=0, c,.=c„j~~. (Ag)
HS~ e"'k'~' ~"=C Su e"'k'~' ~"

k k (Aiea)
Because aj 'p=ck 'p and 6" is a dummy variable,
we may replace tP by c, 'p in /,'(6 ) a.nd c, )

p in

/, (IP) to obtain

/,"(c, 'p)M/, (c, 'p) =0, c, =c„j+k. (A9)

JJ|tlj = C; S P, , (A10a)

(b) Suppose c., cc„jck. Because the replacement
tP - c, 'p does llot change tile foI lll of /, ( tP) wllell

/, (c, 'p) operates on the space-time phase factor
e px[ i +(&cPz —St}], the eigenvalue problem of (3.5)
can be rewritten as

k E +ie k(G'z-~~t)

where E, ==(i)'+t)t, ')'t' and t)t, =-c, n) Multiplyi. ng
(A16b) on the left-hand side by u,. M then yields

It, MHu~ — ' . E V 5 e"'I' ' "=0 (A17)kk jk

Since the expression in square brackets of (A17)
can only be a scalar function of the operator P, it
must be identically zero. Dropping the phase fac-
tor and rewriting, one has

(c -)/)e+iet& z-&Pst)j j j (A10b) 'H .U H1(k — Ek Qk'j k ~ ~

k

Multiplying Eq. (A10a) on the left-ha. nd side by )U,
taking the adjoint, and multiplying on the right-
hand side by gk yields

P» MH Pk = Cj 8 P» Mgk

= Ck 8 $q /77() (Alit )

where we have used !if '=IVI and (MH} = (MH). Sub-
tracting Eq. (Allb) from (Alla) then yields

for all j. Because the uj span the space,

[/I I]IM/I-)=M (A20)

86k = Ekuk, all k
lr. I

where E, =—(p'y))I, ')' ' and I)), =c„))). Hence, the
6k are eigenvectors of H.

(111) Fl'olll (3.101)) and (A15)t II satlsf les

(c, —c,)$)1),'M$, =0,

ol
p

because cj 0 ckq

(A12a) so that U ' is metric-unitary.
If M is nonsingular, then M has an inverse M '.

Multiplying (A20) on the left by M ' shows that
e-l tt()Pz-8t)/ t('c -I p))tf/ (c -IP')e+i8pttPz tt! 0-j j ' k k U-=M-'(U ')'M

However, from Eqs. (A3), (A4), and (A7),

/,'. (tP)M/, (a ) =+ipyt/, , (/;, ),,
If (g,),„t-'0, (A12b) implies that

/,'(c, 'p)M/, (c, 'p) =0, c, wc„jx/. .

(AI2b)

(A13}

(A14a)

tt„(c„'P)= Ii 'tt, (0), (A22)

and U is the left inverse of U ', it is clear from
left multiplying (A22) by /I that U represents the

is the left inverse of II '. (lf M is singular, then
see Sec. IIC. ) Since U ' represents an automor-
phism (i.e. , 1-to-1 and onto) given by
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inverse automorphism given by

u, (0) = Uu, (c, 'p), (Ass)

where ~c„(0)=l, (0) and UU ' =I have been used.
Conversely, U ' must represent the inverse auto-
morphism of U, which implies that U 'U=I; so
that U is also the right inverse of U '. This estab-
lishes U=M '(U ')tM as the inverse of U '.

Theorem IV. Again pa. rts (i) through (iii) will be
proved in the same order as stated in the theorem.

(i) From Eqs. (3.3c), (3.3d), a.nd (A19), it follows
that

we find that

(KFw) 0 E j E (K Fw) j E
ic I

' l~. l
' ' '" Ic. ij J

=iP, O,,
(A29a)

Since x "=UxU ' = UU 'x+ U[x, U ') =x+ Ax, and
U ' is a funct. ion only of P„, p„, and X, it is clear
that the Zitterbezvegung term M can also only be
a function of g„p„, and y, and hence commutes
with the j th component E,. Thus,

H~, = [&.)» '[I"(&.4a'+ X']"'n, (A24a) gFw) '

E g 0 E J""ls
I

' ' "lc
I

"lc I

which, when written in matrix form, becomes
=iP;o,„,

HU-I U -Ig -1(P2g 2 y2)1/2 (A24b) implying that K F" is c-diagonal,

where (p'g, '+)(')'~' represents a power series in
p'f~'/y'. Using the results of (iii) of Theorem III,

H F+=UHU-&

(Kv"),, =0, c,. wc, . (A29b)

Hence, K " can only be a function of x, , P„x,
and S. Using (2.8) and (A7), the jk matrix elements
of [S,, f, ] = 0. This shows thatS; is s-diagonal:

=0, 'E„

E = (p2g 2+ X2)~&2

(A25a)

(A25b)

(S,),,([~.],, —[~.]„)= o.

(5) K r" =K'+6K, auhere

(A30)

so that U ' diagonalizes H as given above.
(ii) Since U ' is a, scalar function of t, , p, , and

X, it necessarily commutes with both P and J, lea-
ving

P =-UPU '

= UU 'P+U[P, U ']

=P,

and, similarly,

J =—UJU '

(A26)

=UU 'J+U[J, U ']

[K Fw H vw
] iPFw (A28)

(A27)

[Recall that in general, P = (6'„'+ 6', '+ 6',') ' '/
(s „'+a,'+s, '+m')"', a scalar. ]

(iii) The discussion of K v" —= U KU ' is complica-
ted, and will be broken down into 4 subsections
labeled "(a)" through "(d)", with many of the de-
tails left to the reader.

(a) K,"." is s diagonal Since P, J-, H, and . K
satisfy the Lie algebra (see Sec. IIB and footnote
19), so do P"~, Jr", H ", and K"". (A list of the
commutation relations may be found in Ref. 9, for
example. ) Taking the jk matrix elements of

E ) f- &4(S p) (A3la)

E, -=(P'&.'+x')"', (A31b)

with 6K determined by the solutions to Eqs. (A33)-
(A36).

Using the techniques discussed in Sec. IIB, one
th PF+

K' is a particular solution of the Lie algebra. .
Hence

K F"=K'+ &K. (Ass)

Since both K' and, of necessity, K " satisfy the
Lie algebra, 5K satisfies the following commuta-
tion relations:

[J;,6K, ) = ie;,~6Kt„

[P,, 6K,.] =0,

(As3)

(A34)

[H, 6K,) =0, (A35)

[6K;,K,'] —[6K, , K,']+ [6K;, 6K;] = 0. (A36)

From the results of (a), (A31), (A33), and (A34),

6K=PA+-.' [S,H]+-,' [(Sx p), C], (A37)

where A, 8, and C are functions of p' and (p ~ S).
(Terms like S' and g„which commute with every-
thing, will not be explicitly discussed. ) Since K is
metric-Hermitian and U ' is metric-unitary, K
is metric-Hermitia. n. Since [K ",M ] = 0, K is
self-adjoint andA, 8, and C are real.



(A38)

(A39)H -=p'b(p'),

C = c(p')-, (A40)

to obtain,

One can also observe that 6K can be at most a
linear function of spin. While S;, i = 1, 2, 3 is from
(A30) c-diagonal, terms like (p S)", where nz-'0

or 1, would not be c-diagonal. Since we have
shown in (a) that 5K is c-dia, gonal, it cannot con-
tain such terms. Hence, we set

24 =-(p S)a(p')+d(p'),

where

(t)'" -=&./(&, +X). (A47b)

e-()Z&2f (0)epiz2 (z()-ptz) (A48b)

The solution of these nonlinear coupled equations
is given in (c) and (d).

(c) a= —b, and d=0. Using the results of Ap-
pendix B, we can directly calculate

5K; =p; ( p S)a + S,p2b + (S x p), c +p; d.

Putting (A41) into (A36) now yields 3 independent
equations,

"r -1 i +~~

P1

g 1/2
(0) ipz(2 (z2- ttp)

k y

(A48c)

(A48d)

e;,,pz(p S)f=0,

e;,.„S~g= 0,

e...(S &&@),a=0,

(A42)

(A43)

(A44)

where (2.14), (3.1), and (3.10) have been used.
Left multiplying by U yields

(A49a)

where f, g, and b are functions of a, b, and c.
Since i, j, and k are arbitrary,

~ F% 2 yFN 2 p2ay 0
Bc'

BP' (A45)

g=+2p', H + 2cH "+p'(a+b)b = 0, (A46)

g y/2
(0)e+iz2((pz-2( i

Uei()r2U -)Ug (0)

c i())t2
p (0) (A49d)

2 Bbb=-2p2 2H'"+(a-2b)H'v+p2(a+b)(c-C'")
BP'

(A47a)

where U(c&,(0) = t/r, ( )0has been used. Because Il, (0)
is independent of z, [U(P =0)],,=[l,(0)],. =5,,

Again using the results of Appendix B (A49d) be-

exp[+is, (a z —Sf)] exp +ig f/2

Comparing (A49e) with (A49b) implies that

p, »- p' hp(p, » s' ppz, ( (p& ~ p(p&] d(p)}zp)), (t&). (ztpe)

c„tn sinh p(s, t)t sinh pS, [ (pa) yb(p)]+d(p))dp=2 n, tin =0, 1, 2, . . . . (A49f)

(A50)

K "=—UKU '

Since 8 is continuous and arbitrary, a =b =-0, d
=0, or a= —b, d=0. We assume the latter.

(d) 5K=0. Putting a= —b into (A46) and (A4'7) im-
plies that c—= 0, or c =c/P', and b =—0, or b =3b/2P2,
where etc(}I)') and b zzb(p'). Of the 4 possibilities,
only b =0, c =0 satisfies (A45). Together with the
results of (b) and (c),

6K=0

whel e
—(p2) 2+ X2))/2

This completes the proof.

APPENDIX B: BOOST OPERATORS

Let K be the infinitesimal Poincare generator
of velocity translations (the boost operator). Then,
if a prime denotes a boosted quantity referred to
the san~e reference frame,

t}&'(x}= e""'"(()(x),

p' = p+ (cosh 8 —1)t, ~ p 2'+ sinh 9 h u,

(Bl)

(B2a)
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8' = Scosh0+F~ p sinh6, (B2b) has the solution

P = tanh8, (B2c) (f'(0) = exp
(

K(p)dp i((0), (B4b)

where P is the velocity of the boost. Using a tech-
nique of Osborn, "Eq. (Bl) can be directly cal-
culated by solving the differential equation,

(B3a)

provided K(0) commutes with each term in the ex-
pansion of exp [fo K( p)dp].

(a) Using (2.14) for K, (P =0, e =m, v=z, and

(3.3b) for (t)k(0),

d(t)k(0) =i (zH —tp, +i J,,))f)k(0)
d0

where

(()(0)
—e i88 ~ K g(p) (B3b) so that

=i(zskn) coshe —tsk))) sinhe+id'„)(t, ()0k),

(B5)

Since v ~ K commutes with each term in the expan-
sion of e' ", this equa, tion is well defined.

Let K(0) be the result of operating on (()(0) with
i& ~ K. Then, the differential equation

$k = eXp 'LGk

=e '~~3f (p)e" k(()' k"
k

k ( (P )e i (:k ( ()'z- t" t ) (B8)

dp(z))) cosh p —t)i) sinh p) —0 J,, ())k(0)

=K(0) tt(0) (B4a) where tanh0 = p —= sk (P/(eke) =(Pk/gk=(P/((' has been
used.

(b) Using (A31) for K and (B2),

dgk(0) . @, i (P,' i) -, (SX (Pk) t!

=]i[x ~ v(8k coshg+(Pk ~ t) sinh0) —t((Pk ~ v cosh 0+gk sinhg)]

(pk ~ v coshe+ek sinhe iS ~ (pkx v

2 Sk cosh 0+(Pk ~ () sinh0 Sk cosh 0+(pk 0 sinhe+ f, 'X
I

This integrates to yield

gI 1/2

( (Pi )
k e i (x '(P'k- 6'& t )e - i (x '5'k- k k t ) (e

- is ~ (Pk x ve (()"k, (pk )
) (C) ( (P )k k k k ~

k

(B7)

(B8a)

(B8b)

0 v 6'„'8„—i ~ 6' 5„'

2 Sk(8k+ok') —v (pk(v (pk+v (p,')'
l/2

{(P )
k (ei(tt ~ ()'k-kkt))f (p)

(B8c)

(B8d)

where

X4(+k) k 4( k) (B8e)

has been used in (B8a) after the integration. (B8e)
follows from (3.3c), (3.3d), and (B8d).

Clearly the effect of e"" x on (t)k((Pk) is to replace
((('k/t))k)' ' with (hk'/tt) )"' to replace e""'~k ~k"

with e""'~k ~'k", and to make a signer rotation of
the spinor of pk((Pk).

If 0'k —0, and v=z, then

g 1/2
(0)e i t

k (()'z- k' t )
k n1 k

where

tant e = p -=z, (p/(s„S) =(p/h

has been used.

(B10)
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