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Response of a disk antenna to scalar and tensor gravitational waves*
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Response of a disk antenna to a completely general Riemann tensor with six possible modes of polarization is
analyzed. Only the monopole and quadrupole modes of the antenna are found to couple to an arbitrary
gravitational wave. The absorption cross sections of these modes for scalar and tensor waves are calculated
numerically. It is pointed out that, with two local disk detectors oriented 90' with respect to each other, one
can not only determine the incident angles and polarization of the wave but also eliminate spurious non-
gravitational-wave signals.

I. INTRODUCTION where

A gravitational-wave antenna of a disk shape was
first utilized by Weber in an attempt to measure a
scalar component of gravitational radiation. ' In-
terest in a disk detector has been revived re-
cently by the Rochester group, who are con-
sidering the disk geometry for their single-crys-
tal sapphire detector. ' In this paper we analyze
the interaction of a completely general Riemann
tensor with various mechanical modes of a circu-
lar disk and specifically evaluate the absorption
cross sections for a few selected modes. We find
that only the monopole (n = 0) and the quadrupole
(n= 2) modes couple to a general Riemann tensor.
A similar property has been shown for a cylindri-
cal antenna. ' The tensor-wave cross section per
unit antenna mass for the lowest quadrupole mode
of a disk is found to be bigger than that for the
lowest longitudinal mode of a cylinder by a factor
of 2 when averaged over all directions. It is also
pointed out that, with two local disk detectors
oriented 90 with respect to each other, one can
not only determine the incident angles and polar-
ization of the wave but also discriminate gravita-
tional wave bursts against spurious non-wave-
originated disturbances.

The resonance integral of the cross section for
the nth normal mode of the antenna to a polarized
tensor wave is given4 by
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where M is the total mass of the antenna, co„ is
the angular eigenfrequency of the normal mode,
e jk is the polarization matrix for the incoming
wave, and Z'„" is the "reduced quadrupole factor
for the nth normal mode. " Here E„"is defined as
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n p(u'„x" + u"„x')d'x .

The normalization condition for eigenvectors
u„(x) becomes

J u„'u, d3x = V5„
V

(4)

when the density p is a constant throughout the
entire volume of the antenna V.

It has been shown" that the Riemann tensor of
the most general wave is composed of six modes
of polarization:

R,o„o(t) = P„(k, t)e,"~(k),
=1

where e",,(k) are the unit polarization matrices
for wave direction k, and P„(k, t) are the ampli-
tudes of the wave. The formulas for P„(k, t) and

e,",(k) are given in Ref. 6. Using this general
Riemann tensor, Eq. (l) is modified' into

EA = A(p)de y ~f jkeA ~2
7l'G (d

0
(6)

where X„ is the coupling factor of the Ath polar-
ization with matter. General relativity requires
A.4=&, =1 and x, =~, = &, = ~, =0; the Brans-Dicke
theory allows an additional nonvanishing coupling
factor X, = (2u&+3) '.

In Sec. II we calculate I'„' for all the extensional
modes of a disk and consider their interactions
with a gravitational wave of arbitrary polarization
ej, Absorption cross sections for a few selected
modes will be calculated numerically in Sec. III
as a function of Poisson's ratio of the antenna
material. And, finally, in Sec. IV we will evaluate
a disk detector as a practical experimental ap-
paratus.
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II. INTERACTION OF THE EXTENSIONAL MODES WITH A
GENERAL RIEMANN TENSOR

The coordinate system chosen for our calcula-
tion is shown in Fig. 1. The center of mass is
taken to be the origin, and the middle plane of
the disk lies on the x'x' plane. The radius and

thickness of the disk are denoted by a and h, re-
spectively, and a. uniform density is assumed.
The spatial eigenfunctions of extensional modes
of a circular disk are given' as

x'

iNCOMING
WAVF

2
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zz„"~=z~„"(r)(5~zcosn8+ 5» sinn8),

u„~ = v„(r)(5» sinn8 —5» cosn8),

u„'p =0,
(7b)

(7c)

where p = 1, 2 represent the two polarization states
of the nth mode and

FIG. 1. The coordinate system. used for calculation.
The center of mass is taken to be the origin.

„dJ„(fr) Z„() 'r)
dr r

J„(kr) dJ„(fz'r)v'„r = — nA " +8

The eigenvalues k and k' are defined by

(Sa)

(Sb)

From Eqs. (7) one can see that, when n=0, the
motion is decoupled into a purely radial one
("radial" mode, p =1) and a purely angular one
("torsional" mode, p =2).

The Cartesian components of u„p are obtained
using Eqs. (7):

k" =2(1+ o) (gb)

+„p cos~
2

—sin8 0

cos0 0 (10)

where ov is the angular eigenfrequency, v = (E/p)'z'
is the sound velocity, and 0. is Poisson's ratio.

We now calculate the moment of inertia factor
I z~. Substituting Eq. (10) into Eq. (3), we find

a 2'
i„'" = p r'dr d8

0 0

n/2

a/2

u„"~(l + cos28) —u~~ sin28 u "~ sin28+ u'„~ cos28 —(u„"~ cos 8 —u'„~ sin8)'
np r

zz~ (1 —cos28)+ u'„~ sin28 —(u„"~ sin8+ u'„cos8)r
0

where we have used u„'p=0, and elements represented by an asterisk are the same as their symmetric
counterparts. The third column drops out identically upon z integration. Next we substitute Eqs. (7) into
Eq. (11) and carry out the 8 integration to obtain

100 1 0 0 010
I p 5 0'5py 3 MaV0 0 & 0 I+' Cn2MaV Spy 0 1 0 + 5p 2 1 0 0

i,o o o) (o o o) (o o o)
where the dimensionless quantities V, and V, are defined as

(12)

V0 = t'zf t' voo(a k), (13a)

1

V, -=Yoffe[v,"(at) —v,'(at' )] .
0

(13b)

Equation (12) implies that only the (radial) znonoPole modes (n=0) and the two polarization states of the
quaCrupole modes (n=2) couple to an entirely general Riemann tensor. Hier and Rasband' have shown that,
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in addition to these, the bending modes also couple to gravitational waves in the case of a cylinder
(h/a» 1). By analogy, it is expected that certain transverse modes of a disk (h/a«1) can also be excited
by gravitational waves. In this paper we confine ourselves to only extensional modes.

When the incident angles of the wave are 8; and P, as shown in Fig. 1, the unit polarization matrices
e, , (k) are obtained from the basis polarization matrices given in Eq. (30) of Ref. 6 using a rotation matrix

(cosP,.

H, = sing ~

—I'nQ; 0) (t: 89,. 0 8' e,.)
cos~t), 0 0 1 0

0 1 —sin8; 0 eos 8,.

(14)

Substituting the results into Eq. (6) along with Eq. (12), we find

Z'„~=, Ma'X, sin'8, [4&v,'V, '5~ 5»+ ~,'V, '5„,(5» cos'2&]&;+ 5» sin'2p;)], (15a)

Mg'A cos~8, sin~8, .[4uo'Vo'5„o5»+ u&, 'V, '5„2(5» cos'2Q;+ 5» sin'2Q;)], (15b)

Z'„~=, Ma'A, ur, 'V, ' sin'8;5„, (5» sin'24, .+ 5» cos'2$, ),+3

Z4~ =, Ma'X4[4~0'V, ' sin 8,5„05»+ a2'V, '(1+ cos'8, ) 5„2(5»cos'2Q, + 5» sin'2P, )],4g3
(15d)

Z'„~= —,Ma'A, ~,'V, ' cos'8, 5„,(5» sin'2P;+ 5» cos'2P, ),Q3

Z„~=, Ma'X, [4&so'Vo (1+cos~ 8,)'5„05»+ &u, 'V, ' sin 8,.5„,(5» cos'2$;+ 5» sin'2$, )] .4c3

While Eqs. (15) show how a wave with particular polarization interacts with the disk, it is clear that the
various modes of polarization will in general interfere with one another to excite each antenna mode. De-
coding the responses of the modes of several antennas to determine the amplitudes of various polarization
modes of the incoming wave and its direction of propagation will be a nontrivial task. We will consider
this problem in Sec. IV under some simplifying assumptions.

If one measures only the total energy deposited into the nth mode without regard to its polarization, the
resonance integrals must be summed over p so that the (t),. dependence drops out. In this case the reso-
nance integral for an unpolarized tensor wave' becomes

1+cos'8
2+3 2+3

where we have used X»= I, = 1. This is different
from the angular dependence of the cross section
calculated for a cylindrical antenna in Ref. 3. The
nonvanishing interference term proportional to
sin4$; appears in Eq. (7c) of Ref. 3 because the
summation over p was done before squaring the
reduced quadrupole factors. However, it is im-
possible for an axially symmetric detector to have
an angular-dependent cross section. '0 The orthog-
onality of elgenfunctlons for different p states
would prevent one from adding their amplitudes
before squaring them.

III. EVALUATION OF CROSS SECTIONS

In this section we will concern ourselves with
cross sections averaged over all directions. Tak-
ing an average of the angular factors in Eq. (16),
we find

{Z„)= —Mv (5«Sor+ 5„,S2r),e3

where So~ and S2~ are the reduced cross sections
defined by
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(z„')= (2~+ 3) ' —„ iud -(a„,sg+ ~„.,sg),

where
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The same can be done for the remaining three
modes of polarization of the Riemann tensor.

The volume integrals of eigenfunctions, VQ and

V» can be evaluated analytically using differen-
tial properties of the Bessel functions:

Vo=kA (2d$ -J
0

Similarly, one can write down average cross sec-
tions for scalar waves:

In the Appendix we have calculated the eigenvalues
ka and the corresponding values of B/A and A/s.
Using these and Eqs. (21), one can obtain numerical
values for S, and S, .

The result is summarized in Fig. 2. The two
numbers in the parentheses correspond to the
multipole and harmonic numbers of the modes,
respectively. The same notation is used in Figs.
3 through 5. The fundamental quadrupole mode

(2, 1) has the biggest cross section for tensor
waves as might be expected. Its second harmonic"
(2, 2) and the lowest monopole mode (0, 1) are
about half as efficient, and the third quadrupole
harmonic (2, 3) is almost entirely inefficient in
absorbing energy from gravitational waves. The
resonant cross section for scalar waves is biggest
for the (0, 1) mode as expected; the (2, 1) mode has
about —' of this cross section.10

= ——z, (ua},
A

(21a)
IV. CONCLUSION

The reduced cross sections for tensor waves
calculated in Sec. III are to be compared with

1

V, = f W ~'d~[~, (nag)+ (a/~)(u'!u)Z, (u' u~)]
0 5.0

=—[v, (&~a)+ (a/x)z, (u'a)].A
(21b)
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FIG. 2. Reduced resonant cross sections of a disk
antenna as functions of Poisson's ratio g. The numbers
in parentheses correspond to the multipole and har-
monic numbers of the antenna modes, respectively.

FIG. 3. Eigenvalue kg as a function of Poisson's ratio
0. for various extensional modes of a disk. Eigenfre-
quencies can be obtained from this using Eq. (9a) in the
text.
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FIG. 4. The ratio 8/A of eigenfunctions as a function
of Poisson*s ratio for the lowest three quadrupole modes
and the lowest monopole mode of a disk.

FIG. 5. Normalization constants {A/a)2 of eigenfunc-
tions as a function of Poisson's ratio for some extension-
al modes of a disk.

32(1.5m) 'v ', thevaluefor thenthaxisymmetric
longitudinal mode (0, n) of a cylinder. " For an-
tennas with 0= 3 and the same Mp2, the absorp-
tion cross section of the (2, 1) mode of a disk is al-
most twice as big as that of the (0, 1) mode of a
cylinder. Their second harmonics have a cross-
section ratio of almost 3 in favor of a disk anten-
na. This enhancement in cross section for a disk
is partly due to the fact that its extensional modes
are sensitive to both polarizations of an incoming
wave, whereas a cylindrical antenna in axisym-
metric modes responds to only one polarization.

The angular dependence of a disk for gravitation-
al waves with various polarizations, as shown in
Eqs. (15), can be utilized to determine the exact
Polarization of an incoming wave. The wave-in-
duced driving force for each normal mode can be
written" as

(22)

I et us assume that only gravitational waves with

definite Lorentz-invariant helicities are allowed
in nature. Then only the two polarization states
of helicity 2 (tensor wave: P4, P,) and one helicity-
1 state (scalar wave: P,) remain in Eq. (22).
Using Eqs. (12) and the computed expressions for
e,".„(k), one obtains

R„=—,c'aV, [-P, sin'6, + P,(1+ cos'6,.)], (23a)

R» =,—c'a V,([P,(1+ cos'6,.) —P, sin'6, .] co s2@;

+2P, cos6, sin2$,.}, (23b)

R» =-,' c'aV, f[P,(1+cos'6,) -P, sin'6, ]sin2$,.

-2P, cos6,. cos2)t),}.
These three forces can be measured with three
accelerometers located 45 apart on the periphery
of the disk. By using a wide enough detection band-
width and mixing the three signals with appropriate
weighting factors, one should be able to read out
the three driving forces as functions of time. When
the wave propagation vector k is known, Eqs. (23)
can then be solved for P4(t), P, (t), and P,(t), re-
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spectively.
Another interesting possibility is determining

the incident angles of a wave using two local de-
tectors of disk shape. Let us locate another disk
near the first shown in Fig. 1, and rotate the
second disk 90 around the x' axis so that its axis
of symmetry lies along the x' axis. Instrumenting
the second detector in the same way as the first,
one will obtain R,', (t), R,', (f), and R,', (t), which are
also given by Eqs. (23) with (8, , P, ) replaced by
(8', , p', ). These new incident angles are related
to the first by
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APPENDIX: EIGENFUNCTIONS FOR EXTENSIONAL
MODES OF A DISK

Here we calculate the eigenfrequencies and eigen-
functions of the monopole and quadrupole extension-
al modes of a disk as a function of Poisson's ratio

cos0,' = sin6,. sing, , (24a)

tang', . = tan0, . cosQ, (24b)

One now has six independent equations (three force
equations for each detector) to determine five un-
knowns (6, , Q, , P4, P„and P,). Therefore, one
can use the fir st f ive of them to determine the f ive
unknowns, " 2nd the consistency required by the
remaining equation can be used to eliminate spuri-
ous signals which are not of gravitational origin.
If scalar waves do not exist, one will have two ex-
tra equations that should be satisfied simultaneous-
ly. This is a strong test for the identity of the
received signals because it will be very improba-
ble for a seismic or any other disturbance to have
the same quadrupole signature as gravitational
waves. Thus one does not have to rely on a coin-
cidence experiment between several widely sepa-
rated detectors to obtain the source locatj, on and
eliminate nongr avitational disturbances. However,
for such a local experiment to be possible, one
will need a receiver with lower noise than in a
conventional multiple-detector coincidence experi-
ment, inasmuch as one has to use a wide bandwidth
to determine the pulse shape as a function of time.

The requirement that one should obtain an entire
frequency spectrum of a pulse arises because the
resonant frequencies &u, and ~, are different so
that P„(~,) WP„(v, ) in general. This will not be
necessary if all the normal modes of the antenna
under observation have sufficiently close resonant
frequencies. Such a system is realized in spheri-
cal geometry. From the familiar property of
spherical harmonics, one obtains five degenerate
states for each quadrupole mode of a sphere. Con-
sequently, with a single spherical antenna properly
instrumented, one should be able to determine not
only the location of the source but also the signa-
ture of the pulse. More details on a spherical
gravitational wave detector will be discussed in a
separate paper. '

1=2 ]d t'[v,"(a()]'

2 kg
ndn J, (n).

a
The integration can be done analytically so that

(A1)

A -1
4 g (2+ 21)J„» (ka)0

Likewise, for n=2, Eq. (4) becomes

(A2)

1
1 = — $dt{[v,"(at) —v, (a $)] '+ [v,"(a))+v, (a $) ]'j

0

1 A
2 0

B k' k'
n dn J (n)+ ——J —nAk 'k

B u' u'
+ —J (n)+ ——J —nAk 'k

(A3)

Upon integration and some manipulation, one ob-
tains

A ' B
2 J,(ka) + —J,(k'a)

OO B -1
+ 2 g (4+ 2l) J4,»'(ka)+ — J4, »(k'a)

E=O

(A4)

The frequency equations for multipole modes are
obtained by eliminating the constants A and B from
Eqs. (109) of Ref. 8. Numerical solutions of these
equations are plotted in Fig. 3 as functions of 0.

for the first few harmonics of monopole, dipole,
and quadrupole modes. This result is substituted
back into Eqs. (109) of Ref. 8 to obtain the ratios
B/A. Figure 4 is the plot of B/A for quadrupole
modes as functions of 0. For monopole radial
modes the terms proportional to B in the eigen-
functions drop out identically as can be seen from
Eq. (8a).

We now determine A from the normalization
condition, Eq. (4). For n=0, this becomes
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Combination of E|ls. (A2} and (A4} with Figs. 3 and
4 yields Fig. 5 for the normalization constant
(A./a}'. In this calculation we have ignored Bessel
functions of order higher than or equal to 8. %e

show in Fig. 5 only the lowest four extensional
modes of oscillation that couple to gravitational
waves.
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