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Charged particles in Einstein's unified field theory
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The structure of charged particles in Einstein's unified field theory —the theory of the nonsyrnrnetric field —is

analyzed. A charged particle is represented through a time-independent spherically symmetric solution to the

field equations. Using this idealization, it is shown that the structure of a charged particle is completely

determined by the field equations, the condition that the symmetric part of the field be flat at infinity, and the

requirement that the particle interact with other charged particles over laboratory distances via the

conventional electromagnetic interaction. The structure of a charged particle is described in detail, and the

limitations of the idealization of spherical symmetry are discussed. The nonconventional electromagnetic
interaction over astronomical distances and its possible empirical consequences are examined.

I. INTRODUCTION

Einstein regarded the completion of his gravita-
tional theory in 1915 as only the first step in the
development of the general theory of relativity.
For over thirty years afterwards Einstein worked
on the problem of extending the theory of relativity
so that it would encompass not only gravitation but
all physical phenomena in a natural way. Einstein
regarded the usual practice of introducing a phe-
nomenological energy-momentum tensor into gen-
eral relativity as only a provisional treatment of
this problem. During the last years of his life
Einstein believed he had at last found the natural
generalization of his gravitational theory and thus
the extension of the general theory of relativity
he was looking for. He called this theory the rela-
tivistic theory of the nonsymmetric field. ' It is a
unified field theory in that it attempts to describe
all of nature through one continuous field. Ein-
stein believed it to be the logically simplest rela-
tivistic field theory at all possible. It is the theory
we shall be investigating.

During the first fifteen years after the theory
took its final form, almost no progress was made
in extracting physical consequences from the theo-
ry beyond those which could be extracted from the
pure gravitational theory. In fact, what little prog-
ress was made was widely interpreted as indicating
that the theory was wrong (the theory appeared to
be incompatible with the observed fact that classi-
cal electrodynamics is approximately valid over a
range of interaction distances), and interest in the
theory waned. ' During the last several years,
however, the situation has changed. Mathematical
techniques have been developed so that we now
know how to extract physical consequences from
the theory in a systematic way and we also know
that the theory is compatible with classical elec-
trodynamics over the appropriate range of inter-

action distances. "
In Einstein's theory as in nature it is found that

over macroscopic interaction distances (laboratory
and astronomical distances) only two types of in-
teractions between particles are important: gra-
vitational and electromagnetic. The gravitational
interaction between particles over this range of
distances is weak and is given, to a good approxi-
mation, by the conventional classical gravitational
interaction. What is of more interest to us is the
electromagnetic interaction between charged par-
ticles. It is found in Einstein's theory that only
over laboratory and relatively small astronomical
distances do charged particles interact to a good
approximation through the conventional classical
electromagnetic interaction. Qver larger astro-
nomical distances a long-range nonconventional
electromagnetic interaction between particles
becomes important, so that Einstein's theory pre-
dicts significant deviations from classical electro-
dynamics over such distances. A discussion of
possible tests of Einstein's theory, based on this
fact, can be found in the literature. '

At the present time little is known concerning
the interaction of particles over microscopic dis-
tances in Einstein's theory. Although techniques
exist for investigating such interactions, the tech-
niques involve a great deal of labor and have not
yet been fully applied to the problem.

In previous work on the physical consequences
of Einstein's unified field theory, the emphasis
was on investigating the interaction among charged
particles. In this paper we wish to begin an inves-
tigation of the structure of charged particles in
Einstein's theory. In order to do this we will at
first make certain simplifications or idealizations.
In this paper we shall assume that an isolated
charged particle can be represented by a time-
independent spherically symmetric solution to
Einstein's field equations. This is clearly an
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idealization, as no elementary particle found in
nature is both stable and spherically symmetric.
All stable elementary particles possess spin.

The physical meaning and justification of the
above idealization is discussed in Sec. II of the
paper. In Sec. III, making use of this idealization,
we show that the structure of a charged particle is
completely determined by Einstein's field equa-
tions, the condition that the symmetric part of the
field be flat at infinity, and the requirement that
the particle interact with other charged particles
over laboratory distances through the conventional
classical electromagnetic interaction. In Sec. IV
we discuss in some detail the structure of these
charged particles in Einstein's theory, and in Sec.
V we briefly describe the electrodynamics of the
particles.

II. SPACE-TIME CONTINUUM

A. Field equations

In Einstein's theory of the nonsymmetric field,
nature is regarded as a four-dimensional space-
time continuum whose structure is described
through a second-rank tensor field g„v. The
fundamental field g„satisfies the general-rela-
tivistic field equations'

[„)——0

R[p, v, x]

R( v) 0 (lc)
where the displacement field I'„„and the contracted
curvature tensor R„v are defined through the equa-
tions

deviations from flatness are larger, the field g, v

may also be associated with weak and strong in-
teractions.

In this paper we will represent an isolated
charged particle through a time-independent spher-
ically symmetric solution to Einstein's field equa-
tions. This is of course an idealization since no
elementary particle in nature is both time inde-
pendent and spherically symmetric. All stable
particles possess spin. However, spherical syrn-
metry should be a good approximation as long as
we are not concerned with the structure of a par-
ticle too near its "center. " The approximation is
certainly adequate when describing the interaction
of elementary particles over macroscopic dis-
tances.

One final point with respect to the structure of
a charged particle: We shall assume with Einstein
that only regular (nonsingular) solutions to the field
equations are realized in nature. This means that
the time-independent spherically symmetric solu-
tions we choose to represent particles will be as-
sumed to approximate regular (nonsingular) solu-
tions to the field equations. This of course does
not mean that the time-independent spherically sym-
metric solutions themselves will be regular. Near
the center of a particle, where time independence
and spherical symmetry cannot be considered a
good approximation, the time-independent spheri-
cally symmetric solutions are expected to become
singular. We shall find that they do in fact become
singular.

III. SOLUTIONS TO THE FIFLD EQUATIONS

A. Time-independent spherically symmetric solutions

R„v= rP„„,—I P, „-rP„.r,„+r'.„r,'. .

B. Particles and physical fields

(2)

(~)
Assuming spherical symmetry about the origin

of coordinates, it can be shown that in polar co-
ordinates x'= x, x'= 6, and x'= y the fundamental
field g, v can be put into the form'

A region of the continuum is called flat if a
coordinate system can be found in the region so
that the fundamental tensor field is equal to the
Minkowski tensor throughout the region, that is,

ggv = ~gv.

-P fsin0 0

0 -fsin8 -P sin'8 0 (4)

Particles are limited portions of the continuum—
limited at least in the spatial directions —which
have a very nonflat structure. Portions of the
continuum between the particles and possessing
a nearly flat structure are known as empty space
or vacuum. The slight deviations from flatness in
such portions of space-time will be taken to indi-
cate the presence of an electromagnetic field if
g„v, t 0 and the presence of a gravitational field
if g&„„&4@„,. Nearer the particles, where the

y

where n, P, y, f, and u are functions of x and t.
In addition, if the field g, „ is to be regarded as
approximating a regular (nonsingular) solution to
Einstein's field equations we must choose u) = 0.
Let us see why.

Making use of the definition (2) we arrive at the
identity

O(wv)pp ~[~v]
[vp] , v &
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where

gVV ( +)I/2+V (6) C1+ i

&VV+ =&VV&

Thus Eqs. (la) are equivalent to the equations

~En v] 0
yV

(6)

sinh'g = 1,
so that f and P are given by

If we restrict ourselves to solutions to the field
equa. tions which are regular (nonsingular) every-
where, we see from (8) that g'""' can be derived
from a potential. That is,

gt. g V] gP VPC4,
op p

Over a region of space in which deviations from
spherical symmetry a,re negligible

c,=c,(r, f}, g, =c,=o, c,=e,(r, f).

Placing (l0) in (9), we see that over such a region
all components of g('"' vanish (or are negligible)
except g'"'= —g'"'. But from (4) one finds for
the components of g ~'"' over such a region

2&l j2
g(24] g(32l

(p2 f2)(q2

(4(l ( 4~ (&'+f ')"'
g = g = ze p)(y2 sin&

(~y —K

all other components vanish. We conclude that if
the field g„ in (4) is to approximate a regular
(nonsingular) solution to Einstein's field equations
we must choose so= 0.

The general time-independent spherically sym-
metric solution to Einstein's field equations under
the assumption m= 0 was first found by Wyman. '
He finds for n, P, y, and f (see Ref. 9)

(f'+ 6'b"
4m, 'y

m, '(1+ih, )e'sech'~-,'(1+i', )' '6+a]
)c, +i

y=e',
where the integration constants rn„c„and h, are

n s ~
& c& ar1d A1~ and the variable 0 ls the

negative of Wyman's x. The variable 5 is an a.rbi-
tra. ry function of r.

Since we are only interested in solutions which

may represent particles, we shall restrict our
study to those solutions found by Wyma. n for which
the field g, „is flat at infinity, i.e. , can take its
Minkowski value g„, at infinity. For such solu-
tions one can show that

We place no a priori boundary condition on g,
In investigating this Wyman solution we shall

find it convenient to work in "standard" coordi-
nates. Standard polar coordinates a.re defined as
coordinates in which g, „ takes the form (4) with

P=H. Standard Cartesian coordinates a.re de-
fined in terms of standard polar coordinates
through the transformation

x' = x sin8 cosy, x' = x sin8 since, x'= r cos9.

In standard Cartesian coordinates Wyman's solu-
tion takes the form

xs t

g &--~ (-((( —1}S S r ' y

g44 y & g4s 0) gg4

m, '(1+ i(, ') e' d6

e,'+ 1 (cosh) cos(})' dr

y= e

f 2m, ' e'
c,'+ 1 (cosh) —cos(})'

&& —,[(c,+h, (}c oshEcosT} —1)

—(1 —e(i(,)sinh$ sinl}],

p, = [p + p(1+ h, ')'~']'~', v= h, [2+ 2(l+ k, ')'~'] '~'.

The variable 5 in standard coordinates satisfies
the equation

m2 2e6
1

c,'+ 1 (cosh& cos(})'

&& [{c,+ h, )sinhg sin(}+(1 —c,h, )(cosh( cos(}—1)]

At distances sufficiently far from the origin of
coordinates the functions n, y, and v can be ex-
panded in a power series in x '. We find

2m,+(, ~)„, ( '),

2m, 1y= 1 —,' —+O(x '),
(c,'+ 1)'~' ~

v= c, —3m, 'h, ~+O(r ').
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The above results suggest we replace the constants
R2 y c1, and h, characterizing the Wy man solution
by the constants m, q, and l defined in the follow-
ing way:

1/2
1+—~
1

C = ——6—

3lq 1 q'
A, = —,1+—~»I' 4 l

where q can take the value 1 or -1. There is no
loss of generality in assuming l ==. 0. In terms of
~n, q, and l we find

2ns+=1+ +0{~-'),
r
2'@=1— +O(x '),

InfeM, and Hoffmann (the EIH procedure) in that
one expands the fieM g„ in a power series in a
parameter which measures the strength of the
singularities associated with particles (the pa-
rameter will parameterize mass and charge), but
the procedure differs from the EIH procedure in
that one does not consider time variation to be
necessarily small and thus does not choose the
parameter to also order time variation. The pro-
cedure leads to I.orentz-covariant equations of mo-
tion at each order of approximation. For further
discussion see the papers of Ref. 3.

In the following discussion of the approximation
procedure, unless otherwise stated, all indices
will be raised and lowered with the Minkowski
metric q, „=q'". The subscript (0) to the left of a.

field will indicate order. +le will be using the no-
tation '-g = q"'g

If we assume the expansion

q 1 qu= 1 —,——~~ +0(r ') .r' 2 l

%e have defined n~ and q so that at large distances
from the origin of coordinates, g&„,)

—q„„ is pro-
portional to ~n, and &~&„,

&
is proportional to q. Thus

the form of the fundamental field at large distances
from a particle suggests that we identify»~ with
the mass of the particle and q with its charge. It
also suggests that the length / associated with each
particle is universal, that is, the same for each
particle. Finally, it suggests that the length / is
an astronomical length, for we know that over
laboratory distances the electric field produced by
a charge falls off. with distance as r '.

However, only by investigating the interaction
among particles represented by the Wyman solu-
tions can we interpret the solutions physically and

properly relate the arbitrary constants appearing
in the solutions to the mass and charge of a parti-
cle. %hen this is done we will find that the above
suggestions are correct.

B. Equations of motion

Approx'E'»lPAoPl p'Yoced'gt e. In order to lnvestl-
gate the interaction among particles in a non-
linear field theory one must in general use an

approximation procedure to solve the field equa-
tions. In this paper we shall use a fast-motion
approximation procedure developed by one of the
authors in a previous series of papers. ' By a
fast-motion approximation pl.ocedure we mean a
procedure which does not assume slow variation
of the field. The approximation procedure we
shall be using is similar to the conventional slow-
motion approximation procedure of Einstein,

for the fundamental field g „(x is the expansion
parameter) the field equations (1) can be put into
the form'

2 + pv
~tv V3

~l v v&)t j

~P '+ '"=t
~(p, v) ~(pp), v ~(vp), v ~u, i~~ (po) 'g v ~

(22)

[pvj
&rvv3= ~~vvp~&

(pc)
~(p v) lp p~vg ~ Ogv &

pc
&v, v= Op, POv~ g

ov v
( q)~/~ ~wv

g= detg, ,

~VP
gv, pw

peak N~g p t. lcd. , v j &

gv +iuv) 2 igvl +isa)) '

(24)

(25)

&(..) -0

The field RN„„ is that part of the tensor R„„which
ls nonlinear 1n. y

When investigating the physical consequences of
Eqs. (22) it will be understood that we are investi-
gating the relevant fields only at points which are
sufficiently "distant" from the world lines of parti-
cles so that (21) is valid.

For convenience we will also impose the coordi-
nate conditions
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on the field at each order of approximation. Co-
ordinates for which (26) are valid a.re known as
harmonic coordinates. It is important to note that
we do not impose (26) on the exact solutions, only
on the solutions up to the order of approximation
in which we choose to investigate the fields. It can
be shown that under these conditions the use of
harmonic coordinates will not restrict the set of
invariantly distinct solutions to the field equations
(22). '0 In harmonic coordinates the field equations
(22) take the form

ag p
~f it, vl ~ u, vpP

e are using the notation

(p)& tt &it (P) ~g
7

(P)&&v (&)jP

d(P) 7~ ~ d(P)~it y(P)gv

(33)

»["] -&. *

~[gv, A, ]
2
~(ft, v) tp v &

Q~(vv)

(27a)

(27b)

(27c)

(27d)

Application of approximation procedure To.
lowest order (first order) we have from (24) and

(25)

[pa3 + ya gp p3, a
2~[pa3, v~,v ~[it p] ~[va] ~[@p], 8 [v

[pa], tc [ptc l, a
~v v~[pa], if~ ~ ~u v~[pa], ti~

[pa3 f. pal
~[i a], vp+ ~ ~[va], v p

[pal
2 ~ tt, v~ ~[pa 3

Because we do not want gravitational interaction
to appear in the lowest-order interaction terms
(second order), we will choose mass and therefore
y(„„)to be a second-order quantity. In this way
we avoid having to investigate gravitational inter-
action in second order. Thus to lowest nontrivial
order (second order) we find from (24) and (25)

A superscript (p) to the left of an expression means
that the quantities in the expression which are
associated with a particle are associated with the
pth particle. A dot over a quantity associated
with the pth particle means the derivative of that
quantity with respect to '~'y. The subscript ret
means that in the expression in brackets those
quantities associated with the pth particle are to
be evaluated at the "retarded point"

(P)+ (P)+P Q +4p Q
p

The coordinates of the pth particle have been de-
noted by (p)(. The quantities (~)q and (~)E are
time independent. Let us investigate the interac-
tion among such particles.

To find the equations of motion to second order
satisfied by these particles one must study the so-
lutions to Eqs. (27) to second order. The solutions
to Eqs. (27a) and (27b) to second order are iden-
tical to the solutions to first order. No equations
of motion are involved. In order to obtain equa-
tions of motion we must investigate Eqs. (27c) and

(27d) to second order.
Placing the field (33) into (30) one can solve

Eqs. (27c) to second order. From (3lb) we see
that the solution will take the form

In a harmonic coordinate system, and keeping
only terms linear in m and q, one finds from the
solution (14)-(17), representing an isolated parti-
cle,

g 1 g x

y( „&
——Q ' '[4mu u„(re') )„e(+y(„„),

p

2 I
&(~v) = ~f v.

From (34), (35), (30), and (33), one finds for
, v

~(tt, v)

(34)

4m
~(44) &

~ ~(cs) Q~ ~(st )

To investigate the electromagnetic interaction
among these particles one must choose as the
lowest-order solution to Eqs. (27)

[pal
~[v ] 2 it, vpa~ ~v, v ~v, tt & ~(v v)

where

= '(' —(4mu ) t(t 'r '*'u" + e —r*'"'ud v 9 t v

d~ [It v] ) [u v3

——Eg (Q + QP14 Q~) p (
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(p) gext (p) ext (p) ext
[uv3 u, v v u ~

~'y'* =~ ~ l~' qu (ru) + —'e —r
P + 2

P'&P
- ret

(38)

(39)

approximation over laboratory distances through
the conventional classical electromagnetic inter-
action if and only if 'P'l is a universal astronomical
length and 'P'q =1. In this case (46) takes the form

The procedure used to find y(„„"is discussed in
previous papers. ' Since Eqs. (27d) must also be
satisfied we must have

and (47) takes the form

2

(48)

(P)( 0 (40) (p)y ext (p)~ ext (p)~ ext
uv uyv v~ u,

Particle motion is restricted by (40). The equa-
tions of motion satisfied by the particles to second
order are

mu = 4/qual'y*'"' uv ——e —y'*'"'u"

(P') -e
'~'A'"'= ~ —u (r u') '

4m& ~ c'pe ret

(49)

+ 3pq (u +upu u ) (41) 4.e. E , (4i )..
These equations follow from (37) and (40). If we

introduce the effective electromagnetic field pro-
duced by a particle 'P'yf ],

"'y&„„&= p
' '(y&*, „)—el'Cl'y, *,„,),

and the effective external field

(p)-ext L (p)( Sext &~2 R„Next
~[uv] 2 ~~[uvl ~ [uv]) &

equations of motion (41) reduce to

(42)

(43)

m7g = —6 —y'"']uv+3 6q (u u u u ) (44)

GM
Pl c

G
2''& OC

Z/2

e,

(45a)

(45b)

(Swan G)'i'
~[uv] c uv &

Eqs. (44) can be put into the form

(45c)

2

Mu„= e —F„'"'u"+ —e, (u +u,u'u ), (46)

where

(p)y ext (p)g ext (p)~ ext
uv uyv usv &

If we introduce the mass M, charge e, and ef-
fective electromagnetic field I „„in practical units,

We must still answer the question of over what
range of interaction distances we can expect the
approximations used in arriving at (48) and (49)
to be valid. This has been discussed in the litera-
ture, where it is shown that as long as l is a mode-
rate astronomical length Eqs. (48) and (49) should
be valid over both laboratory and astronomical
distances. " We shall discuss in Secs. IV and V
reasons for believing that l satisfies this cri-
terion.

We see from the above results that our tenta-
tive identifications of m and q, based on the long-
range form of the field associated with solution
(14)-(17), were correct. The parameter m repre-
sents the mass of the particle and the parameter q
represents the charge. We also find that the length
l associated with the solution must be a universal
(moderate) astronomical length, and e must be
equal to 1.

Finally, we note that according to (49), in Ein-
stein's theory, in an approximation which should
be valid over laboratory and a.stronomical dis-
tances, the effective electromagnetic field pro-
duced by an arbitrary moving charged particle
consists of two parts: the conventional Maxwell
field derived from the Lienard-Wiechert poten-
tials, and a long-range nonconventional field
given by

(P')~ (P) (P)i2
(p )~ext

4 2 2 ' 'i ( ' ' ' 'i*
p'& p

(p')
—u (ru')'

P
ret

(47)
E= —, (n P)(1 n P)-' „,,

0

B= —~ v&& n 1 —n'P ret &

(50)

(P')E (P')—
+ r

4m&, ~ (») c 4l'
p&p ret

We see that the particles can interact to a good

where

rn=, r=x —E,
Jrt

d$ - v
V=—

~
P= —

~dt' c (51)
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The vector ( describes the position of the particle.
Because l is an astronomical length, the long-
range fields (50) a, re extremely weak and would be
undetectable at the present time except perhaps
in some astronomical phenomena. A brief dis-
cussion of the implications of these long-range
fields will be given in Sec. P. A discussion can
also be found in the literature. '

IV. PARTICLE STRUCTURE

A. General solution

W'e have shown that the most general time-in-
dependent spherically symmetric solution to Ein-
stein's field equations which can represent a
charged particle at rest" is characterized by
three parameters: m, q, and l. The parameter
w is the mass of the particle and the parameter

10' m~ 3 ~ 10" m, (52)

and will be discussed later.
The solution g„ is given in standard coordinates

by

x'x' ~k
8 S s

~44 ~ 9 ~&$0 & gS4

where, introducing the definition

we can write

q is the charge. The parameter / is a universal
length —the same for each particle —bounded but
not determined by existing experimental evidence.
The evidence suggests

/=8

q 68' 1q' ' 1 lql ns
U= 1+——, + — — (1 —cosh) cos7})

Iql (cosh) —cosy)' 4 l' 6 l r,

with

1+——
2

1+—— — +- 1+——,

1 1 q' ' m ' '~' 1 1 q' ~H1+- 1+-— + — 1+——
9 4 l' y', 3 4 l' r,

The parameter X in (56) is a. function of r defined through the egua. tion

6e' I 1q' " 1 lql m '
. . 1 lqt 1q' ' 1 m

1+ ~ + — sinh$ sing —
2

+ —~ — — (cosh( cosy ].) . =

The solution is a special case of a more general
time-independent spherically symmetric solution
to Einstein's field equations first found by Wyman.
For q= 0 the solution reduces to the well-known
Schwarzschild solution of Einstein's gravitational
equations.

B. Field at large distances

If at distances sufficiently far from a charged
particle we expand the field g„„in a power series

in r ' we find in standard coordinates, neglecting
terms of third or higher order in y ',

2m 4m' 1 q' 1
r r 2 1+—,'(q'/f2) r2 '

(58)

q 1 q
21
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2m 4m2 1 q'@=1+ r r2 2y

2&i 1 qy=1 — + ——r 2r''
(59)

Two properties of solution (53) (57), and of
Einstein's theory, are evident from the above
asymptotic expansion.

First, if we compare the above results to those
obtained from the Reissner-Nordstrom solution
of the Einstein-Maxwell equations, where to the
same order in x ' one finds

isolated charged particle at rest actually approach-
es the limiting value implied by (60) is not known.
If the particle has a, charge equal to the electron
charge and f lies in the range (52), this limiting
field is of the order of 10"V/m or less. A dis-
cussion of the physical consequences of the long-
range electromagnetic field associated with
charged particles in Einstein's theory can be
found in the litera, ture, ' and in Sec. 7 of this
paper.

C. General structure

+(u, v) ~g v &

1q x~
~fst] 2 ~

~stk & ~[4s]y'

(60}

We see that the symmetric part of the field be-
comes the Minkowski metric at infinity, while
the antisymmetric part, although it does not
actually vanish at infinity, becomes very weak.
If the charge on a particle is the electron charge
one finds from (45), (52), and (60) for the field

g&„„& at infinity

igp „,
i

10 (61)

That the symmetric part of the field g „ takes
its flat-space values at large distances from an
isolated particle is of course consistent with ex-
perience. That is why we imposed it on the solu-
tion in the first place. That the antisymmetric
part of the field becomes very weak at large dis-
tances from a particle is also consistent with ex-
perience. The antisymmetric part of the field

g„„is related to the electric field, a field which is
known observationally to become very weak at
large distances from an isolated particle. How-
ever, whether the electric field surrounding an

we see that even asymptotically —at large distances
from a particle —the effect of electric charge on
the field g, „„&is significantly different in Einstein's
theory a,nd in the Einstein-Maxwell theory of elec-
tromagnetism and gravitation.

Second, we note that at infinity one finds from
(53) and (58) for the field g, „surrounding an iso-
lated time-independent spherically symmetric
charged particle in Einstein's theory

GMI=, = 6.8 x 10 "rn,
C

~q ~
=, = 2.0 x 10 "m.

277 6 pc

(62)

These values permit an expansion of the field with
high accuracy in powers of the parameters ni, /rp
and Iql/f. For an electron we find, assuming that
l lies in the range (52),

—=- 10 44

fp

~q~ (10~~
l

(63)

Although the above orders of magnitude are esti-
mated for an electron, the expansion technique is
clearly reasonable for any charged particle of
microscopic mass.

To lowest order in m/r, and I q I/l we find from
(55)—(57)

We are examining the structure of solution (53)-
(57) viewed as describing a model of an electrically
charged elementary particle. As discussed ear-
lier, this model will be adequate only to the ex-
tent that one can ignore deviations from spherical
symmetry and any time dependence which might be
associated with the elementary particle.

The expression for this field is quite complicated
in general, but turns out to be manageable when
values of n~ a,nd q appropriate to an elementa, ry
particle are inserted in (53)-(57). For an elec-
tron one has

4(cosh' —cosX)' sinhX siM
[sinhX sink(sinhX+ sink) + (1 —cosh' cosX)(sinhA. —sink}]' '

y=1,

q 6(1 —cosh' cosX)
I q I (cosh' —cosX)' r

(64)
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where the parameter X is defined through the
equation

6 sinh~ sin~
(cosh' cost)-'r,

The parameter X varies from ~ to 0 as ~ varies
from 0 to ~.

If one is attempting to model a charged particle
of microscopic mass, Eqs. (64) and (65) are a
very good approximation to (55) —(57) everywhere.
They neglect only the contribution of the mass n~

to the field I', a contribution which in this case is
ahvays small) and the contribution of the long-
range electric field to the total field (a contribu-
tion which is also very small).

In Fig. 1 we have plotted a —1, y —1, and ~u~

as functions of r We .have made use of (64) and

(65) since we are interested in solution (53)-(57)
as a model of a charged elementary particle. An
examination of Fig. 1 shows that the field asso-
ciated with such a particle changes its character
in a qualitative way as one goes from the asymp-
totic region far from the particle into the region
r~ x,. In this latter region the dependence
of the field on x is seen to depart signifi-
cantly from its form far from the particle. In ad-
dition to this change in form, the field in the re-
gion ~~ ~, becomes large in an absolute sense;
this is an indication that no linear approximation
to the field equations can successfully describe the
behavior of the field in this region. For the above
reasons the distance x, is a measure of the size of
a particle. The largest plausible particle size with
which to associate x, would seem to be the elec-
tron Compton wavelength. This correlation pro-
vides an upper bound on / of

(66)

a few astronomical units, and implies a, modifica-
tion of Maxwell's equations for astronomical use
if Einstein's theory is correct. Note that to the
extent that the solution (53) (57) can be regarded
as describing an elementary charged particle, the
structure and size of such a particle is, to a very
good approximation, independent of its mass.

D. Field near the origin

For an examination of the field in the vicinity of
the origin it is convenient to express the field as
a power series in r/ro On. e finds from (55)-(57),
in the vicinity of the origin,

2 1+ coshW
G= ~ ~ ~

3 sinhm

$1 2 '~' (1+cosh')' m r
6 3 s lnh 7T Ão 'vo

q 6
'V + ~ ~ ~ —" + —[I+ ~ ~ ~ ]

iq I 1+ cosh~ r Iq I

In (67) we have written out only the lowest-order
terms in the power-series expansion in m/ro and

Iql/I of the coefficients of (r/r, )".
We see from (67) and Fig. 1 that the only singu-

larity in the field in standard coordinates is at
x=0.

The fact that the solution is singular at x= 0 can
be given a physical interpretation. This has been
discussed in the Introduction.

Related fields

FIG. 1. The functions a-l, y-l, end ~4 ~, describing
the fundamental field.

In Einstein s theory we are often interested in
the fields g"" and g~" which are related to g„„
through (6) and (7). Associated with the particles
we are investigating we find for these fields, in
standard coordinates,

1+'U xx x
~8th~1+0 Q

(68)

g44 F4 —Q t84 Q
1
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Qy 1+0 XX X

(69)

These fields are also singular at y= 0.

F. Electromagnetic field

From the work of Sec. III, involving the interac-
tion of particles in Einstein's theory, it follows
that the simplest field related to electromagnetic
interaction in the theory is the pseudotensor field

y,*„„„where

(70)

We therefore define y&~„„& to be the electromagnetic
field in Einstein's theory ". ~e find from (69) and
this definition that the electromagnetic field asso-
ciated with the solution (53)—(57) takes the form

ln Fig. 2 we have plotted u as a function of r.
Note that the electric field vanishes at the origin
ot coordinates. As is to be expected, r, is a mea-
sure of the electromagnetic size of the particle.

Qne word of caution: The simple form of the
electric field in the vicinity of a particle should
not be interpreted to mean that the force between
two nearby particles is at all simple. In Ein-
stein's theory it is only over moderate macroscop-
ic interaction distances that the Lorentz force law,
in terms of the field (70), can be considered valid, "'
and thus only over such distances can the electric
field be regarded as the force per unit charge act-
ing on a test charge at rest. Qver interaction dis-
tances of the order of r, (the size of a particle)—
and perhaps also over atomic and molecular dis-
tances —the interaction between particles is not
expected to follow from the I.orentz force law and

may be very complex. For a discussion of this
point see the works mentioned in Ref. 11.

V. ELECTRODYNAMICS

A. Einstein electrodynamics

E=,un, B=O.
4m Coro'

(73)

We also see from Sec. III that the electromagnetic
field in practical units would be given by

c
~2 j. /2

Bm'& l'G

Thus we have for the electric field E and the mag-
netic field B in practical units

Equations (48) and (49) describe the electrody
namics of charged particles interacting over mac-
roscopic distances in Einstein's unified field theo-
ry. We shall call this electrodynamics Einstein
electrodynamics. Equations (48) and (49) were
obtained on ihe basis of approximations which
should be valid over both laboratory and astro-
nomical distances, a distance range where clas-
sical Maxwell electrodynamics is usually assumed
valid. The force law (48) of Einstein electrodynamics
is the same as that found in Maxwell electrody-
namics, but the effective field produced by a col-
lection of particles, as given by (49), can differ
significantly from the Maxwell field at astronomi-
cal distances «/. At such distances from the par-
ticles the weak long-range fields (50), which are
particular to Einstein's theory and not present in
Maxwell's theory, can dominate the interaction
with other particles. Thus, if Einstein's theory
is correct, it may be possible to find evidence
for the theory, and determine l, by examining
astronomical electromagnetic fields.

Q. i

2 5 4
(r/ro)

FIG. 2. The function u, proportional to the magnitude
of the electric field.

9. Fmpirical tests

At present the best evidence known to us on the
determination of l comes from an examination of
the approximately dipolar magnetic fields of the
Earth and Jupiter. This determination makes use
of the fact that in Einstein electrodynamics any
localized current distribution which produces a
conventional magnetic dipole field will also pro-
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A careful analysis of the Earth data is now in

progress, "making use of a general harmonic
analysis of the Earth's field, to see if this bound

may be improved and if there is any evidence for
Einstein's theory in the data. The lower bound

from the Jupiter data of Pioneers 10 and 11 is

)z 109 m. (75)

duce a long-range nonconventional magnetic field,
particular to Einstein's theory, which falls off in-
versely with distance and dominates the conven-
tional field at distances greater than 2/. The
particular form of the nonconventional field can
be found in earlier papers. "

At the present time the evidence from the Earth
and Jupiter data is not sufficient to determine l,
but is sufficient to place a lower bound on /. The
lower bound from the Earth data is"

1~10' m.

C, Field equations

In the investigation of astrophysical phenomena
using Einstein electrodynamics it is convenient
to have available the field equations satisfied by
the electric and magnetic fields expressed in
terms of the sources of the fields, the charge
density p, and the current density J, where

p= P 'u'e 6(x —' (76)

these problems. In connection with radio galaxies
and quasars another possibility, that the long-
range repulsion between unlike charges (and at-
traction between like charges) due to the long-
range field (50) might lead to charge-separation
processes over astronomical distances, should be
studied.

This bound is based on the fact that out to about
20 Jupiter radii from the planet the conventional
dipole field appears to dominate. " This implies
that 21 is greater than 20 Jupiter radii, and thus
we have (75)." This bound is higher but might be
considered less firm than that obtained from the
Earth data. It comes from data taken along two

paths through the field, each traversed once, and
effects due to plasma currents are uncertain.
Plasma currents seem to significantly distort the
field at distances greater than about 20 Jupiter
radii. If Einstein's theory is correct, it is pos-
sible that a more thorough analysis of data from
Jupiter might reveal Einstein effects in the field
and yield an estimate of /.

Evidence for Einstein electrodynamics may also
arise from its application to a number of astrophys-
ical problems of current interest. These include

P (P)e (n)v 6(x (0)()

Such field equations are"

v'& E+—=0,
Bt

1
V 0=p-

8ml'

where

D= e,E, 8= p, ,H.

(78)

(79)

(1) the structure of the solar magnetic field and
interplanetary field,

(2) the galactic magnetic field, and

(3) the structure of radio galaxies and quasars.

The long-range magnetic fields particular to Ein-
stein electrodynamics could be important in all of

These equations are satisfied by the effective
electromagnetic field (49) and are the replacements
for Maxwell's equations in Einstein electrodynam-
ics, expressed in conventional, three-dimensional
notation. They may be applied to physical phe-
nomena using a phenomenological fluid model for
the charge density p and the current density J.

'A. Einstein, The Meaning of Relativity (Princeton Univ.
Press, Princeton, New Jersey, 1955), Appendix II,
pp. 133-166.

2See for example J. Callaway, Phys. Rev. 92, 1567
(1953).

C. B. Johnson, Phys. Bev. D 4, 295 (1971); 4, 318
(1971); 4, 3555 (1971); 5, 282 (1972); 5, 1916 (1972);
7, 2825 (1973); 7, 2838 (1973); 8, 1645 (1973). In
subsequent references we shall refer to these papers

as papers I-VIII, respectively.
G. %'. Gaffney, Phys. Rev. D 10, 374 (1974). In this
work Gaffney is investigating the interaction of
particles in a version of Einstein's theory known as
the "Hermitian version. " Einstein*s final version and
the Hermitian version are closely related, and results
from one version can often be readily translated into
the other.

See Ref. 3 (paper II, Appendixes G and D) and Bef. 4.
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See also C. R. Johnson, Nuovo Cimento 8B, 391 (1972).
6The notation

1
~(gv) = z~~v+~vg»

1~ [pv) = z (A ~v
-~ v, )

~ [gv, X] ~ [pv3 X [vX], g [Xgg, v

will be used in this paper. Greek indices take the
values 1—4: Latin indices take the values 1—3. The Levi-
Civita symbols e "v~~ and p, gp will be chosen so that
E' = 1 and E~23=1.1234

VA. Papapetrou, Proc. Roy. Irish Acad. A52, 69 (1948).
Papapetrou's analysis can be generalized to include
nonstatic systems ~

BM. Wyman, Can. J. Math. 2, 427 (1950). By a time-in-
dependent spherically symmetric solution we mean a
solution which is time-independent in a coordinate sys-
tem in which the field takes the form (4).

Two additional solutions found by Wyman, corresponding
to m& —-0, cannot represent charged particles and will
not be discussed here.

' See Ref. 3 (paper III).
'~See Ref. 3 (paper II, Appendix C and paper VIII). See

also Refs. 4 and 5.
' We are restricting ourselves to solutions for which the

symmetric part of the fundamental field is flat at
infinity.

'30ver moderate macroscopic distances from a charged
elementary particle this field will differ insignificantly
from the effective electromagnetic field defined in Sec.
III, and thus, like the effective field, it can be iden-
tified with the observed electromagnetic field over such

distances. Over larger distances, i.e. astronomical
distances, differences between the two fields become
significant and only the effective electromagnetic field
can be identified with the observed electromagnetic
field. For further discussion see Ref. 3, paper II. The
relationship of field (70) to interactions overmicroscopic
distances has not yet been fully analyzed. See the In-
troduction.

'4See Ref. 3 (paper II, Appendix D). See also Ref. 4,
Sec. IVC.

'5This bound is discussed in Ref. 4.
'6R. L. Wilson, private communication.
' E. J. Smith, L. Davis, Jr. , D. E. Jones, P. J.

Coleman, Jr. , D. S. Colburn, P. Dyal, and C. P.
Sonett, Science 188, 451 (1975).

' The Jupiter data taken by Pioneer 10 have been analyzed
by L. Davis, Jr. , A. S. Goldhaber, and M. M. Nieto
[Phys. Rev. Lett. 35, 1402 (1975)] as a test of Maxwell's
equations. When applied to our problem their results
are found to be consistent with the bound (75).

' Equations (78) can only be expected to be valid over
those regions of space where y[„„&«1. This means
that the electric and magnetic fields appearing in (78)
cannot be arbitrarily strong. One finds as the restric-
tions on these fields

4 &/2 C2 '/2

8re()l G '
8zepl G

For l = 10'0 m one finds

E«10' T/m, B «10 Tesla.


