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On the basis of a heuristic model we argued in an earlier paper (paper C of this series) el-
ectric field (and of course the magnetic field, too) of a lepton or of a quark may be formulated
in terms of a closed loop of quantized magnetic flux whose alternative forms ("loopforms")
are superposed with probability amplitudes so as to represent the electromagnetic field of
that lepton or quark. The Zitterbezvegm eg of a single stationary ("elementary" ) particle sug-
gests a kind of quasiextension, which is assumed, in the present theory, to permit concepts
of structuralization of the electromagnetic field even for leptons. Mesons and baryons may
be represented by linked quantized flux loops, i.e. , quark loops (as in paper 8). The central
problem now (in this paper D) is to formulate those probability-amplitude distributions in
terms of wave functions to characterize the internal structure of the lepton or quark in ques-
tion. As probability-amplitude functions one may choose bases of irreducible representations
of the group with respect to which the model is to be invariant. It is seen that this implies
the SO(4) group. As both the electron-muon mass ratio and the electromagnetic coupling con-
stant depend, in this flux-quantization model, on the correct formulation of the structuraliza-
tion of probability-amplitude distributions, we should expect to get an insight into both these
puzzles from finding the right probability-amplitude wave functions. Furthermore, it is seen
that this same structuralization of probability-amplitude distributions also permits one to es-
timate the rate of weak interactions, thus relating them to electromagnetic interactions.

I. INTRODUCTION

We consider a flux-quantization model whose im-
plications for electrons and muons are being dis-
cussed in this paper. [For the basic issues of
magnetic flux quantization and particle physics we
refer the reader to Secs. I and II of paper C (see
Ref. 1).]

The concept of a closed quantized-flux loop
(which avoids introducing magnetic monopoles)
leads to a theory of charge leptons, and of quarks.
In order to construct a continuous magnetic field
of an electron, it is assumed that the flux loop
adopts a statistical distribution of alternative
forms characterized by a complex probability-am-
plitude superposition, in a manner somewhat anal-
ogous to the superposition of path histories in
Feynman's space-time approach to quantum me-
chanics.

On the same basis as quantized magnetic flux
arises from a singularity of the gauge field, an
electric field also arises when this singularity line
(loop) is moving. In particular, a Coulomb field
results from the spinning of the loop manifold with
an angular velocity" equal to the Zittexbeuegung
frequency 2mc'/k, if that loop manifold represents
a Bohr magneton field.

As we shall indicate in discussing Eqs. (1.1)-
(1.3) below, the calculation of the Bohr magneton
from quantized flux yields the coupling constant e'/
hc; it results in a consistent electromagnetic

theory not only of magnetic and electric fields, but
also of electromagnetic energy =me' and electro-
magnetic angula, r momentum = 8'/2. The calcula, -
tions of mc' and of h/2 are done not to "derive"
these quantities but as a consistency condition; cf.
paper C, Appendix B.

This calculation of the Bohr magneton from quan-
tized flux has some very interesting aspects. We
found that the source lepton may be considered as
an extended object" of linear size with radius = h/
2mc = the amplitude of the Zittexbezveguqg . Accor-
di'ngly, a Gaussian distribution of "magnetization"
to produce such an extended source field should
carry an effective magnetic flux C,«corresponding
to the Bohr magneton eh/2mc,

4m (eh/2m c)
eff

where x, is the root mean square of the Gaussian
distribution, and the factor 3.1 simply arises from
calculation of the Gaussian (see paper A, Sec.
VC). This 4,«cannot be directly identified with
the quantized flux 4, which is carried by the flux
loop because

(1.2)

is about two orders of magnitude larger than 4,ff.
We postulated, therefore, that the probability-am-
plitude superposition (of alternative forms which
a quantized-flux loop may have), when used to
build up the continuous magnetic field, implies in-
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3 )Nc
e' 8/mc' (1.3)

We called N the reduction factor. [The —„as ex-
plained in paper C, or Sec. IV, simply arises be-
cause a quantized flux loop of winding numbers
(2, 1) passes twice through the "core" of the
source; it is therefore 24q which is to be reduced
to 4,«.] Such a reduction may be understood by
considering the total field of a lepton as being due
to N statistically independent "bundles of loop-
forms" (which is not to mean "bundles" in the ter-
minology of fiber space topology) whose probability
amplitudes have s tatistically independent phases;
because of the probability-amplitude interference,
the effective flux is 4,« =24,/N (cf. paper C Ap-
pendix B, and the present paper, Sec. VI). This
bundling was a crude but useful way of structural-
izing the manifold of loopforms which thus made it
possible to get some numerical estimates for the
partial interference, i.e., for the reduction.
These bundles had been considered in paper A as
sets of loop neighborhoods, and will now be con-
sidered to be represented by modes of probability-
amplitude waves (some eigenfunctions).

The reduction is formulated by comparing a
"random-phased" situation with a "coherent" situ-
ation. We are discussing that in terms of the glo-
bal (i.e., integrated over Euler angles and size of
the loopforms) quantities: total magnetic flux,
magnetic dipole moment, electromagnetic energy,
and electromagnetic angular momentum. As the
modes D'I.D'& [cf. Eqs. (3.3) and (4.6)] are ortho-
gonal, the probabilities for their integrated fluxes
should be considered as adding up arithmetically.
This may be visualized by a photon-type statistical
distribution of "excitons" [which correspond to the
photons of a Planck-Bose-Einstein (PBE) distribu-
tion]. As we shall see in a more detailed analysis
in Sec. VI, each exciton may be represented by a
random-phased unit vector in the complex plane,
denoting the probability amplitude; those vectors
belonging to the same mode j may add up to a mode
amplitude r,. which may be chosen to represent the
number of excitons on the mode j, i.e., n, =

~
r,.

~

'
Applying a Planck distribution to those

mode excitons, one obtains the expectation values
of the occupancies

terference effects of these complex probability
amplitudes, in some way analogous to interference
of probability amplitudes in the superposition of
alternative path histories. The effective field may
thus, because of interference, be considered as a
properly reduced 4„ the reduction being

~ N =4,/4, f~

and an average occupancy for the distribution

Z&n;&..&n;&.. Z&n;&.,

or, with better statistics, rather (cf. Sec. VI)

(For the purpose of addition of expected occupan-
cies, mode amplitudes of different modes may be
considered as random-phased vectors in a complex
plane. )

If we now consider a hypothetical situation in
which those excitons which belong to the same
mode j are all coherent, and that this is so for
every mode, that situation corresponds to what we
call "in phaseI"; it has, for each mode, about
( n&; &,

„)'~' times larger a probability amplitude as
the random-phased ordinary photon-type distribu-
tion (4.5 ph). We make the assumption that this
coherent situation corresponds to the occurrence
of quantized flux 24, (i.e. , that a momentary co-
herence implies a momentary or virtual occur-
rence of the entire 24,), whereas the ordinary
random-phased situation corresponds to the actual
effective flux 4,«. We formulate this as

N = 24,/4„,

or, rather,

We recognize therefore that the reduction factor N
is simply the average occupancy, the statistically
weighted aforementioned average over all the
modes j. A similar procedure characterizes the
relationship between nonreduced and effective val-
ues of the other electromagnetic global quantities
as well [cf. the equivalent statement in paper C,
Eqs. (Bll) and (B14)].

To be able to give a reasonable estimate or cal-
culation of that reduction factor N is of great im-
portance. In the preceding formula (1.3) x,/(5/mc)
is of the order of —,

' because tha, t implies the only
reasonable velocity, i.e. , c at the equatorial region
of the core, and because that also brings electro-
magnetic energy and angular momentum to the re-
quired values mc' and 8'/2, respectively.

Accordingly a calculation of N is a calculation of
the electromagnetic coupling constant e'/Kc. In-
stead of defining some N bundles of loopforms to
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achieve the reduction in the heuristic model of
paper C or paper A, we define now (using a, PBE
statistical distribution of probability-amplitude
modes corresponding to a temperature T =P ') the
reduction factor N as the ratio of coherent to non-
coherent values of the (resultant probability ampli-
tude)'.

A central question with which we are concerned
in this paper (D) is to find appropriate probability-
amplitude wave functions in order to be able to de-
fine the reduction factor ¹ The heuristic model
gives the clues to that and shows why we have to
choose representations of SO(4). An appropriate
choice of probability amplitudes for the loopform
distributions will also have to give an account of
the electron-muon dichotomy. With the heuristic
model it was immedia, tely obvious [in the discus-
sion of Eq. (3) of C; and in Sec. VB of A] that the
same Coulomb field arises for a point electron and
for-a point muon, an important feature of the theo-
ry. In trying to understand the distinction between
electron and muon probability amplitudes, it was
not possible to specify the issue any further in pa-
per A, except that that paper referred to beat fre-
quency and frequency for electron and muon, re-
spectively.

It is this crucial electron-muon dichotomy which
is first to be investigated with the probability-am-
plitude wave description in the present paper. It
may be understood in the following way:

Isotropy of the electric field arises if we assume
that loopforms are distributed over axial directions
f with probability amplitudes whose absolute values
are proportional to [1+cos(P, z)]'~' and that they
all spin with the same spinning angular velocity 0,
0=2me'/8'or 3mc'/h [cf Secs. .IV, V, and Eq.
(4.4)]. The isotropy condition is derived in paper
C, Sec. II C and Appendix A (cf. also paper A).
Such a model, formulated semiclassically in terms
of loopforms which have both orientation and an-
gular velocity, is to be replaced below by a prob-
ability-amplitude wave model which implies the un-
certainty relation between orientation (azimuth) and
angular momentum.

The constancy of spinning angular velocity Q of a
distribution of loopforms over their Euler angles,
i.e. , over orientations g—= P, 8 and azimuths u, im-
plies that the distribution of the representative
points x„x„x„x,on the S, sphere, Eq. (2.2),
maintains invariant interdistances, i.e. , performs
an SO(4)-invariant motion. The SO(4) wave func-
tions (probability-amplitude functions) should be
sums [cf. Eqs. (3.8)-(3.10}]of D'„„D„x„e""&'"&"
terms for a muon and of D ~ D~& e+&&~I.-"r~'&~

L L E+E
terms for an electron. These functions define, de-
pending on the wave equation which connects the
j's with the ~'s, the angular velocities

II,~ (~~+ ~x)/-," (muon),

II, ~ (+~ —~x}/—, (electron).
(1 4)

The signer D functions are defined as usual, cf.
Eq. (5.4}, and we shall see that

~ jl. —j
=+ j~, n~= —j~. The ratio of the expectation values
of their corresponding Q implies their mass ratio
m. /m. .

The objective of the present model is to under-
stand the relationships of e'/hc and of m„/m, in
the framework of electromagnetism and quantum
mechanics. To specify the task in this way makes it
tightly confined and more interesting because of
this. %hat are then the premises which are in-
troduced here in addition to electromagnetic field
concepts~ First, we consider the field lines as
alternative forms of a line of quantized flux 4,
= hc/e, and we require the probability amplitudes
(which form the quantum state function) to have the
properties demanded by quantum mechanics [cf.
conditions (a) and (b) in Sec. III]. Second, we as-
sume that the magnetic field lines representing a
lepton (or a quark) are closed flux loops. Third,
we assume that the source region of that field is
"quasiextended" corresponding to the Zi tte~besee-
gzgng; the interpolation of space into the smaller
region permits (due to the different kinds of posi-
tion operators connected to each other by a Pryce-
Foldy-Wouthuysen transformation) a consideration
of the source as if it were extended according to
the particle's 8/mc. The second and third pre-
mises bring topological concepts into the model:
the Seifert-Threlfall fibration. A fibration of ordi-
nary three-space may be obtained by drawing field
lines following the directions to a smooth vector
field (in our case the magnetic field B), provided
the field is such that all these lines are noninter-
secting closed lines ("flux loopforms") and that any
pair of lines which are neighbors are so all along
their lengths. Such fibration fills the entire three-
space smoothly with field lines and these closed
loops then have to have the forms of torus loops of
winding numbers (2, +1), etc. , the first number
telling how often the loop goes around the "dough"
of the doughnut (torus), the second how often
around the hole of the doughnut. Those loops are
therefore, apart from topologically permitted de-
formations, of the form of nonintersecting lines
on coaxial toruses. Dipole field lines are (1,0).

This paper starts with Sec. II in which the geo-
metrical and kinematical significance of Cayley-
Klein parameters is specified with respect to the
loop model.

Section III investigates the mathematical struc-
ture of the probability-amplitude waves in terms
of irreducible representations of SO(4).

Section IV discusses the wave equations for
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probability-amplitude waves. A completion of the
objective of this section, i.e. , to find the appropri-
ate wave equation, will influence the numerical re-
sults of the Secs. V and VI.

Section V specifies the electron-muon dichotomy,
a calculation of their mass ratio in terms of the
Hagedorn temperature.

Section VI presents the calculation of the reduc-
tion factor, also from that temperature, in the
present probability-amplitude wave model, and
thereby relates the coupling constant e'/hc to the
electron-muon mass ratio.

Section VIA specifies further details to the fore-
going calculations.

The appendixes discuss the stereographic pro-
jection of the Cayley-Klein parameters (Appendix
A), questions about the wave equation (Appendix
B), footnotes and corrections to previous papers
(Appendix C), rates of weak interactions which also
may be estimated from this model (Appendix D),
and a summary of the entire project (Appendix E).

The list of references is intended to draw atten-
tion to the range of issues which should be con-
sidered in the present program; several refer-
ences (Refs. 18, 22 —26) and others are relating not

just to a particular point of the paper.

Cayley-Klein parameters (2).
We assumed a manifold of lepton flux loopforms

to be a superposition of submanifolds of the type of
sheaves of loopforms which satisfy the criteria of
a Seifert- Threlfall fibration. There are two topo-
logical singularities in such a fibrated x, y, z
space; these may be chosen to be a central
straight flux orientation axis (g) and a core equa-
torial axis. I.et us consider the latter to be a cir-
cle of a given radius for the present discussion
(Fig. 1; also see Fig. 3 of paper C, Fig. 1 of paper
B, and Fig. 5 of paper A).

A particular loopform is represented by a set of
parameters characterizing a torus loop of (a) a,

particular pair of winding numbers (the sign of the
second also indicates the handedness of the loop;
the winding numbers, furthermore, determine the
unknotting number, i.e. , the strangeness), of (b) a
spinning motion (parallel or antiparallel to the re-
sultant magnetic moment of the loopform), of (c)

X3

II. THE SO(4) GROUP

We would like to find out which group is admitted

by the forms of flux loops and by the probability-
amplitude function characterizing the loopform
distribution of a lepton. We may be reminded that
the quantum-mechanical field is that probability-
amp1itude "wave" function and that the electromag-
netic field plays the role of a dynamical variable
which, in turn, determines the effective magnetic
moment and the equivalent electric charge, and

which is compatible with an electromagnetic ener-
gy mc' and electromagnetic angular momentum 5/
2.

If we know the group, its invariants, and its rep-
resentations, we should form appropriate linear
combinations of the representations of the group
so as to formulate the probability amplitude func-
tions. With those we should be able to calculate
e'/hc (cf. Sec. VI, and paper C, Appendix B), that
was formerly only crudely estimated. on the basis
of the heuristic model. The electron-muon dichot-
omy should result from a proper formulation of
probability-amplitude functions, too. The present
proposal may be a first step in the direction of re-
solving these puzzles in more than a heuristic way.

Before we can determine the group in question,
we have to describe the topological and geometri-
cal character of loopforms in x, y, z space (1) and
of their parameter distribution in the space of the

X]

FIG. 1. Stereographic projection of a four-dimensional
Euclidean space E4 (with coordinates f xp, p xg, px2, g x3)
or of the points x™p,x™~,x™2,x3 of the unit hypersphere
S3 C @4 onto the three-space (with coordinates x&, x2, x3)
whose x&, x3 axes are shown in this figure. This implies
a projection from the pole Xp =1, X& =X2=X3=0 of the
unit hypersphere S3| E4 onto the equatorial hyperplane
xp =P, (For details cf. Fig. 2 and Appendix A.) If xp,
xf xg x3 represent the C ayley-Klein parameters of
Eq. (2. 1), then the loci (P -o, ) =const are the meridional
planes through the x3 axis, e.g. , the plane of this figure.
The surface of the toroid "doughnut" (whose cross sec-
tion with the meridional plane of the figure is indicated
by shading) is a locus 0 =const. The loci (P+0.) =const
are spheres whose centers are on the x3 axis and whose
cross section with the meridional figure plane are the
circles in Fig. 1. The nice thing about the Cayley-Klein
parameters is that the distance, such as it appears in

Eq. (2.6), denoted an appropriate measure for the re-
latedness {neighborhood) of two sets pt, Hu, o. and

P, O, n . Whereas, so far, we referred to the
Cayley-Klein space, {2), this Fig. 1 also describes, in
different interpretation, a toroidal system in ordinary
three-dimensional x,y, z space, (1).
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a whirling motion(when both winding numbers are
given and thus, with the signature of the second
winding number, the handedness of the loop is
given, the whirling motion may, in relation to the
spinning motion, have opposite or same handedness
as that of the loop, and thus be additively or sub-
tractively related to the spinning motion), of (d) a
size o (thickness of the torus on which it may be
drawn) of (e) a particular flux orientation f (orien-
tation of its central axis, or of its circular-sym-
metry-axis plane, which amounts to the same
thing, of (f) spin azimuth n, (angle a,bout the axis
f), and of (g) whirl azimuth ~ (angle about the
circular axis). The manifold of loopforms is char-
acterized by the parameters of the loopform-dis-
tribution probability amplitudes, in particular the
time dependence of those amplitudes.

In general, the whirling and spinning degrees of
freedom may have to be counted as two degrees of
freedom. For a pair or a triplet of interlinked
hadronic torus loops with different winding num-
bers and/or spins, spin and whirl are indeed not
equivalent. For a fibration in terms of one type of
smooth torus loops of given winding numbers there
is, however, an equivalence between spinning and

whirling, and one may therefore consider the
whirling motion as simply contributing, additively
or subtractively, to the effective angular velocity
of spinning, as was amply discussed in paper C.
The amount of that contribution is determined by
the winding numbers. This is one of the simplifi-
cations implied by the parametrized description of
loops. Spinning and whirling, being coaxial mo-
tions, may be described by the same wave func-
tions of the Euler angles.

We consider for el.ectrons or muons loopforms
of winding numbers(2, +1}and for neutrinos loop-
forms(3, +2) because those loopforms, belonging
to a sheaf, are interlinked, unlike loopforms of
photons, e.g. , (0, 1}. Quark loopforms(2, +1), (3,
+1), (3, +2), etc. are interlinked, too. The linkage
of the loopforms of a lepton loop or of a quark loop
among each other, and their linkage with other
loops, accounts for confinement: Interlinkage of
the toroidal loop(form)s implies their linkage to
one core whose size is given as of the order of =h/
mc, the Zittexbesvegung amplitude of the source of
the loop(s) in question.

We may describe loopforms in two different
ways:

(1) We may simply consider the topology of the
flux loopforms in ordinary x, y, z space. We single
out a "sheaf" of flux loopforms, all pertaining to
the same pair of winding numbers [e.g. , (2, 1)]and

the same flux orientation axis g, but spanning a
continuous mani fold of sizes a and of azimuths a, ;
therefore the designation as a sheaf. This mani-

= ins-, &cosa„
x, =sin —,'8 sin-, (P —n)

=sin —,
&f cosa„.,=cos-,'8 sin —,'(P+n)

=sin-, p cosa,

(2.1)

define a 3-dimensional unit sphere S3,
2 2 2 2

P +~1 ++2++3 —1, (2.2)

in a Euclidean E, space, which suggests that there
might be rotational invariance under So(4).'
denote the six generators of rotation" in this E,
~p~~~by ~23 ~3] Jy2 ~p] Jp2 4p3 ~

fold presents a Seifert fibration of x, y, z space.
It is an important submanifold of the full manifold
of loopforms because the loopforms of a sheaf
share the axes of the fibration(a common straight
axis Q= + g of spinning, and also a common cor-
responding circular a.:is of whirling), and since
those loopforms do not cut across each other while
moving; we may say there is no "cross-cutting. "
The manifold of the f parameters thus defines a
manifold of fibrations(sheaves). We considered
superpositions of those sheaves in paper C, Fig. 2.
We may then map such a sheaf on the correspon-
ding torus loops drawn on the surfaces of the
toruses of a toroidal coordinate system [paper C,
Fig. 3(d)]: Such a mapping is topologically sig-
nificant, not metrically, because the toroidal co-
ordinate system's meridional cross section con-
sists of circles, whereas the flux loopforms are of
a somewhat different form, and because the density
of lines in a toroidal coordinate system in its de-
pendence on the thickness of the torus could only
ad hoc be transformed so as to represent the den-
sity of flux loopforms of the magnetic field in
question(the density of Faraday lines is propor-
tional to magnetic-field intensity).

(2) We may describe a loopform as a point in the
parameter space of the above-enumerated param-
eters. It is the parameters g, z„ i.e. , the three
Eule~ angles, which we consider first of all. We
look for a distribution of probability amplitudes
over that manifold f, ~, of loopforms. Following
Sec. IV we deal with the distribution over e

We give an analysis of description(2) now, and
shall come back later to(1).

W'hat are the invariance properties of the dis-
tribution of loopforms in the parameter space of
the loopforms ~ The Cayley. -Klein parameters'

x, =cos28 cos —,'(P+n)
1=cos-, p,

&, =sin28 cos —,'(P —~)
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Consider, instead of the Euler angles, the p, a„
a„a3 to characterize the orientation of a rigid
body, an "object" (in our case, a flux loop whose
flux orientation axis & and azimuth n, are obtained
from a zero position of orientation in the z direc-
tion and azimuth 0, by a rotation about a with an
angle —p; a lies halfway between the P axis and
the z axis). SO(4) rotations may place this object
into an arbitrarily different orientation. Indeed,
an active transformation

eg K1J12eg K2 J3lelK3J 12eiK4J03e1K5 J3lelK6 J12 (2.3)

first uses the generator J» to perform a rotation
j|"., in this x,x, plane so as to make cos a„ i.e. , x„
vanish; this is a rotation of the a vector. [This
makes 2(P —n) vanish at fixed 2(P+n) and 8.]
Thereupon e'"5~» makes the remaining cos a„ i.e.,
x, vanish. These two operations bring the a axis,
and thus also the f axis, into the x, direction. The
generator Z» now performs a rotation in the (0, 3)
plane (in terms of the a, Q system by a change of
Q). The subsequent J», J'», J'» bring the object in-
to any desired orientation. These 6 parameters of
rotation accordingly characterize the original and
final orientations, not only the 3-parameter rota-
tion itself.

It is helpful to discuss this also from the point
of view of the Euler angles P, 8, n(see Appendix A).
Consider the stereographic projection from a pole
Xp 1 Xl X X3 0 onto the 3-dimensional flat
region x0=0 (Fig. 2). Our object's (loopform's)
orientation, characterized by Euler angles P, 8, z,
is represented by a point on S„orby a point in
that 3-dimensional projected space whose ortho-
gonal coordinates are x„x„x,. Toroidal coordi-
nates in this stereographically projected space
provide for a mapping of P, 8, ~ onto x„x„x,. The
toroidal surfaces (of a doughnut of thickness
2 cot &0, and whose circular axis x,'+x, '= 1 lies
in the x,x, plane) characterize 8: 8=0, i.e. , x„
= x, = 0, is the x, axis; 8 = m, i.e. , x, =x, = 0, char-
acterizes the unit circle xl +x2 —1. The meridio-
nal planes through the x, axis form an angle —,'(n

P) with the x, x, plane; a half turn(180) implies
a change m of that angle ,(n —P). —Ordinary spheri-
cal surfaces which all pass through the unit circle
x,'+x, '= 1 and which are centered on the x, axis at
x, = —cot2(a. +P) have a radius(1+cot'[-, '(n
+P)]f'", when the sphere's center moves from x,
= —~ to x,=+ ™,'(n+ P) changes by v and the inter
se~+ion of the sphere with the doughnut surface
wiiirls about by a half turn'(180').

From the above definitions of the Cayley-Klein
parameters we can now recognize the geometry of
SO(4). The generator J» causes an increase of
—,'(P —n), i.e. , a rotation about the x, axis in the
stereographically projected space. The generator

J03 causes an increase of —,(P+ n), i.e. , a whirling
motion about the circular doughnut axis in the pro-
jected space.

As the spinning-whirling operations, generated
by J„,J, commute, and as J„,J„,J„do not com-
mute, their commutation relations invite, in the
usual fashion, the definitions

2I.,= J„+J„, 2K, = Jo, —J„, etc.

As L commutes with K, they are generators for
SU(2) &&SU(2). It is readily seen that L generates
changes in P, i.e. , rotations about the z axis,
whereas K generates changes in ~, i.e. , rotations
about the g axis. This means that one of the SU(2)
factors may be considered as characterizing rota-
tions in reference to a space-fixed system (L),
whereas the other SU(2) factor is spanned by oper-
ations of the angular momentum K with reference
to the body fixed system [cf. the discussion along
with Eqs. (3.4) (3.7) below]. Of special impor-
tance are the Casimir operators K' and L'.

W'hat is the point of considering this description
(2) of flux loopforms and the most general SO(4)
invariance?

In paper C, Sec. IIC and Appendix A [as well as
in paper A, Eqs. (4.11)-(4.18)]we showed that the
isot~opic Coulomb field results from the assump-
tion that each flux loopform spins about its own
flux orientation axis This i.mportant circum-
stance implies a motion which has the following
SO(4) invariant -property: Consider a change of
the Cayley-Klein parameters corresponding to a
motion in time such that dP=0, d9=0, d~=(2mc'/
h)dt, i.e. , a spinning of loopforms about their own
flux orientation axis. From (2.1) follows

(2 4)

dx, '+ dx, '+dx, '+ dx, '= 4(dn)'

=(mc'/I)'dt', (2 5)

[(x&» x&»)2+(x&» x&»)2'. . . ] (2.6)

for any two points xo', x,', . . .and xo x3", . . .

i.e. , an amount independent of P, 8, ~. Further-
more, consider two (infinitesimally) neighboring
loopforms' distance, which is, as an elementary
calculation shows,

Qxo +Qx3 +Qxl +Qx2

=-,'[(sp)'+(a&)'+2 cos8apan+(a8)'].
As timeproceeds, and therebydP=O, d8=0, d~
=(2mc'/h)dt, i.e. , independent of P, 8, o, for aII
loopforms, the new distance parameters ~P, '8,
and also hz are the same as the previous ones.
This result is valid not only for infinites™1~~s-
tances hx„b,x» b, .x» b,x3. Indeed, a straightfor-
ward calculation of



E LECTRON-IVIUON PUZZLE AND THE ELECTROMAGNETIC. . .

satisfying (1) gives zero when dP/dt= 0 and d8/dt
=0 and d~/dt= same value for the two points. Ac-
cordingly, the distances hxp'+ b, x,'+ hx2'+ b, x,' are
not changing in time. Therefore, the motion of the
loopforms' points on S,cE, is a, di stance pre-ser
ving motion, i.e. , a SO(4)-invariant m«io& [.(2.6)
is also zero when dP/dt has the same nonvanishing
values for the two points. ]

It is most interesting to realize that the basic
physical assumption of constant angular velocity
of the loopforms exactly satisfies the mathemati-
cal invariance of Cayley-Klein parameters main-
taining fixed distances over the sphe're S, & E,.

In these sections we ignore, as pointed out al-
ready, the whirling (in ordinary three-dimension
al space) degree of freedom and, accordingly, we
characterize one loopform simply by (, n„ i.e. , by
three Euler angles (a loopform being parametrized
like a symmetric top), i.e. , by a point on the
aforementioned three-sphere S, ( E,.

As spinning angular velocity, for additive spin-
whirl motion, one has then to consider the value
3mc'/h, which may be called the Zi tterbeuegung
angular velocity of a (2, 1) loop —rather than the
value 2mc'/h, which refers to spinning alone. m
is the mass of the muon in 3mc'/8 and is the mass
of the electron in 3mc'/K

We may digress here to make a few remarks
about this SQ(4) invariance and about the implica-
tions of that invariance as regards representa-
tions.

To this effect we remind ourselves of the situa-
tion on the level of SO(3) invariance in ordinary
three-dimensional space, i.e. , one dimension less
than our problem.

Bopp and Haag' pointed out the following: A
spherical pendulum, represented by a single point
on a spherical surface S,cE, (i.e. , in a three-di-
mensional Euclidean space) has Y; eigenfunctions.
A pair of points on S„having a fixed distance from
each other, i.e. , a pair of spherical penduli, is
characterized by three (instead of the former two)
parameters, like a top or a loopform. It defines
SO(3) rotations' by virtue of the invariance of their
interdistance. The eigenfunctions of such pairs of
points then turn out, of course, to be the signer
D„' functions. In other words, the motion of one
pair of points, or a top, defines an SO(3) rotation. '
The irreducible components of the regular repre-
sentation (i.e. the probability amplitude functions)
of the SQ(3) group is then provided by the SO(3)
group's transformation matrices D„' themselves.

Proceeding now to the consideration of several
loopforms, characterized by several sets of &, n„
i.e., of Euler angles, we know that their repre-
sentative points on S,cE4 have fixed distances
from each other. A first point position has three

e in lI12e in2I3le in 3I12e in4I03e in 5I31e~n6I12 (2.7)

This SO(4) operator may give to an arbitrarily
oriented (g) fibration characterized by a (in the
Cayley-Klein definitions) [i.e. , to a manifold
(v, n, ) of torus loops, representing a sheaf of loop-
forms in x, y, z space, with a probability-ampli-
tude distribution over v, o., ] the most general spin
(and whirl)'motion (be it a displacement or a ve-
locity, that does not matter for the present dis-
cussion), a motion which preserves the internal
structure of that fibration of ordinary x, y, z space.

pa, rameters P„8„o„asecond point has only two
additional free parameters, a third point one
more, and the remaining points are determined by
the fixed interdistances. These six parameters
obviously may be interpreted as defining a most
general rotation of S,cE„ i.e. , an SO(4) rotation.
The basis for the regular representation (i.e. ,
probability-amplitude function) of SO(4) is then
given by the SO(4) -group transformation matrices
which we obtain from the generators of SU(2)
x SU(2), i.e. , a direct product of two Wigner D'„„
functions; such products are irreducible repre-
sentations of SU(2) x SU(2).

As we are thus interested in a description (of the
probability-amplitude distribution of loopforms)
which is invariant with respect to rotations which
maintain the interdistances Lakxp + Ax + lekx + Ax3'
of representative points on S, ( E4 in the Cayley-
Klein parameter space, we need an (invariant) de-
scription in terms of the irreducible components
of the regular representation of the SO(4) group,
not only the SQ(3) group. We also come to this
conclusion by considering the following remark.

The concept of bundling of loopforms in the heu-
ristic model also demands the covariance of the
theory in regard to the full SO(4) group because
bundling (based on the concept of neighborhood,
which was already discussed in Casimir's thesis)
may reasonably be defined only on the basis of the
concept of neighborhood of representative points on

S, t-E, of the loopforms.
e would like now to come back to the descrip-

tion (1) of the loopforms in ordinary space-time
(x, y, z, t). We may introduce abstract analogs to
the Euler angles such that xl x2 x3 of the stereo-
graphically projected space are ordinary z, y, z
position-space coordinates. Consider now the
aforementioned SQ(4) transformations in the x„x»
x2 x3 space and, to avoid confusion, 1et us denote
the "rotation" generators now by I„,I„,I Ipl Ip„
Ip3 ith the mapping of 1oopf orm s on to rus knots
placed on the toroidal surfaces [as desc'ribed
above, cf. Fig. 3(d), of paper (C) ], we may now

give a simple geometrical interpretation to an
operation



%'e noted that this statement is to be understood
topologically, not metrically. The generator
e' 5»e' ' i' places the axis a into the z direction;
n„n, are the parameters characterizing the arbi-
trarily given original a direction. The generator
e "&1»e'~410& whirls (o.„) and spins (o.,) the fibration
about its circular and central axes which have just
been laid into the (x, y) plane and the» direction.
The two factors of this generator commute. The
generator e'~i'»e'~2» finally puts the central axis
into the arbitrarily requested direction. The and
result is a fibration again of the same internal
structure as the initial one. To summarize, the
full SO(4) group generates the full manifold of
loopforms from one loopform, the subgroup of
(whirling and) spinning genera. tes a shea, f of loop-
forms. This involvement of the SO(4) group ex-
presses the invaxiance of the underlying topologi-
cal structure of torus-knot fibrations' and thus of
loopforms, i.e. , SO(4) represents, topologically,
a congruence mapping of the fibration by torus
knots.

What is done here is closely related to Finkel-
stein's discussion of spaces with torsion. '

III. STRUCTURE OF THE PROBABILITY-

AMPLITUDE WAVES

The discussion of the SO(4) invariance above
gives us the means of finding the wave functions
for loopform distributions, by choosing basis func-
tions of appropriate representations of SO(4). We
sketch the calculation, in order to present the idea
of the solution.

The heuristic model provides us with excellent
guidelines to set up appropriate amplitude func-
tions. It teaches us that the correct isotropic Cou-
lomb field results from a manifold of spinning
magnetic-dipole field loops of various flux orienta-
tions g (cf. Fig. 4 of paper C) if (a) these loop-
forms contribute to a resultant spin-& state and,
accordingly, (b) have probability amplitudes pro-
portional to [1+cos(g, z)]'i'=(1+ f,)'i', if (c) each
loopform spins about its flux orientation axis f
with (d) the same spin angular velocity of 2me'/8,
i.e. , spin and whirl add to an effective angular ve-
locity 3mc'/h (see Sec. IV below and paper C, Ap-
pendix A). The heuristic model also teaches us
(e) that the structuralization is to be thought of as
resembling some bundling in terms of unit radian,
of azimuths, and of flux orientations of the loop-
forms —as indicated in Appendix B of paper C and
in paper A. In some manner these conditions of
the heuristic model have to be reflected by a prop-
er choice of probability-amplitude (wave) func-
tions.

A word may be in place here about the consis-

tency of the conditions (a), (b), (c), and (d) with
each other, again in terms of the heuristic model.
It was there shown how effective magnetic mo-
ments of the size of a Bohr magneton ek/2me may
be distributed over the various flux orientations g

with probabilities (1+g,)(df, /2) (.One may either
superpose bundles of quantized flux by means of
probability amplitudes, or superpose bundles of
effective flux with probabilities. ) One obtained in
this way the resultant magnetic moment equal to 1
Bohr magneton,

f
+1

(eh/2mc)(1+ g,)(dg, /2) = (eh/2 mc)
-1

(3.1)

Because of the product form of (3.2) it is obvious
tha. t the sum of rotations (Pi, 8i, ni) and

( P», 8», o.») now indicate the Euler angles of the
loopforms with respect to space-fixed axes (»).
( pz, 8z, o.i) thus represents the orientation of "ba-
ses" (system K), around which D„»„(P»,8», z»)
marks the loopform distribution [ct'. also Eqs.
(3.8)-(3.10) below, with discussion of (5.9) and

(5.12) ].

[The normalized probabilities (1+g,)(dg, /2) for the
loopforms, inclined with direction cosines &,= g ~ g
toward the + z axis, may be considered as proba-
bilities for the contributions toward the resultant
magnetic moments + ek/2mc of the az quantum
states

i p.,'), respectively. One should, however,
remember that, as there are many more bundles
of loopforms than quantum states, the relations
between the two are underdetermined ].

As it is assumed in the aforementioned condi-
tions that spinning occurs around each flux loop
orientation axis g with the same angular velocity,
therefore this Eq. (3.1) for resulting magnetic mo-
ment repeats itself as regards the calculationof the
resulting spin: The resultant spin is obtained from
spinning about the g axes, corresponding to angu-
lar velocities 2mc'/0 or 3mc'/I ).

To proceed now to the wave-function formulation
of the probability amplitudes, we refer to the dis-
cussions (2), relating to rotations in the space of
the four Cayley-Klein parameters of Eq. (2.1). We
have seen in (2.6) that the above conditions (c), (d)
imply an SO(4)-invariant description of the prob-
ability-amplitude wave functions. The well-known
split of SO(4), in terms of commuting generators
which we would like to call L and K, into the di-
rect product SU(2) && SU(2) implies that irreducible
components of the regular representation of SO(4)
may be written in terms of direct products of two
Wigner D'„ functions. Bases for the SU(2) x SU(2)
group, generated by the commuting pair of genera-
tors L && K, may thus be chosen as some products

(3.2)
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Why is it that even though we may describe a
loopform distribution at one moment by means of a
function over only three Euler angles, we need a
wave function of six Euler angles'? The answer is
obvious: We want to describe a general 90(4)-in-
variant motion which then ean only be represented
by superposition of bilinear terms (3.3). (This is
the generalization from 3 to 4 dimensions of the
argument made in Sec. II above. ')

One should note that the functions D„z„(P~,8~, n~)
&re

nLmL L~ L~ L
and D„" (P», 8», n») both cover the same 3-di-

nlmg
mensional manifold of orientations P, 8, n, spe-
cified only with respect to different bases
[( p~, 91,, nI, ) and ( p», 8», n»), respectively] to
which the Euler angles are referred. And we have
to consider the projections of this 6-dimensional
space of Euler angles on a 3-dimensional one.
Those projections of (3.2) in general no longer
form an orthonormal set.

If we had to describe the motion of just one loop-
form, spinning like one rigid top, the bases of
representation for such motion could be chosen as
the well-known D„' ( p, 8, n) 00 e""3)e™)represen-
tations of SV(2), n characterizing an eigenvalue of
angular momentum about the z axis, and m an ei-
genvalue of the angular momentum, referred to
body axes.

In analogy to the argument of Bopp and Haag, the
manifold of loopforms (tops) implies, however, a
six-parameter manifold of representative points on
S,cE, (apart from an additional size parameter),
the loopforms spinning about their respective base
orientation axes with the same angular velocity
2mc2/h (or 3mc2/h) respectively [conditions (c) and
(d), above].

The six-parameter manifold of loopform dis-
tributions is thus to be represented by a six-pa-
rameter ma, nifold of functions (3.2). The f2eo gen-
erators L and K refer now to the two factors of the
product (3.2), respectively, L operating on vari-
ables (P~, 8~, n~) referring to a distribution D„~
in the space-fixed system, K operating on vari-
ables (P», 9», n») referring to a distribution rela-
tive to "moving bases. " The manifold of loopforms
may be thus represented by the direct product,
i.e., in terms of sums of products of the type

(3.3)

(We use a summation sign to symbolize a super-
position of those DD terms. ) Such a summation of
terms (3.3) and subsequent projection does evident-
ly not lead to a simple function D~„(P, 8, n) such as,
e.g. , D,(,( (P, 8, n).

We now have to remind ourselves of the geome-
trical significance of (one of) the two D's in Eq.

= const ~ e+L (3.5)

whatever the change of nz The con.stant in (3.5)
is, by (3.4), a function of 9z which indeed is con-
stant. zp3zy2 const characterizes a change of the
azimuth nz only. With these conditions 9z and Pz
are fixed.

Such rotations about that base axis are, by (2.4),
generated by

(3.6)

The change of zp38$2 is the change of const && e' L,
whatever the change of pL. zp3z» = const charac-
terizes a change of Pz only, it implies a rotation
(also of that base axis) about the z axis, generated
by

(3.7)

Those are the well-known rotations: K, about the
base axes, and 1.3 about the space-fixed axes.

Let us now discuss the conditions (a) and (b) to
represent an object whose resultant (absolute value
of) spin corresponds to a lepton of spin —,'. For L
+K to correspond to spin ~ we have

(3.8)

similar direction of L and K. (3.9)

[As regards the combination of terms (3.3) and as

(3.3), considering therefore (P+, 9z, nz) in lieu of
()8, 8, n)

Referring to the discussions of rotations (2),
Eqs. (21), (A15) and (A14), we consider rotations
of the Cayley-Klein space E, in its (x0, x,) plane,
simultaneously with rotations in its (x„x,) pla, ne.
As (cf. Fig. 2, Appendix A)

2 1 2 2
(2 8L) 0 + 3 03 031

(3.4)
2 1 2 2sin (29~) =x, +x, —=z)2z»,

such rotations characterize changes of Pz and of
azimuth nL which leave OL constant. In the stereo-
graphie projections OL= 0, i.e. , x,'+x, ' = 0, means
the x, axis which is perpendicular to the (x„x,)
plane. HL=@, i.e. , x,'+x,'=1, is the circular axis
of the torus; any other value of 6IL is characterized
by a toroidal surface which has 8L=0 and 8L =m as
its two axes. We now specialize in rotations of the
above kind for which, in addition, the

I
rotation an-

gles
I

in those two planes are equal. The result of
these simultaneous rotations is described in terms
of changes of one set of Euler angles Pz, 9z, nz.
The change of z„z„is given by the change of

03 12 ( 0+ 3)( 1+ 2)

= I»03I exp [2(~.+ n, )] Iz» I
exl [22(J9.—n. )]
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with the appropriate signatures for mL and nK to
make L and K about parallel, not antiparallel.
These signatures depend on the actual combinations
of type (3.3), i.e. , on the ones in Eqs. (5.8) and

(5.11).
The spinning, and angular momentum about the

base axes are essentially determined from terms
of the type

e {imL nL )e {inKQK) (3.11)

We may summarize that and nicely illustrate the
above with the use of wave functions (5.9) and

(5.12): We considered L as generating a rotation
in the space-fixed system, defining a "base"; from
there on K generated a rotation to the system of a
flux loopform, orientated along the flux orienta-
tion axis. The conditions (5.9) and (5.12) tell that
the spinning motions, as regards both the L motion
and the K motion, represented by the wave function
being proportional to

e"'"~1 'r" exp/i [-,'(nz+ px) —((u~ + co„)t]}
are about the same (base) axis P~, 8~, n~. The flux
orientations of the loopforms are characterized by
the Euler angles P, 8, n (i.e. , the combined rota-
tions Pz, 8~, n~ and then Pr, 8r, nr) a.nd are symme-
trically arranged about the pL, OL, Q.L axis for a
mode (3.2), (5.9) and (5.12). This wave picture
has, of course, to conform to the uncertainty prin-
ciple, i.e. , for a given sharp value of the angular
velocity, or a given angular momentum around the

Pz, 8z, nz directions, the directions of the (flux)
orientations of the loopforms are spread out.

The particular forms of muon and of electron
wave functions will be discussed in Sec. V. Quite
apart from the discussions there, the question of
distribution of jL, jK is to be handled first in Sec.
IV. We shall see that it is reasonable to assume
that the jL distribution as well as the jK distribu-
tion is given (because the wave function's frequen-
cies eL and coK are deterrm. ined b»L and jK
spectively) by some thermal distribution.

Let us now consider a particular pair jL,jK of
that statistical distribution of D,LLmLD, KKmK pairs of
functions. The degeneracy is (2j~+ 1)'(2jr+ 1)'

regards jL, nL, mL, jK, nK, mK we speak of "modes"
and "mode numbers" to avoid misuse of the ter-
minology "states" and "quantum numbers. "] We
denote the "average" j,=-,'( jz+ jr).

We come to the discussion of the conditions (c)
and (d) concerning the spinning of flux loops about
their flux orientation axes and concerning Eq.
(3.9), as the spinning is supposed to occur about
the flux orientation axes, i.e. , essentially about the
"moving base" axes, we expect

(3.10)

M=2. (3.13)

This is a matter of importance when coherence of
excitations of those degenerate mode pairs is to be
taken into consideration in calculating the reduc-
tion factor N; it will not affect the electron-muon
mass ratio.

IV. STATISTICS AND WAVE EQUATION FOR LOOPFORM

AMPLITUDES

A. Wave equation"'

How does the wave equation enter into the pic-
ture? With the recognition of the requirement of
SO(4) invariance we have already come to know the
essential properties of the probability-wave ampli-
tudes D LD K. They are characterized by mode
numbers ( jr, jz) = (0, —,'), (—,', 1), (1, —,'), etc. , or the
more complete set ( jr, jz). But we need also to
know the &o as functions of j [cf. remarks before
Eq. (4.5)],

(referring to the 4-pa, rameter manifold of n~, m~,
nz, mr). The conditions (3.10) select a. submani-
fold of that degenerate set, a submanifold of "mul-
tiplicity" less than the "degeneracy. " We may
readily realize that the conditions (3.10) still per-
mit a mult. iplicity

M,"; = (2j~+ 1)(2jr+ 1).

[The double prime on M" is used to indicate the
two factors (2j+1) on the right-hand side of this

expression. )
It might be instructive to comment that if we had

to discuss, instead of D&~mLD&KKmK, a multiplicity
2L Kof YmL YmK under similar conditions, i.e. , given jL

and jK and ~L and mK, instead of the given jL and

jr with Eq. (3.8) and given (3.10), we would then
have no multiplicity. The additional two-mode
numbers in DnLmLD&KmK bring about the above-sta-
ted degeneracy.

The condition (b) demands the .formation of par-
ticula. r linear combinations of modes (just like a
linear transformation to effect a change of basis in
the Hilbert space of quantum state functions). That
reduces the multiplicity from M,"; to

(3.12)

We proceed here with the discussion of a level
scheme of type Eq. (5.2), i.e. , ( jr, jz) = (0, 2),
(—,', 1), (1, —,'), (—,', 2), etc. A more detailed discussion
of the "paired" level scheme (0, —,'), (—,', 0), (—„1),
(1,—,'), (1, —,), (—,', 1), (—„2),(2, —,'), etc. , which implies
the use of all jr, j~ pairs whose

~ j~ —jr ~

= —, will be
given in Sec. VI; the pairs (0, ~), (—,', 0) and the high-
er pairs may have degenerate frequencies and thus
the multiplicity
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~="~"(j,j,) =~(k(ig+j r)) = &(i.) = ~;,
(4.1)

in order to relate the u; to the j, both in Eqs.
{5.13), (5.14), (4.10), and (6.2), and then, to eval-
uate a statistical distribution (4.5) with an assumed
temperature T, (4.8).

Let us give here only a brief sketch of the issue
of the wave equation, and refer questions about de-
tails to Appendix B. Questions about the exact
form of the wave equation are only a secondary is-
sue in the present Paxametxized version of the
flux-quantization model of particles, as long as we
are interested in approximate results only. That
is, of course, not the case in a version in which
one attempts a description of flux loopforms in
terms of functionals.

In a reasonable approximation one may argue as
follows in regard to the relationship &ui = &u( j,). In
view of the fact that dependence of the wave func-
tion on the Euler angles is characterized by values

j, which are fairly high, ( j,)„=51 by Eq. (5.19),
and the wave function's dependence on the size pa-
rameter 0 will be seen to be characterized by a
low power x of v, i.e. , o" [cf. Appendix B, Eqs.
(B9)], we may, as a first step, simply ignore the
latter and remember the familiar Casimir result
that the angular momentum operator g' fdr the
spinning top has the eigenvalues 4 j(j+1) [cf. Ap-
pendix B, Eq. (B7)]. Indeed, if a wave equation of
the type

(&'+ a'/et') y = 0 (4.2)

were assumed, the eigenvalues would be

[4 j(j I)]ii2

(4.3)

We might assume such a relation to hold for co~ as
well as for mz, and thus for ~, . Here is m in units
of m, c'/h as seen from (5.6) or (5.14).

B. Spin and whirl

The magnetic dipole field of an electron or a mu-
on is represented by a fibration, i.e. , represented
in terms of loopform manifolds of quantized flux.
It is assumed to be a superposition of a right-
handed and a left-handed set of torus-loopforms of
winding numbers (2, +1) and (2, —1), respectively,
so that the superposed sets do not, have any hand-
edness. Indeed, a manifold of (2, +1) loopforms
hangs together, i.e., is interlinked and forms a
Seifert fibration, and the same holds for the one of
(2, —1), whereas the ordinary dipole field lines
(1, 0) are apt to "fall apart" if we consider the
Maxwell stress tensor as applicable to the situa-

tion. These loopforms (2, +1) are then assumed to
spin about their common straight central axis and

whirl about their common circular torus axis, both
with angular velocities 2mc'/5 (Zitterbemegung).

DilDi& modes of types (2, +1) and those of type
(2, —1) are substates which are to be superposed
to form a quantum state, in a manner analogous to
superpos ition of alternative path his tories. Spin
and whirl are simultaneous motions of any one
mode, one does not superpose spin and whirl.

Loopform manifolds of type (2, 1) rather than of
type (1,2) are considered for the electron or muon
because the magnetic-field lines of type (2, 1) are
considerably less densely spaced than those of
(1, 2). Inasfar as a requirement for minimal elec-
tromagnetic energy may be applicable, the (2, 1)
have a distinct advantage.

The (1, 2) loops imply the same electric charge
and half of the magnetic moment of the (2, 1) loops;
because of the higher flux-line density, they might
represent heavy leptons. Still another type of hea-
vy leptons was listed in paper C, Table II, with
winding numbers (5, 1).

Actually we have not only spinning but also whir-
ling. As the whirling motion (cf. paper C) of a
"smooth" torus loop of winding numbers (2, 1) is
equivalent to a spinning motion of half its angular
velocity, the whirling degree of freedom may be
mapped on the spinning degree of freedom. If
whirling is to be taken into consideration besides
spinning, that implies a multiplication of the angu-
lar velocity of lepton loops by the factor (1+2) = 2.
[In paper C it was shown that this additive motion
of spin and whirl implies the Coulomb field e/r for
the ~uon or the electron, while the subtractive
motion (1 ——,) = —, implies the X quark field e/3r. ]
Let us now translate the simplified model (spinning
only) into the model of "effective" spinning, i.e.,
inclusion of the effect of whirling, too, implying
the angular velocity 3mc'/fL

Spinning and whirling, which, in general, are
independent degrees of freedom, share, of course,
the same two singular lines (central straight axis
and circular axis) of the Seifert fibration, and are
formulated in terms of the same set of Euler an-
gles P, 8, n (and one size parameter o). In our
parametrized model, whirling may be mapped on
spinning motion, involving only one set of Euler
angles, and the sante wave functions DD for the
probability amplitudes for spinning and for whir-
ling motion. These DD functions (3.3) or (5.7)-
{5.9) and (5.10)-(5.12), which formulate the proba-
bility amplitudes of the Euler angles, show, in
reference to the spinning motion (&o~+&ur) and the
spin angular momentum &+ 4

——~.
The effective spinning angular velocities of the flux

loopforms, however, have contributions from spin-
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ning and from whirling motion; in the present
parametrized model the whirling contribution is to
be accounted for by merely multiplying the angular
velocities due to spinning by the factor (1+ &) = —„
resulting in [cf. Eq. (5.14)]

(0,)„,= 3m, c'/K (4.4)

As regards electron and muon neutrinos we re-
marked that they are to be represented by right-
handed trefoils (3, —2), which, as is readily vi-
sualized, move in left-hand helical manner through
space like coasting three-bladed propellers. Their
handedness being invaria, nt with regard to any I.o-
rentz transformation, they have no rest system,
and thus zero rest mass. In any field-theoretical
representation of a p. -e decay we would have to
see to it that the combination of (internal) high fre-
quencies, high wave numbers of the p. and v, in
some way match the combination of (internal) low

frequencies, low wave numbers of the e and v„a
simple 4-fermion interaction.

Spin and whirl are of special interest in the case
of quarks where the whirling motion "subtractive-
ly" detracts from the spinning motion. In deter-
mining the magnetic moment of a hadron, one ap-
plies the SU(6) function in the usual way. But in-
stead of assuming a quark's contribution to mag-
netic moment as proportional to its electric
charge, it is assumed as being proportional to the
number of "core traverses" of the quark loop
times the quantized flux times 5/m „,„c or h/
m„„„c.One may therefore determine the equiva, —

lent electric charges of quark loops of winding
numbers (2, 1), (3, 1), (3, 2) which have, apart from
whirling, the spinning angular velocities
2m „,„c'/8 or 2m„„,c'/h, respectively. Be-
cause of subtra, ctive spinning-whirling motion,
there pass, per spinning period, 2 —1 = 1 of the

(2, 1) wings, 3 —1 =2 of the (3, 1) wings, 3 —2 =1 of
the (3, 2) wings over a, fixed point, resulting in the
charges e times 3 3p 3 The masses cancel out
again as they do in the lepton calculations.

One may add here two supplementary remarks
in regard to quark confinement and quark localiza-
bility. In the flux loop model, meson or baryon
qua, rks are two or three interlinked torus loopform
manifolds which share the same central spin axis
and the same circular whirl axis of the torus; they
are, therefore, prevented from falling apart (cf.
papers B or C, and Appendix D of the present pa-
per). (The size of the circula, r torus axis is again
assumed to be of the size of the Zittexbemegung,
of the order of magnitude h/m„~„„c.) Their inter-
linkage also makes the quarks localizable objects
which do not need to be represented by antisymme-
tric functions; there is thus no need to introduce
color.

C. Statistical distribution of modes

We pointed out already that the structuralization
of the distribution of loopforms is essential to ef-
fect, by interference, a reduction of quantized flux
to effective flux. [This concerns the condition (e).]
Such structuralization, which was accomplished by
bundling of loopforms in the heuristic model, may
now be formulated by means of 'superposition of a
sizable number of mode excitations (excitons)
(3.3), similar to photon excitations over a given
frequency (e;) spectrum. Coherence compared to
random-phasedness of excitations characterizes
24, compared to 4,«, i.e., N, which is also the
number designating the average occupancy per
mode. Corresponding to the bundling we expect
now the participation of wave functions (3.3) com-
ing from j», j~ values (0, —,'), (—,', 1), (1, 2), etc. or, as
pointed out in Eq. (6.25), from values (0, 2), (&, 0),
(~, 1), (1, ~), respectively, the contributions taper-
ing off at higher j values.

What possibilities are there to effect such a dis-
tribution? Even though the D,~~~D,~~~, for a per-
mitted combination of j~,n~, ~~,j~, n~, m~ are not
quantum states, but modes which, superposed, are
to represent a quantum state, we may assume that
these modes are statistically excited corresponding
to a temperature T, to be denoted also by P '. We
assume that this internal temperature T is in some
way related to the concept of the Hagedorn" tem-
perature T„=130 to 190 MeV, the latter however
referring to a linzit temperature in hadronic reac-
tions (due to mesonproduction). The circumstance
that a wave equation relates the j to the frequen-
cies co, where approximately (d = 2 j+1 for w~ as
well as for +~, permits us to make obvious as-
sumptions about such a t.emperature distribution.

Whether one might choose a Maxwell-Boltzmann
distribution or, better, a photon distribution law
(Bose-Einstein), a preliminary question presents
itself:

Which frequency should be distributed by such a
thermal distribution? Should it be e~+ or~ or e~

&u» or, in view of
I jz —j»l.= —„i.e. , v~= +»

simply an average &u& = —,'(&uz+ e») =a&z = ur»'? As the
electron and the muon are to arise from the same
statistical distributions of the (&u~, &u») pair, the in-
ternal temperature T should not be assumed to im-
ply distributions e '"~'"»'? or (e'"~'"»'? —1) '
and e '"I "»' or (e'"~ "»' —1) ' for the muon
and the electron, respectively; instead, one should
let co~ =~~ be distributed according to that tem-
perature T. To simplify, we may consider the
average, i.e., v&=2j, +1 to be thermally distribu-
ted.

The following is an independent argument to the
same effect: Because the condition

l j~ —j»l=2
implies v~ = co~, the e~ distribution and the ~„dis-
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tribution are not independent; a Boltzmann dis-
tribution e' ~"L'e' 8"&' or a corresponding product
distribution of photon statistics, (ed" ~ —1) '(ed" »
—1) ' are therefore not admissibly with restrict-
ed m» vK. Instead, we assume that the probability

Pq =P„

=P((Dn~mj, Dn»m») (DnjmjDn»m»))

=e' '"~' or

(edged j 1) 1

(4.5)

(4.5MB)

(4.5ph)

~

~

D L e-guLtD K e+t+Ktj ff LmL ffKmKj
1~j 2(+r+—~»).

= s (2 jj. d. 1+2 j» + 1).

(4.5)

We note that for the distribution of actual quanta
such as photons, over quantum states co&, the en-
ergy of the ensemble of quanta has the expectation
value (nj),„~jfor the state j, and Z,„„„(nj),„~j all
in all. For the present distribution of excitons
(not quanta) over modes vj (i.e., substates j), the
energy is assumed as

(n j).„&oj
(& ) modes

(n;),„
modes

(where MB indicates the Maxwell-Boltzmann dis-
tribution) characterizes the statistical distribution
of ( j~, j») modes, labeled by ~j or by X. These P~
=P„, [X, standing for some loopform "bundle" of
paper A (see paper C, is now characterized by jz,
n~, m~, j», n», m» j indicate the expectation values
for occupancies of the modes. For photon-type
distributions (4.5ph) P, =(nj),„, i.e. , the expecta. -j
tion value for the number of random-phased exci-
tons on the modes (cf. Sec. VI). With

(P, =)P., =(Ir; ~')..
the mode superposition may be denoted by

= 370, (4.8)

is 740, i.e. , three times too high. More important
still, as the noncoherent excitons occupying any
mode j are indistinguishable, and are not individu-
alizable nor localizable particle, MB statistics
does not apply to them. In FD (Fermi-Dirac) sta-
tistics, a reduction cannot be defined at all by a
comparison of random-phased excitations with co-
herent excitations. We use Planck-Bose-Einstein
statistics; only the concept of indefinite number of
excitons is meaningful, and only this indefinite-
ness permits us to apply the arguments of coher-
ence and of fluctuations.

When we adopt photon statistics for the statisti-
cal distribution of modes which are superposed to
represent a quantum state of a lepton, or of a
quark, such choice. of photon statistics does not
imply any s tatement as regards the s tatis ties
which the resulting lepton or the resulting quark is
to obey.

The photon statistics now results in [cf. (5.2)]

2(urj),„=2P ' g x(e" —1) ' Q (e" —1) ',
x=3'/2 &=36/2

(uz —&u»),„=((2jr+1) —(2 j»+1))„
=2(j -j )=1

i.e. , in units of msc'/I', the muon frequency is
(&uz+a»), „=2(ej) in the same units. The multi-
plicity factor SII defined in (3.12) and (3.13), can-
cels out.

We prefer the photon distribution rather than the
Maxwell-Boltzmann (MB) distribution for the fol-
lowing reason: Eq. (4.5MB) gives for the muon-
mass to electron-mass ratio a, value (2&uj)„=2/P
which, with

p '=7
190 MeV

0.511 MeV

The statistical average of the frequencies v; is
then given by where

(4.9)

permi t ted modes

&ujMe d"j +Me d j (4.7MB)
frequencies

=P(2 j.+ I)
7 (4.10)

or

((uj),„= Q (u jM(e'" j —1)
frequencies

M(e'"~ —1)-'

and where

Z=-Z. (4.11)

(4.Vph)

We should remember that, as the electron fre-
quency

Inserting (4.10) into (4.9) gives the expectation val-
ue (P&uj)„=(x)„ in terms of the limits (x = —,

'
P) and

steps (hx=P) of the right-hand-side sums. With an
assumed value for T=190.MeV, P '= 370, one gets
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m„/m, = (2co,.),„
= 206 (4.12)

((dr + (d»)/(Q3g —co») (2 jr + 1 + 2 J»+ 1)/1

=2(2 j,pl). (5.1)

very crudely, because the relation (4.10) is only
an approximation. Towards the end of Sec. VI it is
indicated that a close relationship between TH and
the mass of the muon (both in terms of the mass of
the electron) is to be expected simply because of the
the close relationship between pions and muons in
the flux loop model.

This same value P '= 370 [Eq. (4.12)] also yields,
in Sec. VI, a value of the reduction number N and
thereby the electromagnetic coupling constant e'/
kc. It is essentially with this one parameter P that
one is able to estimate three important numbers.
The flux-quantization model shows that the ques-
tion of the value of m„/m, and the question of the
value of e'/Kc are part of one and the same issue,
i.e. , the structuralization of the leptons. Sections
V and VI show the interdependence of these two
numbers, and with an internal temperature T, and
Appendix D shows how the corresponding struc-
turalization of quarks, i.e. , the consideration of
their probability-amplitude functions as a super-
position of a certain number of mode functions,
permits one to estimate the rate of weak interac-
tions.

The wave equation as well as the e spectra are
common to the electron and the muon. A strict
evaluation of the statistical distribution of the co's
and of their average necessarily needs the know-
ledge of the wave equation to obtain the spectrum
v( j) of its solutions. In order to get accurate re-
sults in the following sections, the wave equation
and the corresponding spectrum are indeed needed,
both for Eqs. (5.13) a.nd (5.14) in Sec. V as well a.s
for Eq. (6.2) in Sec. VI.

The solutions of the wave equation have, how-
ever, in their essential features, already been ob-
tained because we have seen that they have to be
representa. tions of the SO(4) group. These solu-
tions may therefore be written down explicitly in
Sec. V for muon and electron waves. We may thus
obtain the essential results, approximately only,
without detailed knowledge of the wave equation and
its exact solutions.

V. MUON-ELECTRON DICHOTOMY

One may consider the ratio of the mass of a mu-
on to that of an electron to be given by the two dif-
ferent frequencies eL+xK and coL —coK of corres-
ponding waves of types D'~D'» [cf. Eqs. (5.7) and

(5.10) below]. More precisely, by the statistical
average of the distribution of (dL+ coK and that of
&u~ —&u», with ~ = (2 j + 1) and

~ j~ j» ~

= —,', the ra--
tio, to be statistically averaged, is

A. Choice of muon and electron wave functions

I.et us consider, for the pa. irs of j va. lues [cf. Eq.
(3.8) and Sec. VI],

(j,j ) =(0, —,'), (—,', 1), (1,—,'), (-,', 2), etc.

the modes

D jLDjz
)

(5.2)

(5.3)

with the notation

D„' (P, o, n) =n'„„(cosg)e""'

'(i r, +i »), -

~a ~L ~K ~a

= 2(s»- s, ) =z,

(5.4)

(3.10)

(5.5)

L et' Lt D K e"t(v Kt
llL jL ~KmK

o=e' L I. KK e' I.' K

(5.7)

(5.8)

= e"'~"r ~»" exp(i[4(n~+ p») —(sr~+ v»)t]],
(5.9)

and, for the electron wave functions, modes like

L e-iu)LtD K e+iu)Kt
&KmK

i (j Ln L-j KgK)e-i (~K-dK) t

(5.10)

(5.11)

= e"'~'~~ 8»" exp(i [,'(n~+ P»—)—(&u~ —v»)t ]j.
(5.12)

As the third Euler angle nL in the space-fixed sys-
tem (L) and the first Euler angle P» in the base
system (K) amount to the same kind of rotation
(the resulta. nt rotation being nz+P»), the resultant
angular momentum about the base (flux loop bun-
dle) axes (for both the muon and the electron) is
equal to 4 + 4 = 2., also the total angular momentum

One may note that the angular velocities of the L
and of the K contributions add in the case of the
muons and subtract in the case of the electrons,
because the frequencies co» coK of the muons have
the same signatures, whereas those (dL, —~K for
the electrons are opposite. Angular momentum
and angular velocity have a different relationship
to each other when both frequencies have equal
signatures (5.7) than when they have opposite sig-
natures (5.10).

M»++&=2(2~, +1), ur» —&uz =1, &u&0. (5.6)

We suggest, for the muon wave function, modes
like
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[A simila. r situa. tion is encountered and is es-
sential for the understanding of the Pryce-Foldy-
Wouthuysen- Tani transformation to Lorentz trans-
formations. " It was recognized that the most gen-
eral pc0 Dirac wave function of a free electron is
obtained from the p = 0 wave function by simulta-
neously transforming the positive-frequency (or
upper two) components by a Lorentz transforma-
tion with v&, &

= —p/fE f, and the negative-frequency
(or lower two) components by a Lorentz trans-
formation with v&, -—yp/ fE f. The result amounts
to a @pl' (Foldy-Wouthuysen) transformation. ]

These angular velocities are

Q. = k(~, + ~»)/(-'+-')

( j», j~) = (0, ~), (~, 1), (1, 2),

thus
~ ] ( ~ ~ y 1 3
ja 2k jL+ jFj 4y 4p 4 ~

(5.2)

(5.16)

The permitted modes correspond to the frequen-
cies (d~q

( j„j»)—&d,

=(2j.+1)
= —,'(2 jr+1+2 j»+1). (5.17)

modes, which, because of
f jz —j» f

= —,', are [if as a
first step we disregard the pairings such as (0, —,'),
(~2, o)]

—2 x ~ x (2j ++1+2 j»+ 1)

=2x2x~ x(2 j,+1)

=12 j,+6,

Q. = k(~, —~»)/(-'+-')

(5.13)

With the assumed statistical distribution of
( j~, j»), i.e. , of e, , one obtains (2&d,.),„=206. The
notation e,. designates average between I. and K,
and the subscript "av" refers to the statistical
distribution over the modes j. The partition func-
tion is

= 2 x —,
' x (2 j~ 2 j„)

3 1=2X2X ~ X z

(5.14)

1/4g 3/4g 5/4

The temperature

e-o(2i, +i) -1 (5.18)

They are, of course, in units of m, e'/5, as is seen
from Q, =3 and because consistency conditions (see
paper A, Sec. VI, and paper C, Appendix B) de-
manded that the electromagnetic energy be =wc' if
Q=3 in units of mc'/K The electron wave func-
tions have the frequency &dz —e» ——1 [cf. (5.6)].

One should note that it is the same spectrum of
e = (2 j+1) values which applies to the muon as
well as to the electron.

B. Statistical distribution of w = 2j+ 1

The irreducible rePresentations ( jz, j») which
make up the regular representation of the So(4)
form a manifold of probability-amplitude modes
from which we form a statistical distribution.
These irreducible representations ( jz, j») are
(2 jr+1)'(2 j»+1)'-fold degenerate because the fre-
quencies eL, co~ depend only on jL, j~, not on all the
labels jL, nL, ~L, j„,~~, m~. The degeneracy of a
( jz, j„)set disappears because of the supplemen-
tary conditions

fn&, f=j„ fn f= j,

fprobability amplitude fdistribution

- [1+cos (g, z)]& ~ '. (5.15)

Accordingly, the statistical distribution of
( j~, j») values is to be taken over the permitted

T=190 MeV, i e. , P '=370,

implies

(4.8)

(2( j,)„+1)=(&d, ) =103, ( j,)„=51; (5.19)

(Q, )„=3, (Q„)„=12(j,)„+6=620. (5.20)
I

The muon-electron mass ratio is thereby again

m, /n&, = (Q,)„/(Q, )„
=(~, +~ ).,/&~, -~ ).,
=&4 j.+2&.,
= 206, (5.21)

which is, of course, simply due to the assumed
temperature T by a very crude calculation.

VI. ELECTROMAGNETIC INTERACTION CONSTANT

At the same time, this internal temperature per-
mits an estimate of the fine-structure consta. nt e'/
kc. We had

(e'/fc) f[(5/n&c)/6. 2 yo]= 4,«/24,

(6.1)

The concept of reduction in a theory based on flux
loops has to define reduction in terms of an opera-
tion on the manifold of loopforms, i.e. , loopforms
of parameters P, g, 'o. , o being the elements of the
manifold. Only indirectly does that operation state
something about reduction of field quantities such
as B(x,y, z, ct) and others. Directly, the reduction
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makes statements about the effect of random-
phased probability-amplitude superpositions (of
loopform excitations), excitations of modes of fre-
quencies &u, , and functions of the para. meters J3, 8,
n, o. The reduction states then in which manner
global, integrated (over the parameters)' quantities
such as total magnetic flux get reduced, explain-
ing such ratios as 4',«/2C, in Eq. (6.1).

Instead of basing the reduction formalism on
some probability-amplitude distributions of loop-
form parameters ~(P, 8, o.', o)) =—((X)) and super-
posing them as done in Appendix B of paper C, we
consider now, more appropriately, the mode (v, )
excitations (excitons) which add up to mode ampli-
tudes r, D'ID'.&, (4.6), similar to photon excita. —

tions of the respective electromagnetic modes of
frequency (dj, and compare noncoherent with co-
herent superposition.

The expectation value of the occupancy of a mode
in a Planck-Bose-Einstein distribution of an un-
specified number of excitons is

(e84I j l) 1 (6.2)

The expectation values for all the kth moments of
such a PBE distribution are given by

(n, '),„=z '(—p 's/8(u, )'z, .

so that

(n,.'),„=2(n, ),„'+(n, ),„
= 2(n,.),„'.

(6.3)

(6.4)

&n )„=6&n;&..'. (6.5)

It will be advantageous to express the statistical
distribution of the occupancies nj of a mode j in
terms of distributions of corresponding probability
amplitudes rj, using Gaussians, for two reasons:
first, to simplify the formalism by which the sta-
tistical distribution of n j over all the different
modes j may be calculated by a Markoff random
walk in the complex plane, and second, to compare
noncoherent with coherent exciton amplitudes. We
start with that problem.

Noncoherence versus coherence may be formu-
lated in terms of probability-amplitude vectors rj
(vectors in the complex plane) of the excitons of
any one mode j, those being added with random
phases versus those being virtually added with
equal phases.

We consider first a nondegenerate level scheme
such as (5.2) and consider later, on the basis of
Sec. VI, coherences between degenerate modes

The last approximation is good for the important
low modes at the temperature in question; similar-
ly

such as (0, —', ) and (
—'„0), cf. Eq. (6.24).

We therefore should start to sketch what results
if the unit vectors representing the excitons of one
mode j get added with random phases. A given,
large number of those unit vectors add then to give
approximately a Gaussian distribution of the re-
sultant vector r, [cf. S. Chandrasekhar's presenta-
tion of Markoff's method in random-walk prob-
lems, Rev. Mod. Phys. 15, 8 (1943), where, how-
ever, the denominator in Eq. (63) should be 2ml, .].
If, in addition to the random-phase distribution,
we consider not only a fixed number of such unit
vectors, but a statistical distribution of numbers

nj of unit vectors, we still find the resultant to be
a Gaussian. Let its variance be denoted by l,-'.
The Gaussian distribution of those resultant mode
amplitude vectors in the complex plane, of length
x;:—~r, ~, has the expectation values

(6.6)

(6.7)

which means that we may approximate the mo-
ments (n, ),„,(n, '),„,(n, '),„by the Gaussian mo-
ments (r,.'),„,(z,.'),„,(x,.'),„and correspondingly,
for the respective distribution functions. The high
dispersion of the photon distribution is properly
taken care of by the Gaussian distribution in the
complex plane.

This refers to any one mode. The superposition
of vectors rj from different modes, if performed
randomly, should again give an estimate of

(6.8)

but we should be careful when it comes to studying
fluctuations of 2;n, (which i. s a problem different
from that of studying fluctuations of nj inside a
mode), and when, in Appendix D, it comes to cal-
culating energy fluctuations due to fluctuations of
all the nj

Leaving questions of energy fluctuation to Ap-
pendix D, we return now to estimate the reduction
factor N, using the computed values

g (n, ),„=2177, g (n,.'),„=259 900.

The random-phased addition of unit exciton vec-
tors leads to the mode amplitudes rj They, in
turn getting added with random phases, result in

j ex +j ex j ex'

(6.9)

The "ex" denotes the expectation value for the dis-
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tribution in any one mode, and the "av" denotes the
averaging (mainly phase averaging) of the distribu-
tion over j of the rj vectors.

In order to find the statistical distribution of the
resultant vector

(6.10)

and

R(p)=exP(- —,'4'Q(n ).,

~ e-259 900P / 4

W(R)dR - (2)(RdR/259 900(()e-z / R'R Roo

(6.iS)

(6.i6)

I =&~ &..=(n;&...
(d'r/)~, =~, d((), d~, (.2/27(l, ')e ("//'/)

d(~ /I )Re"(R /( )

(6.11)

(6.12)

The product of the Fourier transforms of those
distributions,

R(P)=, f f r, dR;dr, r;e""'

the Markoff method readily gets the answer. We
start with the normalized probability distribution
where

The reduction factor N is then simply the ratio
of the (R') of the coherent distribution to that of
the noncoherent distribution, which is equal to

259 900 ] $9 42177 (6.i7)

So far, we have considered only ( jr, jz) values
(0, —,), (—,', 1), etc. But we should now consider the
degenerate pa, irs ( jx, j~) = (0, —,') and (—,', 0), (—,', 1)
and (1, —,'), etc. , which do not affect the average
frequency

~4 lsd jj

= (2(u,. &„

= +2(u, (n,.&,„Q&n, &,„. (6.18)

x dxj exp —xj lj '+gjo„xj
«()Q

= J..[ p(- I,' p'/4)

=exp —4 p Itj

1=exp -4 p ~ nj ex

~ e"2177P / 4
7 (6.13)

(n ),.
levelsj

'(n, ),„levels

(6.19)

But, with the degeneracies introduced with the
pairing modes (cf. end of Sec. VI), a virtual co-
herent excitation now implies coherence of all ex-
citons which belong to the same frequency ej, i.e. ,
in both (0, —,') a,nd (2, 0) modes, and, similarly, im-
plies coherence of all excitons in (1,—,') a,nd (

—„1)
modes, etc. Thus, the reduction factor

gives, by the inverse Fourier transformation, the
distribution of the resultant R,

W(R)dR-(dR/4r') ff 4pR(4)e-"'

= (27(RdR/21777()e " ' (6.14)

For the coherent addition of these same unit vec-
tors, we define such addition by assuming that the
mode occupancies are not changed in comparison
with the coherent occupancies. The n j unit vectors
of any one mode are added in phase, so that the
expectation value' of the square of the arithmetic
sum, i.e. , (Z,„,«„,~

r„„,, ~)', is now no longer
equal to (n, ),„but equal to (n, '),„. The sum of the
coherent occupancies (n, '),„may now again be ap-
proximated by a random-phased addition of the
mode vectors whose (lengths)' are now =n, ' so that
the expectation values I,.' are now =(n, '),„(instead
of the (n/&, „for noncoherent superposition. The
Markoff method then leads to

(where a level means a mode pair, cf., end of Sec.
VI) becomes twice as large, i.e. ,

N = 2 x 119.4 = 239. (6.20)

(-,'8/mc)(3mc'/8') =c. (6.21)

That obvious choice for x„ i.e. ,

x, = (h/mc)/3 x 1.23,

therefore leads approximately to

(6.22)

The radius of the core equator (i.e., of the circu-
lar "axis" of the Seifert-Threlfall fibration) is
I 2 3 7'0 where x0 is the root mean square of the
Gaussian distribution of "magnetization" (cf. Sec.
V of A, and C). This 1.23m, may be taken to be
equal to —,'5/mc. In the parametrized description,
the whirl motion is completely mapped onto the
spin motion, and consequently a (2, 1) loop has the
effective spinning angular velocity 3mc'/5, Eq.
(4.4). The linear velocity owing to effective spin-
ning, at the core equator, is assumed to be
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e'/he =N -' x 6.2 ~,/(h/mc)

=8.2/239 x 3 x 1.23

1
142' (8.23)

As the accurate formulation of the model, in par-
ticular, the form of the wave equation, has not yet
been given, the essential task consisted in the for-
mulation of physically meaningful assumptions, and
the development of the model, in particular the
checks on its consistency. Accurate numerical re-
sults would, at present, be a poor criterion of the
achievements of the flux loop model.

Even though we have here to deal with a super-
position of internal modes, giving rise to one
quantum state, i.e., the electron or the muon, so
that the possibility of using the concept of tem-
perature is not obvious, it is most interesting that
this temperature may be understood in relation to
the Hagedorn temperature.

Indeed, in the present model, both the leptons
and their electromagnetic interactions, as well as
the quarks of the hadrons and their strong interac-
tions, are formulated in terms of quantized flux
loops (i.e. , entirely in terms of electromagnetic
phenomena). Both the internal relationship be-
tween leptonic flux loops, as well as the strong in-
teractions of hadrons in Hagedorn's theory, " imply
time spans which permit the application of con-
cepts of thermodynamic equilibrium. Because of
this close relationship between leptonic and ha-
dronic particles, it makes sense that similar tem-
peratures should apply to both types of flux loop
manifolds, leptonic as well as hadronic.

One may therefore state that the statistical dis-
tribution (of the leptonic internal modes) which ac-
counts for e'/hc and for m„/m, refers to a tem-
perature of the order of the Hagedorn tempera-
ture" which is derived from the statistical boot-
strap model of hadronic interactions. The concept,
and the numerical value of the Hagedorn tempera-
ture, being based on particle reactions, was de-
termined to be of the order of the low-lying meson
masses, T„=160 MeV, in accord with experimen-
tal data which indicate 130 to 190 MeV. The tem-
perature which fits the observed muon-electron
mass ratio, in the rough approximation e = 2 j + 1,
lies at the very high end of the experimental range
of values for that limit temperature.

The temperature T which we use is an internal
temperature characteristic of leptons, not identical
with that universal limit temperature T„.

The above temperature T is not calculated by the
present theory; it is introduced into it, specifically
in the form of assuming, for leptons, P '= 370 [Eq.
(4.8)], i.e., in units of the electron mass. m /m,
as an obvious consequence [Eqs. (5.19)-(5.2)] of

this number 370 follows.
That some meson and muon masses should be

roughly of the same order of magnitude could,
however, have been anticipated by the following in-
dependent, simple consideration: comparing some
low-lying mesons with muons. Indeed, as these
mesons and the muon are, in the present flux loop
model, the low-lying energy states of two-loop and
of one-loop distributions, respectively, they
should be expected to have roughly the same mass-
es, the two-loop mesons somewhat higher than the
one-loop muon. We thereby assume that the quark
loops of a meson, as does the loop of a muon, have
probability-amplitude modes proportional to
e '"I'"I(", mesons and muon corresponding to
each other in that respect. . The interactions of the
two quark loops of a meson presumably do not per-
mit the low-frequency e ""I"&"modes of elec-
trons; the electron thus seems to have no counter-
parts among mesons.

It is reassuring to know that the concept of a
statistical distribution temperature, necessary for
a selection of a finite number N of probability am-
plitude modes in the calculation of e'/hc, and for
the selection of averages for (0 )„=3m, c'/h, Eq.
(5.13), is already needed in a very different con-
text with Hagedorn's T~.

What is astonishing, however, is that the dicho-
tomy of muon and electron states should so simply
and obviously arise from the basic requirement of
the Euler-angle independence of spinning angular
velocity (and thus isotropy of the electric field).

And it is particularly interesting to realize that
the two important constants e'/hc and m /m„
which should be both a matter of electromagnetic
theory and quantum mechanics, are interdepen-
dent, both arising simply as a consequence of the
structuralization of leptons which is demanded by
the flux loop model. And, furthermore, it is in-
teresting to realize that an understanding of the
rates of weak interactions (Appendix D) follows
from the flux loop model with the same quantitative
aspect of structuralization, i.e., with the reduction
factor ¹

A. Further details about the mode distributions

We presented the model in a simplified form in
order not to overload the main arguments with de-
tails. Some of those may be brought up now.

The discussions became particularly simplified
as we assumed the modes j, i.e. , the D„~ D„~„,f2L mg ff~glg &

to be restricted to multiplicity%=1, i.e. , that
from among the many degenerate modes of the
same frequency, only one is admissible, as origi-
nally pointed out in Eq. (3.12).

We want now to suggest that because of .the simi-
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i.e. , multiplicity

%-2
instead of

(jr, j,) =(0, —,'), (1, —,'), etc.

(3.13)

(5.2)

for which 9R= 1, as .in (3.12). Let us discuss the
consequences of this pairing of modes. %'e may
assume that, in the case of (virtual) coherence of
mode amplitudes of excitons, coherence is not only
shown by the excitons which belong to the same
mode, but by the excitons which belong to the same
degenerate pair of modes (0, —,'), (—,', 0) and similarly
for the other mode pairs, . Accordingly, the reduc-
tion factor N then gets doubled because of that
mode pair structure (6.24).

More detailed attention needs to be given to the
concept of "average occupancy. " Before even dis-
cussing the definitions of average occupancy when
degenerate modes are involved, we need to shortly
state the definition in the case of absence of degen-
eracies.

One may (a) form an average occupancy from a
collective (population) whose members are the
modes j, providing for a, (normalized) statistical
weight (~i;),„/Z,. (n, ),„. The quantity . to be weighted
with that is the expected occupancy of the mode j,
i.e. , (n, ),„, resulting in a,.n avera, ge occupa, ncy

(n, ),„'

(n,.),„' (6.25)

But, more reasonably (b) one may form an aver-
age occupancy from a collective (popula, tion) whose
members are the various distributions of n„
n„. . . , n;, . . . . The contribution of one of the nz to
the expectation value (n, ),„ is

(6.26)

This quantity, when normalized by dividing it by

n - = e'"~ —1 (6.27)

may be used as the statistical weight. The quantity
to be weighted is now the individual occupancy

ng (6.26)

itself, and the average occupancy is obtained by
combining these three factors,

lar role which the operators I, and K play, there
are always pairs of permitted degenerate modes
which then indeed form a complete set of functions;
thus

(6.24)

(6.29)

and summing over n,. and over j, resulting in

Z&n ),.
Z&n;)„' (6.30)

cf. also Eq. (6.4).
Returning now to the question of what the intro-

duction of degeneracy implies to the concept of
average occupancy, because of the relati:on (photon
sta. tistics)

(n,.'),„=2(n,. ),„'+(n,.),„ (6.4)

the average occupancy per mode, i.e. , ZJ (n,.'),„/
Z, (n, ),„, does not depend on whether or not modes
are degenerate.

If we ask, however, for the average occupancy
per mode pair (i.e., per level in our level
scheme), that average occupancy per level doubles
up through the introduction of degenerate pairs of
modes.

The interesting point is that this average oc-
cupancy behaves as does the reduction factor N,
both of them doubling up when going from the level
scheme (5.2) to the (6.24) scheme.

B. Question of ab initio calculation of the reduction number N

ln paper A (cf. also Appendix B of paper C, a,nd

Appendixes C and E of the present paper) an at-
tempt was made to present an ab initio calculation
of N and thereby of e'/hc. This was achieved by
making simple assumptions about bundling loop-
form manifolds (the bundling was performed by
grouping loopforms together into bundles in such a
manner that the orientations of neighboring bundles
differ by about one radian). Although the reduction
factor N was, in the present Sec. VI, properly cal-
culated, for electron and muon, from an inner
temperature T, it is important to realize that the
ratio of that temperature to the mass of the elec-
tron is a number which was inserted into the cal-
culation. The question is therefore whether it may
be possible to calculate tha. t ratio of T/rn„„„,„.

It should be noted that the reduction factor N is
to be a universal factor, not only for leptons but
for quarks and all hadrons which are formed from
coaxial quark loops: The universality of N indeed
implies that the ratios of electric charges of the
quarks have, because of simple topological proper-
ties of quark loop fields, the correct fractional
charge values as required by the original SU(3)
madel (cf. paper C and the fourth paragraph in
Sec. IVB). This remarkunderlines the obvious fact
that a key issue is an ab initio calculation of N and
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thereby of e'/5'c, m, jm„and weak interaction
rates, implying again the concept of an internal
temperature which for leptons was =TH.

In this program which is tightly confined to quan-
tum mechanics and electromagnetism (ML) theory,
the decisive new features introduced are the con-
sideration of magnetic flux as quantized, consider-
ation of quasiextension, i.e., structuralization of
the source model, and consideration of closure of
the flux loopforms which implies their Seifert fi-
bration topology.

The clarification of the electron and muon issues
is a necessary prerequisite for the formulation of
the quark-loop program.
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APPENDIX A: STEREOGRAPHIC PROJECTION OF
CAYLEY-KLEIN SPACE

We may give a short resume about the stereo-
graphic projection of the S, sphere,

Xp +Xy +X2 +X3 1 (Al)

where x,. represent the Euler angles P, 8, o'. ac-
cording to Eq. (2.1). A point on that unit sphere
S3 may be represented by the point xp, xy x2 x3 on
the unit circle of Fig. 2, whose north pole, from
which we proj ect, may be denoted by Xp = 1, X,
=X,=X, =0. The projection of that point x,. from
the north pole X,. onto the equatorial plane xp 0
may be denoted by x»x»X3. We should like to ex-
press the loci 0=const, / =const, o.'=const [cf.
Eq. (2.1)] in terms of x„x„x,. To this effect we
find x„x„x,as functions of xp xy x2 x™3.

This stereographic projection impli, es the follow-
ing proportionalities (cf. Fig. 2):

Xo= 1, Xf = Xq =X3=O

, X1, xp, X3

xo= 0 xo=o

Xt, Xg, X3) Xo =0

and, because of (A1),

2 2 2 1 —xp

( — )(1 —Xp)

1 + Xp

1 xQ
(A4)

Toroidal coordinates v, u, P, on the other hand,
are defined by

sinhv e'~
X] + ZX2 coshv —cosu

sinu
X3=

coshv —cosu

Therefore

(As)

COSItv + COSu
(A6)Xg + X2 +X3 coshv —cosu '

We may then ask the following question: If the
latter x„,x„x, [(As) and (A6)]'can be identified
with the former stereographic projections x» x„x3
[(A2)-(A4)] of the x„x„x„x,[Eq. (2.1)] from the
poles X„X„X„X„then what are the v, u, P '?

Equation (A6) with (A4) gives

cosu co shv —cosu
coshv ' ' coshv

(A7)

x, =x, (1 -x,)

sinhv cosQ
coshv

FIG. 2. Definition of the stereographic projection of the
Cayley-Klein sphere (~0,S&,x2, x3) onto the three-dinmn-
sional space (x&,x2, x&) of Fig. 1. The unit hypersphere
S3 in the Cayley-Klein space E4 (Fig. 2) is represented
by the circle. From the north pole Xo =1, X~ =X2=X3=0
of that unit hypersphere, its points 20, 7&, x2, x3 are
projected onto the equatorial hyperplane (x&,x2, x3), which
is represented in Fig. 2 by the abscissa axis xo =0.

X3

X3 X2 Xg

Ther efore,

xp-1 -1
xp —1 Xp —1

'
= tanhv cosg,

sinu
x, = tanhv sin&]&, x, =

coshv

(A8)

X]
Xg 1 XQ

X
1 xQ

X3
X3 1 XQ

Comparing (A7), (A8) with the definitions [Eq.
(2.1)], we get
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21 = -'(6+ o'), p = '(-P —o),

(coshv) ' = cos-,'8, tanhv = sin-,'8 .
(A9)

cross sections with meridional planes are circles
of radius x whose centers are located a distance
(r'+1)'/' outside the x,'+x,'=1, i.e.,

As all these equations are compatible, the toroidal
coordinates can indeed be considered as coordi-
nates resulting from stereographic projection, by.
the identifying equations (A5), (Al), and (A2).

Now, let us find, in x„x„x,space, the loci for
givenvalues of 8, P, c/, i.e., given p, u, v.

First, consider the rneriChoval planes passing
through the x, axis. For them

const =-xg

x2

xg

x2

(y2+ 1)1/2 (x 2+x 2)-1/2

= cothn

1
sinhv

1
sin( —,'8) '

[(x '+x ')' ' —(r'+ I)' ']'+x '=r'

By using (A4) we get

1+x, 2(2'+ I)' '(x,'+x, ')' '
=-1,

1 xo 1 xp

(A16)

(A17)

= cot/

= cot[-.'(8 —n)], (A10)

i.e., they are the loci P —&=const.
Second, consider sPherical surfaces of radius

A which pass through the circle x, +x2' = 1 and
which therefore have their centers at (x,), = (R'
—1)'/'. For them

= cot(28),

i.e., the toroidal surfaces characterize 8 =const;
the thickness of the toroid (doughnut) is 22'

=2 cot(28). In Fig. 1 these circular cross sections
of the toroids, with a meridional plane, are shown,
as well as the circular cross sections of the
spheres P+ & =const with the same meridional
plane.

[x (R2 1)1/2]2 ~x 2+x 2 R2 (A11)

which, by (A4), (A2), gives

1+x, 2(R' —1)'/'x,
1-x (1-x )

(A12)

(R' —1)"' =x,/x,
= cotQ

= cot[2'(8+ o')],

18=
S lDQ

1
sin[-2'(S+ u)] '

(A12)

xo= 0, i.e., 1=x,'+x,', l.e (A14)

(b) Consider the x, axis, i.e. , x, =x, =0. By stere-
ographic projection, Eq. (A2) this means, for
-1 x,&+1, 1-x,&0,

x~=x~=0, i.e., 0 =0. (A15)

(c) Consid'er torus surfaces which contain, inside
of them, the circle (x,'+x, '=1, x, =0), and whose

i.e., these spherical surfaces are loci P+& =const.
Third, (a) consider the circle (x,'+x, '=1,x, =0).

By stereographic projection, Eq. (A4), this means
also

APPENDIX B: WAVE EQUATION FOR THE PROBABILITY
AMPLITUDES OF ELECTRON OR MUON LOOPFORMSi2

&(j,) = &; (Bl)

are to be obtained from a wave equation for the
D„„. This relation 1d(j) is needed for the definition
of the statistical distribution (4.6) with an assumed
T. The relation a = ~(j) together with the photon
distribution then determine the coupling constant

The requirement of isotropy of the electric Cou-
lomb field, generated by the spinning of magnetic
flux loopforms, demanded that the spinning angular
velocity 0 of the loopforms (in ordinary three-
space around their flux orientation axes f, i.e.,
P, 8) be independent of these Euler angles P, 8, n

and of the sizes 0 of the loopforms. The
motion of a manifold of those loopforms, when
plotted with Cayley-Klein coordinates, amounts
therefore, by Eq. (2.6), to a rigid, SO(4)-invariant
motion of the 8, sphere in itself. The wave func-
tions should therefore be formed from representa-
tions of SO(4). The bases of irreducible represen-
tations of SO(4), i.e., D„'/ D„'»„which correspond
to resulting spin —,, are characterized by (j», j~)
= (0, 2), 2, 1), etc , and the. n~, mz, n», m» have been
discussed above.

How does the wave equation enter here& The
frequencies
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e'/Kc through the reduction factor N, Eq. (6.20),
and they determine also the mass ratio m, /m,
through the angular velocity ratios (0,),„/(Q,)„,
Eqs. (5.13), (5.14), (4.8), and (5.21).

Ne conjectured that

size o (i.e. , aphelion distance of a loopform), we
have to do with a type of scale invariance which
suggests that we may extend the'3-parameter
loopform characterization (by f, n) to a 4-param-
eter characterization ((,n, o). We may, further-
more, assume the interpretation

is a fairly good approximation. I.et us examine
this relation in the present appendix.

In the appendix of paper B we discussed a wave
equation of the original Casimir type (for a single
top) in the Cayley-Klein variables x„x„x„x,
[Eq. (2.1)] or, with

(,=rx, ,

$2 Q2 Q2 sQ s2
2

8~,'+a~,*+.S~,'+a~, ') aP (B4)

The essential point of the electron-muon dicho-
tomy, mentioned in the Introduction and specified
in Eqs. (5.7), (5.10) is that the D~~D'» wave func-
tions (3.3) are used both for the electron and for
the muon, with &~ —&~and ~L+ &~ characterizing
the two kinds of leptons. This means that the
units of time t and of frequencies & are the same,
for electron as well as for muon wave functions.

If a Lorentz transformation is applied to exam-
ine the lepton in motion, this time t is, of course,
to be considered as a proper time in a space-
time system of the lepton's center of mass whose
rectangular coordinates, not the xp xy x2 x3 or
$o, $„g„$„figure in the Lorentz transforma-
tion.

Whereas the variables x; confine us to the hyper-
sphere S, of Cayley and Klein, the g, cover the
entire 4-dimensional space,

$,'+ $,'+ $,'+ $,'=r'(x, '+x, '+x,'+x, ')

(B5)

These variables $ are useful because they permit
us to formulate the angular momentum operator
(homogeneous of degree zero in r)

(B8)

so that we have (a) the same P(r) distribution for
the muon (m = m„) and for the electron (m = m, ).
We may then (b) discuss how to express scale in-
variance with respect to loopform size o as a
scale invariance in the x distribution, cf. Eq. (B5).
In this way we associate with every point-dipole
loopform a point in the 4-dimensional space of the
variables $„$„$„$,. (The magnetic field which
corresponds to an extended source may then be
visualized as corresponding to a point-source
magnetization being spread out, by virtue of the
Zitte~bezgegugg, over a magnetized "core region"
of the linear extension = 5/me, cf. paper A, Sec.
VC, where this spreading out was calculated in
terms of a Gaussian distribution of magnetiza-
tion over the core region. )

It may be appropriate to mention that the invari-
ance (a) of the Coulomb field charge e was the
first test of consistency of the flux loop model,
Indeed, we found in paper A, Sec. VB (cf. also
paper C, Sec. IIB), that the same equivalent
electric charge e resulted for the electron and for
the muon alike, because of the rigorous cancella-
tion of mass in the calculation of the electric
field.

To summarize: Whereas the units of time (f)
and frequencies (~) are the same for the muon
and for the electron, their actual size parameters
o are to be expressed in terms of h/m„c and
5/m, c, respectively, Eq. (B8), i.e., r = a/(h/mc),
which appears in the wave equations (B4) and (B3).

The scale invariance (b) may be satisfied if
P(r) is proportional to a power of r, i.e.

g2 g2 g2 g22~ g2 R(r) ~~",

D' (P, g ~)R(r) "'
(B9)

(B10)

+x ~

It has the eigenvalues

(B6) (we denote by urz and by &u» the absolute values of
the frequencies to& and c3»). Inserting (B9) into
(B4), (B6), and (B7),

4j(j.1) (B7)

for the eigenfunctions D' (p, 8, o'.).
We point to the following argument (in the Ap-

pendix of paper B) concerning the question of the
physical meaning of r: As the shape of the loop-
forms of a point-dipole field is not only the same
for all values of $, n but also for all values of the

r' ——4j (j+ 1)+ &P R (r) = 0,
9& 8&

(B11)

(u'= u)' = 4j (j + 1) —»(»+ 2). (B12)

In three respects we need to supplement this

which indeed can be satisfied with an R(r) of the
power expression (B9) and yields
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8 jgI I gt2 nl, mt I & L& I ~L L

(B13)
to hold and also the same equation with the sub-
scripts I replaced by the subscripts K. And one
might assume that the analogy between the K and
the L systems suggests the same t dependence of
g for I and for K:

R~(r~)=R(r ), R (r )=R(r ). (B14)

Byprojection of r~ and t'~ onto each other, and
calling them simply &, we get

Ri(&i)R»(&») =R'(&) (B15)

for the probability amplitude
I
g as a function of

t, and therefore

R'()" I&I' (B16)

as the probability for the size r =a/(8/mc), i.e. ,
aphelion distance of a loopform to fall into a unit
volume of the shell (r, r+ dr) whose volume element
is o- ~'dr.

That probability is to be ~ Bede, so that

Bzdv ~
I
P

I

2r2dr ~R'Fdr, (B17)

i.e. , for the point-dipole field under consideration,
B~~ '. Therefore

A CC& ~4 i e. v=-4~ ~ 4 &

which gives with Eq. (B11)
~2 (g2 (2I+ 1)2 (~)2

or, indeed,

(B18)

(B19)

discussion of the wave equation.
First, we have recognized that a mode of muon

or electron wave functions, in order to represent
the SO(4) group, should be a product of tzoc Wigner
D~ functions, one of them (I.) representing the
dependence on the space-fixed coordinate system,
the other (K) representing the dependence on the
base- (loop-) fixSd systems. This 6-parameter
product of two functions, each of 3 variables, i.e.,
of p ~, e~, nz and of p», &», n», is then to be pro-
jected onto the space of the 3 variables pz, , e~, nl, .

As we consider distributions in the space of the
4 variables f;n, o=p, 8, n, o, i.e. , of g2, g„ t'„$„
we simply extend that projection operation to pro-
ject the product of two functions, each of 4 vari-
ables, i.e. , of p ~, 8+, n~, r~,p», &», n», r» onto the
space of the 4 variables p~, e~, nI. , r~, where, or
course, &~= &l. in the process of projection.

Using the for the all-positive-signature sec-
ond-order differential operator Z;,82/9$,.2, we
might then perhaps suspect some equation

quite artificial to assume two wave equations, one
for the L system, the other for the K system.
We also should realize that addition of the L oper-
ators appearing in Eq. (B12) with the correspond-
ing E operators should not be the proper procedure
to construct a single wave equation, for the follow-
ing reasons. Even though the coaxiality condition
(3.10) of the angular momenta of L and of K might
simplify angular momentum addition in the present
case, the addition of the two I., K terms (without
recourse to two time variables) should yield
(&u~ + to»)' which is not equal to an v~' a ur»' re-
sulting from an addition or subtraction of the two
operators, JL,'+JE', i.e. , of the two Casimir in-
variants. A linearization of the wave equation
might not only be helpful in overcoming these kinds
of problems; linearization is already imperative
in order to satisfy the requirements of quantum
mechanics, i.e. , to have a wave equation which
contains only a first-order derivative in time.

Third, as already pointed out at the end of Sec.
IV, we have to consider spin and whirl. For elec-
tron or muon loops [of winding numbers (2, 1)] we
have additive (cooperative) motion as regards
spin and whirl. At least in the present paramet-
rized version of the theory, and for the present
case of leptons which have only one type of loop
(one domain), unlike mesons or baryons (which
have 2 or 3 loop domains), it is to be understood
that, for these smooth torus loops, whirling mo-
tion is equivalent to a supplementary amount of
spinning motion with commensurable angular vel-
ocity. For the winding numbers (2, 1) of electron
or muon torus loops, the additive whirling motion
is actually equivalent to an enhancement of the
spinning motion by a factor 1& if spinning and
whirling are naturally assumed to have the same
angular velocity, so that the effective spinning
occurs with (1+—,)2mc2/h. It was pointed out in
paper C that lepton loopforms should be inter-
linked "so as not to fall apart, " to speak in the
Faraday-Maxwell terminology of field stresses;
the simplest winding numbers to that effect are
(2,+ 1) and (2, —1), i.e. , the electron or muon
case. It was also pointed out that it is exactly this
feature of effective spinning angular velocities
equal to (1 a —,)2mc2/8, and + and —for electron
and muon, and for X quarks, respectively, which
gives correct account of the charges e and 3e,
respectively.

One should note that the Casimir invariants are

I
&'- K'I=I(I. -~»)(~.+~»+»

I

~= 2g+ 1. (B2O)

Second, we should recognize that it would be 1= 4 CO~CO~q
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Z, '+ K'=.'-[(2q+ 1)' ——.']
21

A final obvious remark: A I agrangian Z
= 2(loopform probability amplitudes) can be written
down only when one has defined the parameters on
which the probability amplitudes depend. Such a
Lagrangian should be formed from functions which
are invariants with respect to transformations of
these parameters. Thus one has first to know the
group of transformations of those parameters,
the group with respect to which one then forms
invariants, the group which therefore leaves the
Lagrangian invariant and which therefore is ad-
mitted by the theory. In the present case the
parameters are the Cayley-Klein parameters, and
from physical arguments of isotropy of the elec-
tric field we know that the group is SO(4) in Cay-
ley-Klein space. The solutions of the variational
principle 5Z = 0 are then simply expressible in
terms of the irreducible representations of that
SO(4) group. The exact form of the wave equa-
tion which corresponds to that variational princi-
ple is therefore not always needed for steps in the
development of the theory.

APPENDIX C: FOOTNOTES AND CORRECTIONS TO
PAPER C

It is important to note that the loop configurations
drawn in paper C represent the basic types of
fibration (Seifert and Threlfall) and thus the basic
types of topological structures of electromagnetic
fields. In the pictures of paper B the 2 or 3 loops
of mesons or baryons referred to 2 or 3 nonover-
lapping toroidal regions of three-space, adjacent
regions being bounded by 1 or 2 surfaces of dis-
continuity of fibration. Actually, each of the 2 or
3 loopform manifolds may cover the entire space,
but are mainly confined to the 2 or 3 separate
regions. In other words, as the 2 or 3 factors of
a meson or baryon share their common torus axes,
the probability amplitudes's dependence on the
Euler angles is one and the same as that for the

. 2- or 3-quark-loop distributions; the composite
character of 2 meson or 3 baryon loops of a hadron
expresses itself in products of 2 or 3 functions
characterizing the distribution of probability am-
plitudes over the size parameters 0.

The third and fourth paragraphs in the remarks
on magnetic moments, page 451 of paper B, should
be delete'd: Magnetic moments of quarks are not
proportional to their electric charges in the flux
loop model, cf. Sec. VI of paper C.

Instead of the remarks about string models,
given in Appendix C of paper C, we may give here
some comments on strings.

It will be i.mportant to find the relationship of the

flux loop model to the string models. " It is inter-
esting to note that string models in which the
strings are closed loops, are able to represent
dual amplitudes. It might thus be suggested that
one may relate the concept of two merging closed-
loop strings to the concept of the two outer quark
loops which merge in a strong interaction between
two hadrons [cf. below in Appendix E, part (E)].
Whereas, in conventional string models, the
strings are sometimes considered as open-ended,
and where internal quantum numbers of a quark
are represented by boundary conditions at the open
ends of the string, it is now, with closed strings,
suggested that the internal quantum numbers of a
quark are represented by the topology of the quark
loop, in particular by its winding numbers (2, 1),
(3, 1), (3, 2) for the three older quarks. The linear-
ity of the Regge trajectory should not be handled
by a straight string, with two heavy ends attached
to it, but by assuming a hadron as being formed
from the qqq or qq characterizing the particular
hadron, associated with several qq in a ring-,
shaped aggregate (as pointed out by Holger B.
Nielsen). These qq should be considered as sub-
mits of the I. excited hadron (an obvious assump-
tion with our topological fluxloop model in which

q and q are coaxial fibrations, cf. papers B and C).
These qq subunits move like balls of a ball bear-
ing. Whatever the number of these qq subunits,
the close distances between nearest-neighbor sub-
units are expected to be approximately a standard
distance, determined by the interaction between
subunits. Their circumferential velocity is also
expected to be a standard velocity, given by the
condition that the de Broglie wavelength (corre-
sponding to the mass of a qq subunit) should be
equal to that nearest-neighbor distance. Accord-
ingly, the total mass (sum of the qq subunit ener-
gies minus binding energies between subunits) is
proportional to the number of subunits and, as the
radius (like the circumference) of the ring-shaped
aggregate is also proportional to that number, the
total angular momentum is approximately propor-
tional to the square of the number of subunits, the
circumferential velocity being approximately stand-
dard. The relativistic calculation shows the right
order of the slope of this linear Regge trajectory.

The developments in paper C of the heuristic-
model calculations are important to determine the
basic structure of the model and to check on its
consistency; reliable numerical results are, how-
ever, only obtained with the tools developed in the
present paper. "

The higher quark" loops (4, 3), etc. had been
listed in the early 1974 prepublication report of
the paper C; their effective spinning angular ve-
locities (taking the contribution to spinning from
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whirling into account) had been correctly stated
but mislabeled as "effective spin"; spin angular
momentum —,

' and effective spinning angular veloc-
ity are different concepts and had been properly
distinguished all along.

In order not to cause confusion, we do not use
the word "charm" for these higher-winding-num-
ber quarks. Their charges and high strangeness
numbers listed in the tables of paper C make them
excellent candidates for very stable mesons. The
leptons of winding numbers (5, 1), i.e., electric
charge 2, and those of winding numbers (5, 4} of
charge 3, both listed in Table II of paper C, are
the next integer-charged leptons predicted in the
loop model. The (5, 4) leptons [not the (5, 1) lep-
tons] have a very high unwinding number, implying
strange properties, and the existence of corre-
sponding neutrinos. All these new leptons might
perhaps occur in both the electron-type and in the
muon-type version, but will occur in at least one
of them.

As a final remark, we noted that a rest-system
solution may be simply Lorentz-transformed to
describe a particle in constant motion. Indeed, the
starting poirit of the theory was the requirement of
a Lorentz-covariant definition" of the magnetic
and electric field through A, —(Kc/e)s, 3 =0. Very
different to this issue is the question of behavior
of the model in accelerated motion, and still more
different is the question as to a description of what
happens in any situation which implies a change of
the standard forms of the flux loops. This pa-
rametrized loopform model does not cover those
general situations. It is for this reason that a
proper connection to quantum electrodynamics"
may be expected to be obtained only by a theory
which formulates flux loopforms in terms of func-
tionals and uses differential topology.

APPENDIX D: ESTIMATE OF RATES OF WEAK
INTERACTIONS FROM ELECTROMAGNETIC

{LOOP MODEL)

We have recognized that a lepton (and presumably
also a quark of a hadron) may be represented by
a large number of substates, " termed "modes"
(i.e., the D~&D~& functions). Each mode is under-
stood as occupied by a number of (indistinguisha-
ble) noncoherent excitons, their expected number
(nj),„being given by Planck's law (e & —1) ', cor-
responding to a probability amplitude:&& of the
mode given by (es & —1} ~'. Superpositions of
these mode amplitudes over the spectrum ~~ form
the probability-amplitude distribution on the loop-
form manifolds of a lepton or of a quark. Because
of that statistical distribution one may speak of a
statistical average of occupancy of a mode, i.e.,
%=2&119, and of an effective total occupancy

g&(nj),„=2X2177obtained from a simple tabulation
of (n, ),„,(n,.'),„,(o, (n,.).„, ((u, (n, ))'.

When a "crosscutting" of loops is necessary in a
strong interaction or in any other interaction, i.e.,
if the process involves a change of the topology of
the loops, that process becomes a weak process,""
as evidenced by an analysis of structure and linkage
of quark loops in interactions known phenomenolo-
gically to be weak. We should now like to consider
this statement also from the point of view of elec-
tromagnetic theory and thereby estimate the rate
of weak interactions due to such "crosscutting. "

(For some of the immediately following remarks
we have to refer to paper C.) We do not distin-
guish Ae~e between weak interactions in which
crosscutting is due to change of strangeness and
those in which it is not, neither do we consider
here the distinction between crosscutting of a loop
over itself or over another loop with which it inter-
acts, nor do we consider here whether the inter-
acting torus loops share both their torus axes
(i.e., belong to the same particle) or whether they
do not share them, in which case the torus loops
belong to two particles approaching each other.
We do, however, distinguish between situations
in which the topology (winding numbers, spin and
flux orientations) of the interacting loops leads to
essentially antiparallel alignment with the possi-
bility of full merging of the interacting loops, or to
essentially parallel alignment representing the
case which excludes possible merging, while al-
lowing crosscutting. We shall here consider the
latter case.

With crosscutting, overlap of loopform manifolds
is involved during that process, and that means
that, virtually, the electromagnetic energy, for-
merly a sum of nzc' of the two intersecting loop-
form manifolds before intersection, is now for a
short moment increased (because the field intensi-
ties, but not the energies, superpose linearly), by
some 20%, 20%, or 40%. That the increase in
field energy might be of that order of magnitude
may be inferred from the following consideration.
Before (and after) the crosscutting, the flux loop-
forms (i.e., magnetic field lines) had been thickly
concentrated in essentially different regions of
x, y, z space with little overlap (these regions are
of the order of linear extension of k/mc). Atcross-
cutting, the loopform manifolds share a substantial
volume of the x, p, z space which they separately
occupied before (and after), i.e., at crosscutting
a sizable fraction of the interacting loopform re-
gions overlap. Even though the present model
gives only a parametrized description of loopform
manifolds and thus, strictly speaking, is inade-
quate for a quantitative handling of overlap and of
change of topological structure, we may arrive at
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reliable estimates if we handle the energy rise
during overlap as if it were simply. an energy rise
of the regular parametrized loopform manifolds.

The crosscutting, thus characterized by crossing
of an energy barrier, is not calculated with the
formalism of a quantum-mechanical tunnel effect
(we even have no formalism yet available for the
calculation of interacting loopforms). But we may
calculate it as an energy fluctuation as in Eyring's
and in Kramers's models of reaction kinetics, '

asking what the probability would be to get over
that hump of 20%, 30%, or 40% excess energy, per
unit time.

To calculate this fluctuation effect it should be
remarked that here we do not consider virtual,
short changes from random-phased superposition
of exciton amplitudes to coherent superposition.
We consider the fluctuations of mode occupancies
n, in a Bose-Einstein photon distribution, charac-
terized by the moments (n,. ),„, (n,.')„, (n, '&,„, etc.
and remember that the distribution of n,. may be
formulated in terms of random-phasedly super-
posed exciton amplitudes ~r&~' =r, '=n~,. according
to the normalized distribution law (cf. Sec. VI}

where

) 2j
Correspondingly, the expectation value of the pth
mode's energy contribution is

In order to Fourier transform this back, we need

&= &&&+(&- &~&}

= g (e, &+(~- (&&},
(D8)

p««))8

We therefore obtain

'W(A')dS=( )JdpA(p)e

lip 1 —2p

[The numerical value of (8&, etc. corresponds to
&..=Z, , &;&.. o th t 2&&&/Z;&, &.,

would represent the muon mass in units of electron
mass, if we would talk about the energy fluctua-
tions corresponding to a muon participating in the
crossing. Cf. Eq. (6.18).]

The important number here is the variance in
the last Gaussian distribution. From the numerical
evaluation of the (e~& and the (e& &' we get a stan-
dard deviation of about —,', of the expectation value
&&& =Z, &e;&...

Accordingly, the probabilities for relative ex-
cess energy

With (8 —(8&}/(g& =o,2, 0.8, o.4 (Dlo)

we may consider the total energy

(D4)

~, de. =(e.&
'e '~ ")"xde, (D6)

and is used in the Markoff method to get the prod-
uct of their Fourier transforms,

as a one-dimensional statistical superposition of
positive-definite &~ steps. The normalized proba-
bility distributions for these steps is

are 10 ",10 "',10 "', respectively. These
probabilities, in order to relate to rates of reac-
tions, should be considered in units of frequency
2mc'/k, where m is of the order of the masses of
the hadrons or leptons involved in the interaction.
That amounts to a very crude assessment of weak-
interaction rates, but this qualitative model fits
both the requirements of fluctuation theory and
those of the phenomenology of the quark loop mod-
el.

It is therefore seen that the electromagnetic
coupling constant, the muon-electron mass ratio,
and also the rate of weak interactions are inter-
related, all of these depending on those numbers
(n&&, (n, '), (n, )' and their. products with the mode
frequencies, numbers which define the quantitative
aspects of lepton or quark loopform distributions.
One should note that the concept of substates
(modes) and of excitons does not imply observabil-
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ity of them, nor, still less, does it imply that a
quantum state be superposed from such excitons
by probabilities, only probability-amplitude super-
position provides for a consistent model.

It should be noted that even the present paramet-
rized formulation of the flux loop model might
perhaps account for interactions between particles,
i.e., for scattering cross sections, before even a
formulation of loop amplitudes in terms of func-
tionals is available: The method applied in this
appendix might provide some answers to scattering
problems, and one might not have to wait for far-
reaching mathematical tools to establish the link
between the flux loop model and quantum electro-
dynamics.

APPENDIX E: BRIEF SUMMARY OF PAPERS A—D ON

MAGNETIC FLUX QUANTIZATION AND PARTICLE
PHYSICS

(A) Quantized flux is to be considered as the
basic unit in relation to a theory of the electron.
A heuristic model is used to show the consistency
of that program and to show that the occurrence
and size of the coupling constant e'/hc may be
understood in terms of the flux quantization model,
without recourse to magnetic monopoles. While
in the present paper (D) we simply interrelate this
electromagnetic coupling constant to the muon-
electron mass ratio, to the weak-interaction con-
stant, and all of them to the internal temperature
T, the heuristic papers A and C make the even
more ambitious attempt to calculate e'/hc on the
basis of a simple assumption about grouping loop-
form manifolds together into "bundles" which differ
by about one radian in their orientations, as re-
gards the "distance" between neighboring loopform
manif olds.

(B) Whereas in paper A a, continuous distribution
of the "alternative forms"" of one quantized flux
loop (a Seifert fibration of space) determines the
magnetic (and thereby also the electric) field of a
lepton, in paper B a qp meson is represented by a
fibration of space in terms of two domains of
fibration (one inside a toroidal surface, the other
outside) and a qqq baryon in terms of three do-
mains. The fibrations have the structure of co-
axial torus knots of winding numbers (2, 1) for X
quarks, (3, 1) for + quarks, and (3, 2) for & quarks.
The topology of fibration [(3,2) of a & quark] is
made responsible for the strangeness (unknotting
number) of the & quark and a change of topology
characterizes weak interactions. The circum-
stance —that the interpretation of quarks as do-
mains of fibration makes quarks localized objects-
obviates the conflict between symmetric spin-
isospin functions of baryon quarks and the Pauli

principle. Furthermore, it is seen that the assign-
ment of torus knots because of their interlinkage
obviates the confinement problem of quarks.

(C) A short review (and appended footnotes) of
the entire program is followed by a demonstration
that integer electric charges of leptons and frac-
tional charges of quarks arise simply from the two
possible types of flux loop motions of the model,
i.e., the two possible types of internal motions of
fibrated space. The model shows the existence of
a sequel of new types of quarks, i.e., loops of
higher winding numbers, following the conventional
quarks of winding numbers (2, 1), (3, 1},(3, 2). It
also shows that the magnetic moments of quarks
are no longer exactly proportional to their elec-
tric charges. "

(D) In this paper the heuristic model of charac-
terizing the probability-amplitude distribution of a
quantized flux loop (for leptons} is reformulated in
terms of wave functions characterizing that dis-
tribution. It becomes obvious that muons as well
as electrons have to arise and it becomes possible
to estimate their mass ratio, as well as the value
of the electromagnetic coupling constant e'/Kc.
The present form of the flux quantization project
characterizes the electromagnetic field by a few
parameters, essentially Euler angles; for a theory
which properly connects this theory with quantum
electrodynamics, one needs a formulation of the
loopform manifolds by functionals instead of pa-
rameters and one needs to proceed to a differen-
tial topological formulation of the loop model.

(E) In a following paper some rules will be given
for the interaction of quarks. The basic rule is
that a change of topology of the fibration, implied
in any "crosscutting" (in order to avoid entangle-
ment) of loops over themselves or over those
which are coaxial with them or over those with
which they interact, e.g. , in the process of merg-
ing and of transfer of quark loops or of pair crea-
tion, represents a weak process, It is particularly
interesting to note that some outer torus loop
(quark loop) of a baryon inay merge with the cor-
responding outer antiquark loop of a meson without
entanglement even though the p of the baryon is
linked with two other q (all three coaxial), and the
q of the meson is linked with another q (coaxial
with it). Such a pair merging process may occur
without crosscutting of loops and may result in the
q of the meson neatly transferred to the outer re-
gion surrounding the two p loops of the baryon. In
that process the meson torus and the baryon torus
come first to lie side by side, sharing their cen-
tral symmetry axes. The joining of the meson's
f with the baryon's p results in the intermediary
configuration in which 2 or 3 loops which are
formed from those merging q, q (those loops are
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not interlinked with each other), and form 2 or 3
links which chain the meson torus to the baryon
torus. These chain links join with this meson s q
and. thereby transfer it to the outer region of the
baryon. This process therefore follows Zweig's
rule. With the topological interpretation of weak
interactions, parity violations are to be expected
there.

(F) Heavy leptons. It seems that in principle all
those types of loops are represented in nature,
which correspond to integer electric charge in
case of leptons (in which case spinning and whirling
cooperate additively to effective spinning) and

which satisfy the requirement of being linked to-
gether. We listed so far only types (2, 1) for elec-
trons and muons, (3, 2) for neutrinos, and (5, 1}
and perhaps (5, 4) for leptons of charge 2 and 3,
respectively (paper C, Table II). In particular, the
latter type, as it is heavily knotted in addition to
having a densely packed magnetic field, is expected
to be difficult to find.

The loops of type (1, +2) have, compared with

(2, +1), half as many core traverses of the mag-
netic flux, and thus a magnetic moment 2 (eK/2mc),
where m is their mass. They have an effective
spinning angular velocity (1 +2)2mc'/5, compared
with (1+2)2mc'/h; therefore the electric charge,
proportional to the product of the number of core
traverses and the effective angular velocity, is
the same, i.e., e.¹tesadded in Proof. To Appendix E: If the
handedness of motion of a loopform manifold (fi-
bration) is opposite to the handedness of its struc-
ture, we have an additive, "cooperative, " contri-
bution of spin and whirl (leptons); if the handed-
nesses are the same, we have a subtractive,
"sliding" relationship between spin and whirl
(quarks).

Fibrations (2, 1) or (1, 2} imply loopforms which
are interlinked with each other; besides, they go
around the central torus axis. Because they rep-
resent quantized flux, the Faraday-Maxwell
stresses are expected to keep the structure to-
gether. That does not hold for (0, 1) or (1, 0) loops
which therefore should be counted in the category
of photons.

The older quarks 'DL, 6', X are represented by the
simplestfibrations (2, 1), (3, 1), (3, 2), presumably
superposed with the corresponding (1, 2), (1, 3), (2, 3)
which have the same electric charges. These are
the simplest fibrations [fibrations (1, 0) or (0, 1)
are of the type of noninterlinked, photon type, and
fibrations (1, 1) quark loops have electric charge
zero]. The next simple fibrations with fractional
charge are (4, 3) or (3, 4) [listed in Univ. of Mary-

land report, 1974 (unpublished); cf. paper C],
their high unwinding number 3 (strangeness 3)
shows that they are the evident candidates to form,
with their antiquarks, the J/P particle. These
(4, 3) or (3, 4) quarks have electric charge a e/3,
not a 2e/3.

The role of the various fibrations is to be as-
sessed when the rules for superposition of lepton
and quark fibrations and the rules for their inter-
actions have been all worked out. With the same
comments we refer also to the interesting (4, 1)
loop shown in those tables of paper C. This (4, 1}
or (1, 4) fibration of the sliding type motion (as
quarks usually have) has integer electric charge
+ e. Because of this type of motion it might be
considered as a peculiar hadronic constituent,
occur ring singly, not in a qq or qqq combination.
But it would, as it consists of a single loop (fibra-
tion), and because of its integer charge, show up
somewhat like a lepton. The same remarks apply
also to the interesting (1, 1) fibration which carries
electric charge zero.

Notes to the Introduction: As' in quantum elec-
trodynamics we assume interactions to be local,
but we use the ZittexbezoegunI, to justify an aver-
aging of the position of the source over a volume
of the order of r,' = (5/mc)', cf. Eq. (6.22); r, has
nothing to do with the complex amplitudes r& used
in the next sections.

The reduction states in which manner global (in-
tegrals over the loopform parameters} quantities,
such as total magnetic flux, magnetic moment,
electromagnetic energy, and electromagnetic
angular momentum, get reduced to effective flux
etc. by C,ff ——2N 'C„(4')„,=2N '(4, )': For a fi-
bration of loopforms (2, 1}which pass twice through
the "core" of the source and thus have two "wings, "
the magnetic moments (linear in 4,}, and the elec-
tromagnetic energy or electromagnetic angular
momentum (quadratic in 4,), add up to terms pro-
portional to 2(C,) and to 2(C,)', respectively. These
get reduced to the effective quantities 4,«and
(4 ) ff respectively, by the same factor fthm

Note to Eq. (2.7): o., implies whirling ot„, and

n, implies spinning n, .
Note to Eqs. (6.25) ff. : The indices j in these

following paragraphs label modes, not mode pairs
(i.e. , not levels).

Note to the end of Appendix B: A fourth remark
should be considered in regard to the form of the
wave equation: Besides the Euler angles, rep-
resenting freedom of motion of the loopforms (of
the fibration), also internal energy, including
vibrational energy, may be expected to be impor-
tant terms in the wave equation.
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berg, personal communication.
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Tracts in Modern Physics, edited by G. Hohler
(Springer, New York, 1965), Vol. 37.

Torsion and related topics: R. J. Finkelstein, Ann.
Phys. (N.Y.) 15, 223 (1961);17, 379 (1962); 21, 408
(1963); R. Penrose, J. Math. Phys. 8, 345 (1967);
Int. J.Theor. Phys. 1, 61 (1968); in Quantum Gravity,
edited by C. J. Isham, R. Penrose, and D. W. Sciama
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Seifert fibration: H. Seifert, Acta Math. 60, 147 (1933);
Quart. J.Math. 1, 23 (1950); W. Threlfall and H. Seifert,
Ann. Math. 104, 1 (1930); 107, 543 (1932); Sitzungsber.
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communication; R. H. Fox and L. Neuwirth, Math.
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International Symposium on Mathematical Physics,
Mexico, 1976 (unpublished); in Proceedings of the 1974
International Conference on Mathematical Physics
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ming Conference on Nuclear Physics, 2975 (Springer,
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lems. L. Infeld and B.L.van der Waerden, Sitzungsber.
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personal communication; B.H. Good, Jr., Bev. Mod. Phys.
27, 187 (1955); W. L. Bade and H. Jehle, ibid. 25, 714
(1953);W. C. Parke and Herbert Jehle, Lectures in
Theoretical Physics, Boulder (Colorado Associated
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Rev. Mod. Phys. 28, 277 (1956); H. A. Tolhoek and
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Phys. Acta 7, 57 (1934); S. S. Schweber, Introduction
to Relativistic Quantum Field Theory (Row, Peterson
and Co. , Evanston, Ill. , 1961); in Mathematics of
Physics and Chemistry, edited by H. Margenau and
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des Groupes (Gordon and Breach, Paris, 1967);
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Superfluids (Dover, N.Y., 1950); R. P. Feynman,

.Lectures in Physics (Addison-Wesley, Reading, Mass. ,
1965), Vol. III, p. 21-1; Statistical Mechanics (Benja-
min, New York, 1972);J. Djuric, J.Appl. Phys. 46,
679 (1975);W. H. Bostick, personal communication;
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A168, 389 (1938); R. Schrader, Fortschr. Phys. 20,
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21 (1975).
Probability-amplitude distributions: R. P. Feynman,
Rev. Mod. Phys. 20, 367 (1948); J.S. Bell, Physics
1, 195 (1964); foundations of Quantum Mechanics,
International School of Physics "Enrico Fermi" Course
LIII (Academic, New York, 1971), p. 171; E.P. Wigner,
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D 3, 331 {1971)].
~4Related nuclear and condensed matter issues:
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