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Within the context of the quark model with interaction, SU(6) algebras classifying "in" and "out" states are
constructed and the unitary transformation relating these algebras to the SU(6)~,„„,„„algebra generated by

integrals of local currents is given simply. The formulation is general so that one may study kinematic effects,

which arise even in the absence of interaction from the angular requirements on the generators of the
classification algebras, separate from dynamical effects, which are peculiar to the nature of the interaction and

are also induced by these angular constraints.

I. INTRODUCTION

We have previously investigated' the possible
relation, in the context of interacting-quark mod-
els, between the algebra of SU(6)~,„„„„,whose
generators I', are integrals of the local currents
which describe the electromagnetic and weak inter-
actions of hadrons, and the algebra of SU(6)~ „„„
whose generators 8', are supposed to classify had-
rons into apyroximately degenerate multiylets.
The generators I'

&
are bilinear forms in field

operators y.(x;current) while the W,. are bilinear
forms in field operators y, (x;constituent). These
fields separately satisfy canonical anticommutation
relations on the null plane and are unitarily equiva-
lent. We constructed a unitary transformation re-
lating them in such a way that the W,. classify
states in a momentum-independent manner when
the states for arbitrary momentum are obtained
from rest states by means of E boosts, while the

E, classify states in a momentum-independent
manner when the states for arbitrary momentum
are obtained from rest states by means of Z
boosts. ' We then found that the W, have simple
angular momentum properties, so that their action
on hadronic states is just that expected in the
naive quark model. The results of Ref. 1 mere not
restricted, in general, to a specific choice of in-
teraction. In that regard we expressed the hope
that further work along those lines might answer
some of the questions we have dodged, such as
mhy the free-quark structure abstracted from the
model works so well for some matrix elements
and not for others.

Unfortunately, our results in the interacting-
quark model were not expressed in a form con-

venient for further phenomenological investigation
of the effects of interaction. In the present work
me will obtain an expression for the transformation
connecting current- and constituent-quark bases
which displays the dependence on interaction in a
rather transparent manner. Thus we may under-
stand the rej.ation of the quark-parton yicture to
the traditional quark model for hadronic structure. -

In the next section we review some of the for-
malism of Ref. 1 which is relevant to the present
work, while in Sec. III we develop it in a different
may so as to exhibit the simple form that the
transformation from one set of fields, y,(x;cur-
rent), to the other, y, (x;constituent), in fact has.
In Sec. IV we derive expressions for W, , genera-
tors of an SU(6)~ algebra, and for analogous gene-
rators of SU(6)~ algebras which may be used to
classify "in" and "out" physical states. Finally,
in the last section we discuss in detail the cur-
rent- constituent quark transformation in terms of
its action on physical states.

II. REVIEW OF SOME FORMALISM

The free-field Fourier expansion for the quark
field operator [t)(x) and other fields in the theory
must be modified in the presence of their inter-
actions, since the fields no longer have the space-
time coordinate dependence given by solutions of
the free-field equations. In fact, we do not know in
general what this coordinate dependence mill be.
Nevertheless, some definite statements can still
be made without our specifying the interaction.
Making a three-dimensional Fourier expansion of
g(x), we have (for fixed x'=&)

( pe xx) =[2(xe) [ i fep f e g [e(pxe)e(px)exp( ip x)+X~(pxe)e(p, x)exp((p x)[ . -
(2.l)
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This expansion holds for free fields; for interacting
fields it only holds for the "good" components (de-
fined below). Note that the spinors u(p, A.) satisfy
free-field equations of motion for a single spinor field
of mass m, the renormalized quark mass. The sca-
lar product p - x is given in the usual light-plane
variables as

P + P + l+ pi. IP (2.2)

where we have used the notation P'=—q and x'=—v.
The momentum P then satisfies the relation appro-
priate for a free quark of mass rn:

p =(p,'+m')/2n (2.3)

The development of ((x) in r is determined by the
generator of 7' displacements, P, which takes the
place of the Hamiltonian in the conventional for-
malism. Explicitly, we have

i[a, tt (x)j = stj (x)/s~. (2.4)

With no interaction, it is straightforward to show
that the above expansion holds for arbitrary w, and

that moreover

b„„(p,x;~) =b„„(p,x;0),
d',„„(p,x;~) =d,'„,(p, x;0). (2.5)

In the presence of interaction these simple results
no longer obtain; we rather have

b(p, X; r) = e'~ 'b(p, X; 0)e '~',
d'(p, X; ~) = e' 'd'( p, X; 0)e '

(2.6)

P =P arcsinh( ~p ~
/m), (2.8)

and we have added the notation "constituent" to the
state vector to emphasize the deyendence of the
construction on the choice of the boosting opera-
tion.

On the other hand, we might choose to define our
states so that they transform simply under the

so that these operators are in general no longer
equal to their values at & = 0. They cannot in gen-
eral be simply interpreted as creation and de-
struction operators for single quanta of definite
masses; nevertheless, they can be considered as
creation and destruction operators in the present
null-plane formulation. The states ~q, p, ;X) of a,

particle with arbitrary momentum are defined by
applying a particular Lorentz transformation to the
rest states. We require two different choices &~r

this Lorentz boost.
In the conventional formalism, one defines

~q, p, ;X; constituent) =e 8 K ~m/v2, 0;X),
(2.7)

where

e, =p, /q and e"= v2 q/m, (2.10)

and we have added the notation "current" in analo-
gy with the "constituent" notation above.

For the four-comyonent quark spinors, the ma-
trix G = —,'(1+y,y, ) projects onto a, two-dimensional
invariant subspace spanned by spinors of the form

y, (x) =Gq(x). (2.11)

The projected spinor has two linearly indeyendent
components for each kind of quark. The spinor
representation does not decompose, however; i.e. ,
the subspace orthogonal to that spanned by g, is not
invariant. In other words, if we define

g(x) =P,(x)+g (x), (2.12)

then when g (x) is Lorentz-transformed by opera-
tors leaving the w= 0 null-plane invariant, it can-
not be expressed solely in terms of g but must in-
volve g. as well.

Recall now the Fourier expansion of g(x). Clear-
ly, since the projection operator G is linear we
may write an expansion for g,(x) where the only
difference is that we must use projected spinors

u, (p, Z) —= Gu(p, X) . (2.13)

Now we shall choose the normalization of the spin-
ors so that

Q u' (P, X)u, 8(P, X) = W2qG ~. (2.14)

III. CONSTRUCTION OF THE TRANSFORMATION

For the quark field, transforming as spin —,', the
action of an arbitrary Lorentz transformation is
usually written

U[A]g. (x)U-'[A] = Q 8-'„8[A j(,(Ax), (3.1)

where S is a 4&&4 matrix which oyerates on the
four-component column vector g(x). For spatial
rotations, S is unitary, but this does not hold true
for Lorentz boosts; in general,

S '=yP'y, . (3.2)

We have shown how the current-quark and constit-
uent-quark bases may be related through a unitary
transformation constructed from some knowledge
of the matrix operator 8[A], and we have shown
that for the free-quark model this transformation

Poincare generators J„E„and K3 which leave the
plane ~ = 0 invariant. These states have arisen
naturally recently in discussions of field theories
in the infinite-momentum frame. They are defined
by

q, p, ;X; current) =e "~ E~e'"x~ ~m/v2, 0;X), (2.9)

where
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reduces precisely to one given by Melosh. '
The key is the realization that in the Fourier

expansion of g the syinors u(p, X) satisfy free-field
equations of motion. It follows that the free-field
transformation matrix S""[A]may be used to ex-
yress the spinors u(p, X) for arbitrary momentum
in terms of spinors describing rest states (p = 0)

write

u~(p, A. ; constituent)

= QSB""[A „,„,„,]u (rest, A), (3.4)

u~(p, X; current)

u~(p, X) = Q S ~""u (rest, A.) . (3.3)
= P SB""[A „„,]u (rest, A), (3.5)

Actually, since we have defined two sets of spinors
we must be more explicit; that is, we must say
how the boost is to be effected. In other words, we

here Aconstituent an Acurrent are the Lorentz boosts
appropriate to the constituent and current bases
described above. Now define new functions y(x;
constituent) and y(x; current):

q~(x;constituent) =(2)T) '~' ' [q'~'b(p, k,constituent)u)~(X)e '~ "cPp~dg

+ g'I'd~(p, x; constituent)u)z(-x)e ~'"],
where

u)~(X) = 2-' 'm ' 'u~(rest, A.),

(3.6)

and analogous expressions for the current-quark basis. The procedure de'scribed earlier may be used to
show that these functions are related to g,(x) by a unitary transformation; for the current-quark basis the
transformation is trivial,

g,(x) = y,(x;current),

while for the constituent-quark basis

O.(x;oonetitnent) = V„..t.tx) = eap(iaxotan ' '
t),(x) .

m+ lp, +p, l

(3.V)

(3.8)

IV THE GENERATORS OF SU(6 )~ tIOIIg

The generators Ef of SU(6)~,„„„„canbe defined in terms of bilinear yroducts of g., in the free-quark
model, and we will assume the same form for them in general. If further (good) fields are found to be
necessarily included in E, , then the discussion can be suitably extended. Therefore, we will define

S", = d4x6(x )q', (x)r —,'~,.q.(x), (4.1)

where X& is an SU(3) matrix and I'"= (2, po', pc', po'). The SU(6) generators are defined analogously, for free
fields,

d'x t) (x')pt(x;constituent) I' —,
'

X,y,(x;constituent) . (4.2)

Next we make use of the Fourier expansion of y, (x) as defined in the preceding section, Eq. (3.6), to ob-
tain

(4.3)

The operators have a v. dependence which
is fixed by the nature of the interaction. For
the free case, they are v dependent; so then the
W, (v') are r independent, i.e. , they generate a
symmetry of the Hamiltonian. (Actually, this is (4 4)

W;(~) =g GPp dg
[b (p, A, ; r; constituent) ~ X&b(p, )).', v", constituent)u)t(X)I" u),(V)

XX~

+ dt(p, X; 7", constituent) —,
'

X,.d(p, X'; 7'; constituent)u)t(-X) I'~u), (-X')] .
I

true only if the quark masses are degenerate;
if not, then W, (~) will have a dependence on 7

given by exp[i(P& —P,.) ~ 7'], where

p~ pJ + Vlf f
Ss&
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and the i (f) subscript refers to the quark annihi-
lated (created) by W;) .

Note that up to now we have made no reference
to the transformation yroyerties of states under
either the algebra SU(6)~,„„„„generated by the

E,. (w) or SU(6)~,„„„generated by the W,. (v). Phy-
sic'al "in" and "out" states are created4 by opera-
tors such as b'„(p, ](;constituent) etc.

Heisenberg "in" operators are defined by

P =P+P . (4.7)

Since P governs the r evolution of Q„(x),

Q,,(x) = e(~'Q&„(0)e-&~' (4.8)

eigenstate of Po= P, (v= 0) into an ingoing eigen-
state of P of the same energy. We have split uy
the "Hamiltonian" P into free and interaction
yieces

Q„(x)= n& &(~)Q„(x)n& &(v)-', x = ~ (4.5)

for an-arbitrary Heisenberg operator Q„(x), where
as is appropriate for a Heisenberg operator. For
the special case of Q„(x)=P we find

n(+)(r) e&P pn(+)e IP p (4.6)

and n" is the M]]&'lier wave matrix, having the
property that it transforms a positive-energy ~

P (w) =P (0) =P-=P, „(r)=P, „(0),
while for the quark field ]1)(x)

(4.9)

y„(x)= n" (&))/J(x)n" (&) '

= (p(p~)']'~'f d pQ (p„( pz;v)u( pz)exp(- (p x)+d {]pa;~)u(-,p-x)ex(p{px)]. (4(D)
0

Now the r evolution of &t)„(x) is governed by P, „,
that is, by the free "Hamiltonian" expressed in
terms of "in" fields. Therefore, b„,d,„are 7 in-
dependent.

The Lorentz transformation properties of g„(x)
are those of a free field,

U,.[A]q„.(x)U„[A]-&=S"-[A] .,q...(Ax),

(4.11)

even though the matrix S[A] associated with g(x)
is not S""[A]. To underline this point, we consi-
der

UIA]P(x) U[A) '

= n'+'(7') '(r) U„[A]&]t „(x)U„[A] 'n'+'('r)

=S""[A]n"'(r)g„(Ax)n" (w). (4.12)

But

w = n&.&(~)w (r)n& &(~)-' (4.15)

which are appropriate for classifying Heisenberg
"in" states, and the operators

w;, „„=n&-&(~) w", (~)n&-&(~)-', (4.16)

which are ayyropriate for classifying Heisenberg
"out" states. We have used the notation

n(k) (r) —ei~n(s) e &P { (4.17)

The 0"' operators have the well-known expansions

0"=&exp -i a~P;, (~) (4.18)

algebra of operators which have simple Lorentz
transformation yroyerties and which may be used
to classify physical states in a simple fashion, (see
Appendix A for a discussion), we are led to a con-
sideration of the operators

n& & -'(~)q„(Ax)n& &(~) ~y(Ax) (4.13) n' ' = 7' exp +i d7 P( D(w)
0

(4.19)

unless (Ax)'= r, which is not true unless A leaves
the light-plane ~ constant invariant. Therefore
S[A]eS'"'[A] unless A leaves the light plane in-
variant. The operators 5~„d„transform simply
under U„[A]; for example,

exp( —ip ~ K„)b„(p,X; constituent) exp(i$ ~ K„)

= b „(AP, &(; constituent), (4.14)

where AP is obtained from p by E-boosting an
amount P.

Since we are interested in constructing an SU(6)

s = n& &n&-&*. (4.21)

These algebras are distinct unless there is no
scattering. The Fock- space expansion

where P," D is the interaction part of P- in the Di-
rac picture and 9" denotes & ordering of the expo-
nential (analogous to time ordering in the usual
spacelike formalism). The W,. „nad W,'. ,„, gene-
rate SU(6) algebras which are connected by the
scattering matrix S:

(4.20)
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W( „=g [b(t,(p, A. ; constituent)-, ')('b „(p,A. '; constituent)co~()()P ((),(A, ')
XX~

+ d„(p, X; constituent) —,'A( d,,(p, A.'; constituent)(()t(-X)P ((),(-X')] (4.22)

shows explicitly that the W,. „have the correct Lorentz-group transformation properties that we desire for
an SU(6)~ „„„classification group for "in" states; similarly, the Fock-space expansion for W, ,„,does
likewise for "out" states.

V. THE TRANSFORMATION AND WHAT 1T MEANS

The eigenstates of P, „are constructed in the
same way as in the free-yarticle case, so the n-
incoming quark state

Therefore, (a, currents) is a Dirac-picture state
that transforms under E,. in the same way as a)„
does under W, „, and

(5.8)

(a),.„=n&") a~},
b},„,=Q' ' b ),

(5.2)

(5.3)

a matrix element of an arbitrary Heisenberg oper-
ator Qz(x) may be expressed as follows:

(s.4)

which is the familiar starting point for the deve-
lopment of perturbation theory.

Since E, (r) do not co.mmute with P, , then E«,(v)
do not commute with P, , „. This implies that "in"
states that are built out of a fixed number of con-
stituent (Iuarks, via b~„(P, A. ; constituent), will not
have a fixed number of current quarks in general.

Consider a state (a)„that transforms in a defi-
nite way under the 8', ,, Then

W, „(a)„=A"W(0)Q" ' a)„
= V„..(O) n&'E', (O) n&'-' V„..-'(O)(a)„
= V,Q( (0) (a, currents), (5.5)

where we have defined'

b,,(p„X„constituent)
n!

)& ' ' && bt„(P„,X„;constituent) 0) (5.1)

is an eigenstate of P, ,„with eigenvalue Q, ,P-. and
an eigenfunction of P, (P') with eigenvalue+(, P.,i~tI f= j.~, ,(7,.). However, it is important to realize that
since Po g

P this n-incoming quark state is
also an eigenstate of the total "Hamiltonian. " In
particular, it is a satisfactory state describing the
collision and subsequent development of outgoing
waves of collision products. The incoming state
consists of dressed (physical) particles.

Since "in" and "out" states are related via the
M((!lier wave operators to Dirac-picture eigen-
states of P,"

just as discussed first by Melosh.

Similar ly,

(a, currents) = V,„,-' a),„,, (s.lo)

V,„,=- II&-) V„„(O), (5.11)

so that (a, currents) transforms in the same way
under E, as a),„,does under W, ,„„and

W;.„,= V.„g;V„-'. (5.12)

Therefore, the matrix element, „,(b Q a)„, which
commonly occurs in any treatment of transition
amplitudes, satisfies

,„,(b (Q (a)(„=( b, currents V,„, 'Q V„(a,currents) .

(5.13)

To convert this expression into a more convenient
form for purposes of phenomenology, we write

= (V,„..-'II&-)*E„„)(V„„-'QV„.,)

= II(-)+Qg(+) (5.14)

so

,„„(b Q (a)„=(b, currents O( '*.
Q II&')(a, currents)

= (b, currents
(
9"(SQ) (a, curr ents) .

(5.15)

The algebraic structure of matrix elements of an
arbitrary Heisenberg operator Q with respect to
SU(6)~ „„,„„is given by the corresponding prop-
erties of V„'QV„with respect to SU(6)~,„„„„„,
since

,„(b Q a)„=(b,currents V„'QV,„a,currents),

(5.9)

(a, currents) =—V„'(a)„,
v,.=v,„.,(o) n& ).

(s.6)

(5.7)

Recall that Q"' may be expressed as a v-ordered
exponential in P~ ~(r). But since Dirac-picture
operators have their ~ development determined by
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0fl" = & exp iPI(-7') d7'
I ~OO

(5:18)

There have been two completely disjoint approxi-
mations used heretofore in making yhenomenologi-
cal use of this relation. The approach of Melosh'
and his followers has been to ignore (or argue
away) the effect of interaction, which menas to set
0"'=1, while including the effects of the trans-
formation V„„. The approach of Yan' and others
has been to ignore the distinction between current-
and constituent-quark bases by setting V„„=&,
while including the effects of interaction which are
generated by the dressing-operators Q"'; this ap-
yroach is reasonable in the context of scalar
quar ks.

Within the context of the formalism developed
here, we may hope to do better than these extreme
approximations have been able to do. Since we
know V„„explicitly for the syin- —,

' quark model,
we may include its effects completely in an inter-
acting-quark model while making some hopefully
realistic approximation to 0"' so as to account for
the effects of interaction to some degree.

We have, of course, assumed throughout that the
existence of bound states of quarks does not modify.
our discussion in a violent manner; of the yroblem
of quark confinement we have nothing to say.

the free field P,",

P, ~(~) = exp(iPp )PI D(0) exp(-iP, ~), (5.16)

and since P, commutes with V„„(after all, V„„
is just a change of spin basis for free quarks) we
have the result

Pj ~(r) = V„„'PIn(r) V„„
= exp(iP07)PI(0) exp(-iPp), (5.17)

so that 0"' may be explicitly computed in any giv-
en model by simply transforming Pz(0) with V„„

[Lq „,W;. ,„]=0. (A2)

But

(As)

so if we define

(A4)

(A5)

then

[Ls, W& ]= 0, o. , P = 1, 2, 3 for all j (A6)

as desired.
Suppose we now restrict our attention to single-

particle "in" states in the constituent-quark basis.
Then

(A7)

We have shown' that the same transformation
V„„results if we require the states ip, X; constit-
uent) to be defined via K boosts from corresponding
rest states. (See Marinescu and Kugler. ') That is,
by this requirement not only does one obtain states
whose transformation properties under SU(6)~ „„„
are momentum independent, but one also obtains a
separation of total angular momentum into quark
orbital and quark spin angular momenta which sat-
isfy the conditions (a)-(d).

The "in" and "out" fields satisfy free-field equa-
tions, and the corresponding states transform
simply according to the SU(6)~ algebra generated
by 8',. „and W, ,„„respectively. Therefore, this
is the yroyer solution for "in" and "out" fields.
Hence

APPENDIX A

The problem is to define operators L, 5 so that
(a) J= L+S,
(b) each set of operators (J~], (Lzjf, (S~$ satisfy

the algebra of SU(2) within itself,
(c) L and S are vectors under space rotation, and

(d) [Lg, W~~]=0.
For the free-quark model, Carlitz and Tung'

have shown that the Melosh transformation V„„
gives the solution in the sense that W, greg
= Vz„P,. V„„'and L„„,S„„satisfy (a)—(d) above.
In fact,

when [q] denotes' the element of SL(2, C) corre-
sponding to the K boosts which takes q= (m, 0) to
q. Since U is unitary,

(A8)

The transformation which takes a state Iq, X) into
the state

i
q', A) is just U([q'][q] '). It is easy to

check that such transformations U commute with
all W«„. Note that this does not mean that K corn-
mutes with W, .

Furthermore, multiparticle states can be treated
similarly. Consider the two-particle state
q„X,;q„X,) for example. Let

8 gree ~o greg& (A1) q,' =A.q„q,' =Aq,
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for some Lorentz transformation A. Then let
U([q',.][q,.] ') act on the ith particle, so that

U, ([ql][q, ] ')m'~, ([q'.][q.) ') ~q, ~;q. , 4&

, ; q2, A.,) . (A10)

The two-particle state of momentum Q=q, +q, is

thus transformed into one of momentum Q' =AQ.
Moreover, such a transformation commutes with
all 8', , since it is a product of operators which so
commute and M, is a one-body operator. Thus we
have constructed multiparticle states which are
classified by SU(6)«„I30(3) independent of total
momentum.
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