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Scattering at fixed t and fixed angle: A renormalization-group analysis*
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We use the renormalization group to study the extrapolation between the Regge region and fixed-angle
region of high-energy scattering in $' field theory in 6 —e dimensions. We also show how the
renormalization group can be used to improve weak-coupling expressions for Regge residues and trajectories
by including specific self-energy and radiative corrections to all orders of perturbation theory.

INTRODUCTION

It has been asserted by Huang and Low that the
renormalization group does not determine the
form of scattering amplitudes in the Regge limit
(s large, t fixed, on the mass shell). ' In terms
of the ballan-Symanzik equation, their observa-
tion follows from examination of the solution for
the renormalized four-point function

T(&p,g, mr', its) = T(p, g(A, '), mr'(X '), p, ')

0
x exp — d(ln&") tr(&')

-1n)t2

Now, for an asymptotically free field theory,
g(& ') and mrs(& ') vanish at large &. For a fixed-
angle limit the falloff of mra(& ') is harmless~if
the infrared singularities are sufficiently tame,
because the momentum transfer t in T remains
finite onthe right-hand side of Eq. (1) and provides
a cutoff. We can then evaluate T on the right-
hand side in perturbation theory using asymptotic
freedom, and predict the asymptotic amplitude.
By contrast, in the Begge limit, t vanishes on
the right-hand side of Eq. (1), and now T develops
infrared singularities due to the falloff of m s(A. ').
These singularities cancel the falloff of g(X ')
and the scaling function T receives finite contri-
butions from every order of perturbation theory.

Let us now consider a field theory which is not
only asymptotically free (so that the foregoing dis-
cussion applies) but also has an approximately
known Regge limit. In this case we have a con-
trolled approximation to the scaling function on
the right-hand side of Eq. (1), valid in the Regge
limit and involving an infinite set of perturbation
terms. We can now use the renormalization group
to explore two questions: (1) How and where does
the Regge limit contort itself into the fixed-angle
limit as ~t~ increases? (2) Is the approximate
Regge amplitude consistent with the renormaliza-

tion group, and can the renormalization group be
used to improve it'P

In this paper we explore these questions for Qs

field theory in D space-time dimensions, where
4&D&6. We cannot extend discussion to D~ 4
because in this region the infrared singularities
are not "tame" and the new improved renormaliza-
tion-group equations we use do not apply. "'"' At
D =6 the Regge behavior of its field theory is ex-
tremely complicated"' and we have chosen to
avoid the elaboration required to discuss this
case. For the same reason, we study the scat-
tering of the elementary scalar particles of tlis

field theory even though the scattering of bound
states has features which more closely resemble
the phenomenological quark model of wide-angle
scattering. "

We must also take account of the fact that the
Regge limit of rt&s field theory is controlled by a
leading fixed Begge pole at j=0. This Begge pole
is of little interest, but we can remove it because
it is due to the sum of diagrams which are one-
particle reducible in the t channel. We therefore
write the scattering amplitude as T = T, + T„where
Tp is the su m of amplitudes which are single- par-
ticlereducible in the t channel, and T, is every-
thing else. The Regge behavior of T, can be found
by solving the t-channel Bethe-Salpeter equation;
the leading approximation is given by the familiar
ladder sum. '

In Sec. II we begin our analysis with a concise
derivation of the Regge behavior of T, in D di-
mensions, D&6. Then, in Sec. III we use our
Regge amplitude to evaluate the right-hand side
of Eq. (1) in an approximation which is uniformly
valid in the Begge and fixed-angle limits. We use
this result to conjecture where the transition from
Regge to fixed-angle behavior occurs in the data.
In Sec. IV we study the consistency of our approx-
imate Regge amplitude with the renormalization
group. We find that the renormalization group
can be used to modify Begge amplitudes in a man-
ner which can be very simply characterized.
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II. THE BETHE-SALPETER EQUATION IN D &6 DIMENSIONS

The Itegge behavior of (p2 field theory in D dimensions can be obtained by analysis of the Bethe-Salpeter
equation written in the t-channel center-of-. mass frame. ' We imagine particles of four-momenta (p, —2'vt

+ (D) and (-p, —2'Wt —(D) colliding to produce particles of primed momenta and energies. The Bethe-Salpeter
equation reads

Tl(P» (d'» P »(D. » t) =K(P» &» P» (D» t)

tld tI
+

' p '"
K(p ~ P- ~- t)~(p -~t+ -)~(-P- ~~ =)T(p- ".

P 't)

(2)

K is the sum of all perturbation amplitudes which are one- and two-particle irreducible in the t channel,
and ~ is the propagator. This equation is exact. In lowest-order perturbation theory

-i~ '
(&- &') —(P —P') —mr + z& (2»/t + (D")' - p'" —m '+ zc

and T, becomes the sum of ladder diagrams in the t channel. .This approximation leads to the Regge am-
plitude in the limit of weak coupling, which is the only limit amenable to study.

Equation (2) is dlagonalized by expanding the dependence on the scattering angle z =p p in (D —1)-di-
mensional spherical harmonics. For T, the expression is

Tz(p»(D;p'»(()'» t) = g C' -" '(z}Tl(p, (d;p'»(()'»t)
2l+D- 3

f=o
(4)

~ ~
~

(D 2)/2 (D 2)/2» ll»C( (p p(&-,& ) /2 (D-3 ) /2 ~

dQ„C, (p ~ n)C, (n.p ) =
[I l(D 3)]F(l(D

—

3))

in evaluating the angular integral in Eq. (2). This result is an equation for T, :

Tl(P» R;P» M; t) =K((P» M»P» (»)» t)

and similarly for K; C,'~ " ' is a Gegpnbauer polynomial;" Diagonalization results through use of the equ-
ation"

(4~)'"""&(-:(D-1))

~ ~ ~

P" dP"K,(P, (D;P", (D"; t)T, (P", (D";P', (d', t)

The projection K, is"

0 %&& J (~2 g)(D 4)/4 i'(D 4)/2~(4„D)/P (

zz= [m,' —((D - (D')'+ p'+ p" - ie]/2pp'.

It can be shown that the kernel of Eq. (6) is I' for D(6 so that its solution can be constructed by Fred
holm's method. "" This gives T, as a ratio of power series in &,'. However, terms higher than X,' in these
series cannot be trusted because we have only retained the single particle exchange graph of Fig. 1(a) in

constru«ing K. We would also have to include vertex and self-energy corrections, Fig. 1(b) as weII as
Fig. 1(c), if we wish to accurately calculate the order-&, ' terms. (Order-x ' seU-energy corrections to
t)' wouM have to be retained as well. ) For these reasons, only the first Fredholm (trace) approximation
has model-independent sjgnificance. In this approximation,

T, =K,/D„

8z)( 2/m )(D-s)/2ei»»(D-e)/2
D =1+ —' ' - du& dP(m '+4P')'

l (4&)(D+2) /2 I
«oo

'
P

(I)
' ' ' (1+m '/2p')

[(~t+ (D)' -p' —m,'+ ie][(2v t —(d)' -p' —m, '+ i~] '
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FIG. 1. (a) Graph used in Bethe-Salpeter kernel K,
(b) corrections to K due to radiative corrections, and
(c) remaining fourth-order contribution to K.

Regge poles occur for values of l at which D, van-
ishes. For weak &,' this happens near l =-1 be-
cause Q is singular there. We therefore approxi-
mate Q by its singular term

e il'(DW) /2n(4-&) /& ((()~ l+ (D"4)I

2 (4-&) &/2)(& l &(g2 I)(&-()& t 4

(I + l)I'(-', (D —3))

Applying this to Eq. (8) we obtain

I"(e /2) &,'

Bethe-Salpeter equation has the advantage of show-
ing that, when &,' is small, the Begge behavior
of the ladder sum is actually the sum of the lead-
ing behaviors. We see from Eq. (11}that as
e -0, )(,' must be ~O(e) for the weak-coupling
approximation to have any meaning. This hap-
pens because at E =0 the Regge spectrum predicted
by Eq. (6) abruptly changes from a leading pole to
a leading cut in the angular momentum plane. ""'"
swardy and Lovelace have further pointed out that
Eq. (6) itself is inadequate at D= 6."We will
further discuss these points in Sec. DI.

III. JOINING THE REGGE AND FIXED-ANGLE
ASYMPTOTIC AMP LITU DES

The amplitude T, must be renormalized when
divergent diagrams [as in Fig. 1(b)] are included.
Benormalized amplitudes are defined by normali-
zation conditions on the renormalized inverse pro-
pagator and amputated vertex function

0 = i4)( '( p = 0, A. , ml' =0, t(2),

where E = 6 —D. A similar approximation for K,
leads to the simple expression

().')(D- 3)
2pp'(I —n) '

8
1=,its '(p', )(, m, ' = 0, t(')

P~--u

8-1=,i t&.„'(p' = —p', A. , mr', p,')
I

=Fz (p(, X, ml —-0, p, )

mr =02

(14)

s u'=1- =-1'
2mz' —t/2 2m+' —t/2

' (12)

The Regge limit therefore corresponds to the
limit of Eq. (4) as z --~. This we calculate by
converting the sum to a Sommerfeld-%atson inte-
gral, opening up the contour, and replacing the
Gegenbauer polynomial by its large-angle approx-
imation. The result is"

s~~ s mz —t 4 u ~z —t 4

n =-1+ „' dx[m, ' —tx(1 —x}] ' '.
(47() "

%'e are now set up to calculate the Regge behav-
ior of T, . Note first that in Eq. (4) we must re-
place C,(~ " '(z) by C( " '(z)+C( " '(—z); this
adds the crossed and uncrossed t-channel ladders. "
%e recall that on the mass shell, ~=~'=0, p'
=p'2=t/4 —ms', and

Normalization at zero internal mass can be done
for 4&D~ 6 without encountering infrared diver-
gences.""%e also introduce the dimensionless
coupling g through g=A(p, ) 't'. Equations (11) and

(13) can be trivially renormalized through the re-
placement X,'-g'(p, ')'t'. The complete amputated
four-point function, one-particle irreducible in the
t channel, satisfies the renormalization-group
equation'

8 8 8
8ln~' 8lnmr' 8g, '+(1 —K),—P —+2y+(I —e/2)

x Z'"(Xp g m ' t(') =0. (15)

p, y, and K are functions of g only. In the zero-
loop approximation, P=-ag/4, @=K=0, and in
the one- loop approximation

eg 3 I'(4 —D/2)[I'(D/2 —1)]
4 4 (4(r)D 'I'(D —2)

t f ixed

(13)

where n is given by Eq. (11). In the Regge limit,
u =-s, but we di.stinguish between these variables
for the purpose of extrapolating to wide angle.

Equation (13) can also be calculated by summing
the leading Begge behavior of each uncrossed and
crossed ladder diagram. The calculation by the

I'(4 —D/2), dxdydz 6(1 —x —y —z)
(4n.)D~' (xy+yz+ zx)'"

I'(4 —D/2) [I'(D/2 —1)]'
2(4(()D'al" (D —2)

(3D- 8) I'(4 —D/2)[1 (D/2 —2)]'
8 (4&()~ i '(D —3)I'(D —4)

The solution of Eq. (15) is given by Eq. (1),

(16)
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where the running coupling and internal mass
are determined by

=0.'4" Since g vanishes as s becomes large, we
can use perturbation theory to evaluate T, on the
right-hand side of Eq. (19). The leading terms are
given by s- and u-channel poles:

&(&) =1—&/2+2'Y(g(&)}.

Equation (1) is an identity in &. It can be turned
into a relation involving on-mass-shell amplitudes
for the s-channel process p, +p, -p,'+P,' by choos-
ing

Vfe therefore find

i~~ i~'
Tr (S 1 t, m@, ml, ti, g) S~

Sl t fiX96

(21)

P,.=q, +r, /X'.

q, = —(1,0, 0,+1), x, = -s (1,0, 1,0),
p,

PH

q, = —(1,0, 0, -1), l; = S (1,0, -1,0},

q,
' = —(1, sin8, 0, cos8),

PE@
(1,—cos8, 0, sin8),

q,'= 2 (1,—sin8, 0, —cos8),

(18}

mg (1,cos8, 0, -sin8},

cos8 =, , [s'/2+ st+ 2ms'(ms' —st —t')'t'],1
s 2+2m@

sin8 =, , [ms's+2ms't- s(ms'- st —t')'~'],
s 2+2ms

y2 s/pl

%e now write T, in terms of invariant variables
and find Eq. (1) takes the form"

The result is trivial but proven: The Born approx-
imation gives high-energy scattering at fixed angle.

In the Regge limit, the momentum transfer on
theright-handside of Eq. (19), tti'/s, vanishes at
large s. Now the scaling function T~ receives con-
tributions from every order of perturbation theory
because infrared singularities due to the vanish-
ing of ml'((p2/s)'t') exactly compensate the falloff
of g((ti'/s)'~'}. We see this compensation explicit-
ly in our expression for n, Eq. (11) provided we
renormalize by setting &,'=g'(tl')'t'. However,
we know the correct scaling function to all orders
in perturbation theory; it is provided by evaluating
Eq. (13) with the scaled variable and running coup-
ling constants specified on the right-hand side of
Eq. (19). The proof that this is the correct scaling
function, in the zero-loop approximation, follows
from evaluating Eq. (19); the result is the Regge
amplitude of Eq. (13).

From this analysis it follows that Eq. (13) is
valid in both the Regge and fixed-angle limits.
As t increases beyond the Regge region, all terms
higher than O(g') on the right-hand side of Eq.
(19) are negligible because of asymptotic freedom;
and Eq. (13) passes over to Eq. (21). The transi-
tion occurs when

&'I'(e/2) s;— s)
1

&& dx[m, ' —tx(1 —x)] 't '.
0

(22)

Let us first apply Eq. (19) to scattering at large
s and fixed angle, t/s finite. For simplicity we
work in the zero-loop approximation, where

(20)

This approximation is reasonable because asymp-
A

totic freedom makes g vanish as s becomes large.
Now for 4&D~6, every perturbation diagram is
finite in this fixed-angle region when rn~' = mr'

If we ignore m~' the transition momentum transfer
1s

~'r~~ya)[r~l- ~(2)],
(4m }

The reference mass is provided primarily by the
dimensional coupling constant, not by hadronic
masses.

IV. CONSTRAINTS ON REGGE AMPLITUDES

The transition from Regge to fixed-angle be-
havior that we have found is about as simple as
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can be imagined. Ten years ago the idea of extra-
polating Regge amplitudes to

~

t ~- s was used to
fit data, but without much justification. " But the
simplicity we have found is slightly deceptive,
because if we had used the one-loop renormaliza-
tion-group functions in Eq. (19), we would have
found that the Regge amplitude of Eq. (13) is in-
consistent with Eq. (19) when it is substituted on
both sides. By demanding consistency we can im-
prove the Regge amplitude in a manner we will
specify.

Once this is done, the fixed-angle limit can again
be recovered by extrapolation, and we return to
the simple situation of Sec. III.

First let us write the renormalization-group
equation in terms of dimensionless variables. It
is easy to show that Eq. (19) is the general solution
of the equation

8 8 8—Z —P —+2y &t)(o, v, x, y', g) =0,
8lnx 8lny 8g

8B~ E

8lnx 2

8B
8lnx

8B3
8lnx

+EBB=-K, ' —2P,B, ,
8B,

2 i 81ny

3& 8B~

(29)

+ terms involving higher-order
approximation of p, y, K,

When these equations are solved, we encounter in-
tegration constants we do not know: B20 Bgo, . . . ,

B, =B„(r,y)(x)'~',

B B{x,x){x)'+ =ll "——P, P-B)(x)'' 81ny

B, B {x=l)„{x), Xx—"B,
4

"—-4P B„)(x)' (30)
81ny

8'Bio»~0+ lf I~ l +2P
8 ny ny

where
(24)

+ 4P, (K,
"+ PP,B„) (x)' *

8lny

Zg + ~ ~ ~ (26)

O'=S/m)P
4

T = f/Pn@ ) X = p, /B1@ 4 y =B2.~ /Ptl. @

T, =s'~' 'P(cr, v, x, y, g). (25)

The representation for T, follows from counting
dimensions. Our program is to apply Eq. (24) in
the Regge limit but to correct Eq. (13) by adding
higher powers in g' to the Regge residue and ex-
ponent in Eq. (13). For (t) we thus make the ansatz

We see the development of the infrared singulari-
ties in x which require us to go beyond perturba-
tion theory in evaluating the Regge-limit scaling
function. The undetermined integration constants
provide the freedom to improve the Bethe-Sal-
peter kernel by adding terms like that in Fig. 1(c).
These terms we do not know, so we set them to be
zero. However, the coefficient of (x)'~' is non-
zero and is determined by B,. The mzn&na/ re-
quired modification of B is therefore determined
by setting

1 (e/2) g'(x)'~'
(4g) D/2 dg[y —7'$(1 —&)] 4 ~'+ ~ ~ ~

B(v, x, y, g) =(x)' 'B(7', y, g),
A(r, x, y, g) =pl)'. (r, y, g) .

For this to be a solution of Eq. (24} we require

8B 8B 8B
81nx 81ny 8g

8A 8A. 8A-Z —P —+2yA ——=0 .
8lnz 8lny 8 g 2

(27)

B ganB
n=l

(28)

The various orders are linked by Eq. (27) in the
fashion

At this point we can verify that in the zero-loop
approximation the O(g') expressions for A and B
satisfy Eq. (27}. We analyze the situation in the
one-loop approximation for B only; the equations
for A are similar. Now we have from Eq. (16)

p = '&g p.g'---

(32)

8 8 2P-Z -P ———--(1-J~'} B —,g =o,
8lny 8g g 2 g

(
(33)

—p —+2y —2 ——— A(g) =0 .
dg g 2

The solutions of these equations are

The x independence of A is determined by an anal-
ysis similar to that we have given for B. We fur-
ther see from Eq. (30) that, to every order in g,
B will depend on v' and y in the same manner as
B» and A will be independent of v' and y, as A, is.
Therefore, in the minimal required modification,

B(r,x, y, g) =g'(x/y)'i'B(r/y, g),
A(~, x, y, g) =g'A(g) .

The functions A. and B are most efficiently de-
termined by substituting Eq. (32) into Eq. (27):
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&(~,«, y, g) =&,(~,«, y(1+4p,g'/~) ~'"~,g)/(1+4P, g'/e)

2Z ~ 2 ~ 6/2

(47r) "(1+4p,g'/E) 0
ding(1+4P, g'/e) «~ '.& —v&(l —()] ' ',

A(g) =A, (1+4P,g'/e) '~&~& =-ig'(1+ 4p,g'/e) ' "~ '~ .
(34)

%e see that the magnitude of the trajectory and
residue are slightly changed, and in addition the
scale of the trajectory's t dependence is modified.

As we have emphasized, the modifications we
have made do not include all higher-order contri-
butions to A and B. %e would expect them to in-
clude all single-loop vertex and self-energy in-
sertions on the ladders, including insertions into
insertions. For example, it is readily verified
that we have included all order-g4 contributions
of the form (1/s)(lns)~ except that of Fig. 1(c)."
The simplicity of the answer obscures the dia-
grammatic complexity of the modification. It
should be noted that asymptotic freedom has not
been invoked in Sec. IV, so our results apply to

any superrenormalizable theory.
The divergence of Egs. (11) and (34) at e =0 can

be traced to an ultraviolet divergence of the Fred-
holm trace in the renormalizable dimension, D =6.
Cardy and I.ovelace have pointed out that this di-
vergence is an illusion since the Bethe-Salpeter
kernel of Fig. 1(a) falls off more rapidly than in
perturbation theory when asymptotic freedom is
invoked at the two vertices. " In order to ex-
hibit this modification of the Regge spectrum, it
is necessary to apply the renormalization group
to the dynamics. Our calculation applies when
vertex and self-energy insertions change the re-
sidue and trajectory, leaving the character of the
Regge singularities unchanged.
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