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We study high-energy quark-quark scattering with bremsstrahlung emission of a photon of mass q ', where

q
' is a finite fraction of the energy, using a leading-logarithm approximation in quantum. chromodynamics.

The calculation exhibits the importance of current conservation in a cancellation among gauge-invariant sets

of graphs. To sixth order in the strong-coupling constant the amplitude is a power series in g 'ln'(q '/X')
dominated by infrared singularities (X is the infrared cutoff). This series does not exponentiate. Leading

graphs have color octet structure in a crossed channel,

I. INTRODUCTION

There is great interest in the calculation of the
asymptotic behavior of physical processes in non-
Abelian gauge theories. The motivation for this
interest is the possibility that the strong inter-
actions are described by quantum chromodynamics
(QCD), a gauge theory of massless colored quarks
and gluons with SU(3) of color as an exact gauge
symmetry. ' ' Such a model is asymptotically free
so that it would be consistent with the results of
deep- inelastic lepton-nucleon scattering. " It may
also result in confinement of color thereby account-
ing for the nonobservation of isolated quarks or
gluons.

The processes for which the asymptotic behavior
' has been previously calculated are the vertex

functions and quark-quark scattering ampli-
tudes. " The technique which is used to study
the asymptotic behavior is the leading-logarithm
approximation. In this approximation, one sums
the leading asymptotic terms of each order in per-
turbation theory. One hopes the qualitative fea-
tures of the exact amplitude are revealed by this
procedure. This approximation has resulted in
simple mathematical expressions, primarily expo-
nentiation, in calculations performed to date for
non-Abelian gauge theories. Typically in these
calculations, the leading behavior came from the
infrared contributions of virtual gluons. It has
been shown that these results can be summarized
as the solutions of a differential equation in the
vector-gluon mass. ' ' This equation, whj. ch has
not been proved, has a form which is very. similar
to that of a renormalization-group equation. On
the basis of this equation (or of the form of the
answer) Cornwall and Tiktopoulos (CT) have argued
that colored particles are confined by the infrared
singularities of the theory. Others have calculated
the infrared singularities for certain inclusive
processes, and have found a pattern of cancellation
familiar from QED; they therefore do not see

confinement. "" These two points of view involve
a difference in orders of limits, and we do not
take sides. However, the spirit of our calculation
is in line with the CT approach.

We have applied these ideas to another process
in quantum chromodynamics. We report here a
study of the asymptotic behavior of hard-photon
emission in high-energy (v s) quark-quark scat-
tering. We consider a photon of mass q', q'/s
fixed as s-~, emitted as a bremsstrahlung. We
shall perform this calculation only to lowest order
in the electromagnetic coupling. Production of
massive lepton pairs in hadron-hadron collisions
is an interesting process because, among other
things, it has been proposed as a test of the quark-
parton model. " In this model, the massive lepton
pairs arise solely from parton-antipartion annihila-
tion and the contribution from the emission of the
massive pair as a bremsstrahlung is negligible.
This is based upon a postulate that the amplitudes
become small as the virtual partons go far off their
mass shell. ' Despite this, the bremsstrahlung
mechanism has been studied by several people. ' '2

Bremsstrahlung may be in fact the dominant mech-
anism in kinematic regions in which the annihila-
tion process is not prominent, for example, when
the fractional change of the longitudinal momenta
for nucleon- nucleon scattering is large. "

The main result which we wish to report here is
an apparent nonexponentiation of the amplitude for
production of massive lepton pairs. We have cal-
culated the leading contributions to this process
through sixth order and have found a series in
g'1n'(q'/A. ') which is not the expansion of an ex-
ponential series. Here g is the coupling constant
and A. is the gluon mass (or infrared cutoff). The
leading diagrams in each order have the structure
of a color octet in some of the crossed channels
and always involve the trigluon couplings. The
requirements of gauge invariance (or current con-
servation) lead to an important cancellation among
gauge-invariant sets of graphs. The methods of
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calculation used are Feynman parametrization and
momentum- space techniques. We have restricted
our attention to the process in which the momentum
transfer between the quark lines is held fixed.

This paper is organized as follows. In Sec. II
we present the relevant kinematics and notation.
We shall also discuss the Born term and a cancel-
lation which occurs in this order betewen the
gauge-invariant sum of graphs. This is a cancella-
tion of forward divergences which has the effect of
reducing but not eliminating the forward peak of the
amplitude. This may be related to cancellations
found by Thacker" in his calculation of the cross
section in a particular model. In Sec. III we pre-
sent arguments which, when combined with our
calculations in perturbation theory, show that this
feature of the Born term is maintained for the
higher-order amplitudes. In Sec. IV we present
the results of our fourth- and sixth-order calcula-
tion. We identify the diagrams which are asympto-
tically dominant and illustrate the calculational
method which is used. In Sec. V we pr'esent our
conclusions. In the Appendix we study in detail
an example of a leading Feynman graph in sixth
order.

II. KINEMATICS AND THE BORN TERM

We consider the exclusive emission of a massive
timelike photon in fermion- fermion scattering,
labeled as in Fig. 1." The interesting limits are
q', s- ~, z —= q'/s finite (generally speaking, 0&a
&1). We take t„ t, fixed. The subenergies s, and

s, then satisfy the constraint sys2 Q' s Finally
we choose for simplicity Q p pQ 1 0 so that
t=t, =t2= fixed.

Because of some cancellations which occur in
the calculation, it is convenient to be explicit about
a useful frame, the P,-P, center-of-mass frame.
Choose the x,-x, plane to be the fermion scattering
plane, labeled as in Fig. 2. In this frame, to O(8)

X)

FIG. 2. Specification of the center-of-mass scattering
angle 0 for the case q=0. Scattering is in the x&-x3
plane.

P, =(0 s, —,
'

v s 8, 0, 0),

P, = (0, ——,
' Ks8, 0, v s ),

P, = ( v'w, 4, —4 V'w, ~8, 0, 0),

P, = (0, —,
' v'w, ~8, 0, v'w„),

q= (q„0,0, q,),
where we write an arbitrary four-vector

p"=, (P. , p, P ) = (P'+O', O', P', P' P'), -

(2 1)

w, 4= (P3+P~)', and zero means of order 8'. We
are retaining O(8) terms because of a cancellation
of factors which occurs in this process and which
requires keeping this order.

As discussed in Sec. I, we study bremsstrahlung
contributions in powers of the bare coupling g and
leading logarithms of large quantities in QCD—in-
deed the lowest-order graph is such a contribu-
tion. In order to handle the infrared divergences
which dominate the calculation, we give the gluons
a mass X, a procedure known to be gauge invariant
for the leading-logarithmic terms. Finally we
study emission of the photon from only one of the
fermion lines (the 1-3 lines); this procedure does
not destroy gauge invariance and does not affect
the result in a significant way.

The amplitude for this process, T", is dominated
by the component p, = & in our coordinate system.
In Sec. III we shall show this result to be a general
one; however, it is useful to set the stage by ex-
amination of the lowest-order contribution, the
Born term, shown in Fig. 3. In the process we

I)3

S)

s -(p)+pp)
(pp+q)

S2= (p&+q)~

ti =(p( -pg)

tp= (pp-pg)

k

FIG. 1. A symmetric choice of the five independent
kinematic invariants for the process which we study. FIG. 3. The Feynman diagrams for the Born term.
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demonstrate a (not unconnected) cancellation be-
tween the graphs of Figs. 3(a) and 3(b). In parti-
cular, the forward peaking in t (in the Feynman
gauge) from either graph is partially canceled in
the gauge- invariant sum.

The structure of the Born term is that of a color

octet in the ty or t2 channel. This structure per-
sists in higher orders and may mean we are cal-
culating a (somehow) dynamically suppressed
amplitude for which perturbation theory is irrele-
vant.

The amplitude corresponding to Fig. 3 is'4

T~s„„=+ieg' 2 (t), , ~ (t);; u(p„X,)y), u(p„A.,)

x —r u(p„X,)y'iI, y(u(p„A.,)+ „u(p„X,)y $'y'u(p„A. ,) (2.2)

= &(a) + &(~) (2.3)

where t are the color matrices and we define

k= (p, +q),
k'=(p, —q).

(2.4)

We reduce the spinor factors in B~&,) as follows":

u(p„X,)y ~)I(y u(p„X,)u(p4, X,)y) u (p„X,)
=k„u(p4, X4)y~u(p2, X,)u(p3, X~)(g" y~ —g~ y" +g""A"+ie "

y,y, )u(p~, A~) . (2.6)

For our coordinate system we have the following explicit asymptotic forms to O(8):

u(p„X,)y.u(p„X,) = 2(sw„)'~'6, ,
u(p„X,)y u(p„X,) = 0,

u X 'u A. = 0(p3) 3)y (p) ) y)

u(P„X,)y'u(P„X, ) = (-1)' " '(i/2)8(sw„)' '6. . .

u( p~, X,)y, u( p„X,) = 0,

u(P„X,)y u(P„X,) = 2(sw„)'~'5~...,

u(p„A.,)y'u(p„X, ) = 0,

u( pA.,)y' (upX, ) = (-I)"4"~'(i/2) 8(s )'w~45~ ~

u(p„X,)y "y'u(p„X, ) = ( 1) ~ '~'u(p„X, )y"u(p„X,) .

(2.6)

Substituting these forms into Eq. (2.5), one finds to O(8)

B», --(e),",(t),. & (t);; ~) 4(s»„)' '&& &&

V S (P,=+),

(v=-),
(8/8)[Ws+)('w, ~+q, (—1) & ' '(-1) ' ] (p, = 1),

-i q. (8/6) [(-1)"'"- (-1)""'] (~ = 2),

(2.7)
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and similarly

B(b) g f (t)i '(t)' i y
4( ) 5X X 5X X

(ii=+ ),
(ii=-),

(8/8)[vs +v'w„—q, (-1)~3 '~'(-1) 4 '~'j (ii=1),

g fq. (g/8)[(-1)"' '"-(-1)'4 '"] (v=2)

Finally, we use

k =V s qo= —v s/Ev~~ k =s~

to sum Eqs. (2.7) and (2.8). We find

(2.8)

(2.9)

0 (p. =+),

[1 ( 1)~3 ~~2( 1)~4-~~2] (p,= 1)

z(e/8) +
1 1

VS &M„

(~=-),
t 1

&& ( —8/(2q, ) + (8/8)
- s v'w„-

[(-1)"'"-(-1)"'"] (~=2).

(2.10)

The term with p, =+, which was independent of the
scattering angle 8, has been canceled out in the
sum. 26

III. GAUGE-INVARIANT CANCELLATION

In the preceding section, we demonstrated a can-
cellation among a gauge-invariant set of O(g')
graphs which produces a reduction in the forward
peaking, or equivalently (see Ref. 21) reduces an
integrated cross section from one which grows lin-
early in s for fixed q' to one which is constant.
We shall now show that this feature is maintained
for diagrams of higher order in g'.

This argument is crucial for our work since if in
a given order of g' there were a piece of the ex-
act amplitude which did not exhibit this cancella-
tion it would be the leading asymptotic term by a
power, namely, of order v's/f -~ for t fixed rela-
tive to the Born term. We would therefore not
obtain a series which was a multiplicative factor
of the Born term.

An outline of our argument is as follows: The
general t structure of the Feynman integrals for
the leading graphs is, neglecting numerator algebra
and logarithmic factors, (t —A.') '. (Special care
would have to be given to Q' graphs corresponding
to infinite-momentum "shortcuts""; we neglect
these because they will fall as a power when the
numerator structure of QCD is restored. ) We

q, T" = -',
( q, T + q T. )

=2q, (T,+T ) =0, (3.1)

or

(3.2)

Thus if the p, = —piece vanishes, . then the p, =+
piece must likewise vanish when a gauge-invariant
set is added, as explicitly shown in Eq. (2.10).
We now turn. , with some preliminaries, to the p,
= —terms.

The product of the bilinear forms for the two

shall show that the p, =+, —terms in the numera-
tor factor of the full amplitude T" [with the (t —A,') '
factor extracted] vanish as t [more precisely van-
ish to O(8) j while the ii, =-L term behaves for small
f as Wt (as 8). Thus the ii=-L terms will bedomin
ant as s-~, and, moreover, will behave like the
Born term up to logarithms.

To show the vanishing of the p, =+, —terms,
we first show the explicit vanishing of the p, =—
terms [an example of this is given in Eqs. (2.7)
and (2.8) j. The p, =+ terms then vanish by current
conservation, or in other words as a result of the
gauge- invariance requirement. In the example of
Sec. II this was shown explicitly. However, we
can show that it must follow more generally as
follows: Current conservation for the electro-
magnetic field requires for us
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fermion lines will have the following general struc-
ture:

E =Q3I y "I' QyQ4I Q2.

The quantities I', i = 1-3, are matrices which con-
tain all of the numerator algebra. All possible
Lorentz indices of the I"s have been suppressed;
note, however, that these must be contracted over
in (3.3). We shall consider the integrations over
internal momenta to have been performed so that
the I"'s are functions only of the external momenta

P„ i=1-4 and q. All of the Feynman graphs can
be accommodated in the above structure. For ex-
ample, the case in which the photon emission is ex-
ternal to the strong interactions is obtained by
setting I' or I' equal to the unit matrix.

Since we study the case of massless fermions,
both I' and I' are necessarily the product of an
even number of y matrices and I' the product of
an odd number. Thus we can write I' and I"'
as a unique linear combination of the following set
of matrices:

(I y. y, y. y, , y y„y,y, y, )

(Ref. 28). All other products of an even number of
y matrices can be expressed as a sum of the above
set. Similarly, the matrix I' will be expressed as
a linear combination of the set (y„y, y„y,y y„
y, y,y„y,y, y )

We shall now argue that the product of the bi-
linear forms for p, = —will be of second order in 8,
for small scattering angles 8. We showby enume-
rating all of the possibilities that the zeroth- and
first-order terms in the expansion for I' vanish.

Since the spinors u, and u, are for particles which
have a large + component only of four-momenta,
we see immediately that the spinors which result

from the operations u, I'y and y I' Qy are no larger
than first order in 8 for all terms in the expansions
of I' and I' except for the y, y~ part. This is a
consequence of the fact that y u, and u, y are no
larger than O(8). But the y, y, terms will result
in the bilinear form

Qy y~y„y Q~=4Qyy y u~

= k 4su3y y u~

= O(8') .

Thus the bilinear form corresponding to the "1-3"
fermion lines must be no larger than O(8). If the
product of the two bilinear forms is to be of first
order in 8, then the bilinear form for the "2-4"
lines must be of zeroth order. Thus we see from
Eq. (2.6) that we can omit all matrices in the ex-
pansion for I' except y and y„y =-iy y'y . Addi-
tionally, we pee that any of the matrices in our
expansion sets which contain a y, must be con-
tracted with another matrix containing a y, and not
a transverse component of an external momentum

(P,), , since these are all of first order in the scat-
tering angle 8.

We first examine the contribution from the y
term in the expansion of I"'. For this case, we
need only consider the matrices I and y, y (the
only combinations without any y, terms) in the
expansions of I' and I"'. These matrices will al-
ways result in a bilinear form for the "1-3"lines
which either vanishes identically or is proportional
to u,y u, which is of second order in 8.

The remaining matrix in. the expansion set for I"'
is y y', which contains two transverse y matrices.
These, as indicated above, must be contracted
with y, 's which occur in I' and I . The possibili-
ties are that either both I' and I"' contain one y,

iL
p-r

(c)

FIG. 4. The leading diagrams in O(eg ). Internal momenta and color indices are labeled for (a).
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each, or that one of them contains two y, 's and the
other none. For the former, we have already seen
that the y,y, terms result in a bilinear form of
O(8') and the y y, term vanishes identically. For
the latter, one of the F's must be expressible as
a combination of y, and y,y, and the other as a
combination of 1 and y,y . All possible combina-
tions of these result in a bilinea, r form which is

proportional to u, y y'u, = O(8'). Hence, F = O(8')
for small 8,

The same type of argument shows that T"=~ is,
in general, of O(8). In particular, for u, I'y, I"'
&u,u I"'u, to be independent of 8, I' must be
~y or y y, . By tracing through the cases as
above, we find that it is not possible to construct
an amplitude independent of 0 with p, = &.

IV. PERTURBATIVE CALCULATIONS

A. Order eg4

The diagrams which were found to be leading in this order are shown and labeled in Fig. 4. Let us first
consider graph 4(a),

r;(,&
zeg' -, k, u(p, )y'u(p, )f„,(t, t,), , (t,), ,

d r u(p, )y "uy (p, H)y"u(—p, )
(2(()' (r —&( )[(p.—p. + r)' &('](p, ——r)'

x((2r+p, p,), g „+[2(p, —p, ) —r],g, + (p, —p, —r) g„,],
where f„,is the structure constant of the gauge group. The color weight of the above diagram is"

faba(tbt, ), , (t, )( (a
——-2 iCA(t), , ~ (t);;

where C„ is the Casimir operator defined by

faba fabe A6ee '

(4.1)

(4.2)

We perform the integrations in Eq. (4.1) by standard Feynman-parameter techniques. These integrations
are of the same form as those which arise in the second-order form-factor calculations; here the time-
like 0 plays the role of the far-off-shell gluon while the lines labeled by p, . and p, —p4 play the role of the
on-shell fermions. [This analogy will carry through the O(eg ) calculations of subsection B.] The import-
ant range of integration will therefore be the infrared region r-0. We simplify the numerator by neglect
ing r everywhere. The numerator factor then becomes

u yatt'yap' y"u, uay u [(p2 —pa)~g „+2(pa —p, )„g b+ (pz —pa) g„&, ]=2k uby u, uap&u2 —2k uay "gy u~uay&, u2,

(4.3)

while for the remaining r integral we have

(2&()
' i ' da, da, da, 5(1 —Za,. ) (4.4)

We extract the leading behavior of (4.4) by evaluating only the contribution to the integral from the region
where" n„n, -o:

da, da, 1n'(k'/&(')
(k'a, a, —X') 2k' (4.5)

+leg CA 1 ln (k /X )T'a&,
&
=,", , (t)«(t), ( (u, y "u,u,P, u, —u, y"k'y u,u,X,u, ), (4.6)

Similarly we find for diagram 4(b)

qa(b& = a- (t); (
' (t)( ~ (uby u&u4Pbua —uby k y uguay), ua) . (4.7)

(We avoid the case where jk" ]= (q' —k'(«(s (, whichisonthe boundary of thephysical region. ) Note thatfor
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both diagrams 4(a) and 4(b) the large minus-component transfer (P, —P,), which must be given to q, is
routed through the gluon which is attached most closely to the emitted photon.

The sum of the above two diagrams can be written as (note that for the argument of the logarithms all of
the large variables are equivalent in a leading-logarithm approximation)

2

4&o)+4&b&
= s —

82
" ln'(q'/ ')

327T

~ 4 ]
(4.8)

Likewise diagram 4(c) can be calculated. The leading piece comes from two different regions of param-
eter space. These regions correspond to routing the (P, —P4) transfer through either the gluon line which
is attached before or after the photon emission. The result is

2 1

32r2

, ln (q/A. )(t), &

~ (t), , u, y u, u, ~, + „u, . (4.9)

The non-Born terms, which would not satisfy current conservation on their own, ca~eel in the gauge-in-
variant sum 4(a)+ 4(b)+ 4(c). The result of our leading-log calculation through fourth order is

2Q
] ~ A ln2 (q2/y2)

&6~
(4.10)

All remaining diagrams in fourth order were found to contribute only to the nonleading terms. Note in
particular that we have not attempted to separate the color-singlet (in the t, and f, channels) amplitude
which first appears in this order.

B. Order eg

In Fig. 5 we show one-half of the leading diagrams and their weights h. We have drawn only those pieces
which are multiples of one of the two Born terms, namely Fig. 8(a). There is another set which is the
mirror image of those drawn and which is a multiple of the other-Born term. The result in sixth order is
of the form

1/24 /24 24

(a) (b) (c)

/24 24

(e) (g) (h)

FIG. 5. Half of the leading diagrams in 0(eg ) with weights indicated. There is symmetry with regard to the remain-
ing graphs found by taking the mirror image. Routing for large (P~ -P4) is indicated by the direction of the arrow.
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p&g&&& T&born 16 j g 1 (q /~) (Ibb&a&+I& b&b&+ +Ibb&b&)

7 g 2 2 2"= T&born 12 15 2 C~ ln (q /X ) (4. 11)

As for the fourth-order calculation, there are
leading pieces in any given graph which do not have
the structure of the Born term but which cancel
when the full gauge-invariant set of graphs is
summed. We do not show these contributions,

Also shown in Fig. 5 are arrows indicating the
dominant region of large- minus- momentum- com-
ponent flow. (These arrows should be included
when taking the mirror image of these graphs. )

The technique which is used in the calculation of
Figs. 5(a)-5(c) is familiar from the form-factor
calculation. If one chops off the pieces of the dia-
gram which do not contain the loop integrations, it
is seen that these graphs are the quark-quark-
vector form factor with one quark far-off-shell.
This form factor has been previously calculated
so that we shall omit the details of the calculation, '
except to state that we have verified the results.
The nonplanar graph shown in Fig. 6 is identically
zero owing to the vanishing of the color weight. "
Note that, as for the fourth-order graphs, the
momentum flow is along that pyth lying closest to
the emitted photon.

Attaching the photon to interior lines results in
five more leading diagrams. As before, these
graphs have two types of dominant momentum
flow, contributing to multiples of the two separate
pieces of the Born term. The results for graphs
5(d)-5(h) have been checked in pa.rt by two methods
of finding the leading behavior of Feynman in-
tegrals, Feynman parameters and infinite-mo-
menta techniques. We illustrate the method by a
detailed calculation of graph 5(e) in the Appendix.

The sum of the leading contributions through
sixth order is

2
7P gf j +, C ]n2 q2 y2

16n'

7 2 2.

+ ——,C„ in'(q'/A. ') . (4.12)

far-off- shell bremsstrahlung. We recognize that
occasionally such claims have proved faulty in the
past. However, this type of process was found to
exhibit features which were dif fe rent from previous
calculations of asymptotic behavior of vertex func-
tions and fermion-fermion scattering amplitudes.
In particular, we mention the cancellation arising
from inclusion of gauge invariance of terms
normally present in, say, fermion-fermion scat-
tering. It is also interesting that for this process,
the non-Abelian gauge theories give an answer
which is qualitatively different from the result of
massive quantum electrodynamics, in contrast to
results found for calculations of the vertex func-
tions. '" This may be because the leading contri-
butions were found to arise solely from the con-
tributions of trigluon couplings.

The leading graphs are color octet in, say, the
t, channel. Should our result hold up, it would ap-
pear to spell difficulty for the program in which
confinement is postulated on the basis of the rapid
vanishing of the sum of leading-logarithmic terms
as A. -O. The analogous result for the color-singlet
piece would be useful to know.

Nonexponentiation of leading terms is known to
be correct for color-singlet channels in fermion-
fermion scattering. ' These amplitudes satisfy
a differential equation superficially similar to
the renormalization-group equation, as do the
exponentiating amplitudes. It would be interesting
to know whether our result can be described by a
differential equation of this type.

From a phenomenological point of view, ex-
perimental production of lepton pairs is an im-
portant process. The lore of the parton model is
that bremsstrahlung- type processes (as opposed
to annihilation of quarks and antiquarks) are
strongly suppressed. The parton model does not

This expression is of course not the expansion of
an exponential series.

As in previous calculations of asymptotic be-
havior in non-Abelian theories, we have found the
contributions of graphs involving four-gluon coup-
lings, ghosts, scalars, etc. to be nonleading.

V. DISCUSSION

A main result of our paper is the apparent non-
exponentiation. of the leading-logarithm series for

FIG. 6. Nonplanar graph which has vanishing color
weight. It corresponds to crossed ladder exchange in a
form-f actor calculation.
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reckon with the infrared effects we encounter but
rather with short-distance behavior; we therefore
cannot say what relevance our calculations have
for the parton model. Regardless, bremsstrahlung
processes may be important in kinematical regions
(and for processes) for which annihilation is not

allowed. These questions deserve further attention.
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APPENDIX

We illustrate the method used in extracting the leading behavior. of- the sixth-order graphs by sketching

the calculation for the graph shown and labeled in Fig. 7. The amp}.itude for this graph is given by

7 =zeg'(t —x') 'f, ,f, ,(t t, t,);, (t,);; (Al)

where

&"=&p''(&'+f', )W" (P, + H, )r (P, + H, )r"&pqr'&,

x [(r, —2r, )8 g„+(r, —2r, )g 8 + (r, + r, ) g„~ ]

x((P.-P.—2r, )~g,'+ [r, —2(P. -P,)]'g, +(P.-P.+r,),g", t
and

D = (r,' —A.')(r, ' —A') [(r,. r,)' —A.'] [(p, —p, —r,)' A.'] (p, + r, )'(p, + r, )'(k'+ r,)'.
The group weight can be simplified to

(A2)

(A3)

f.„f„.(t, t, t.),„,(t.)...;=,' .c„'(t), -, (t), , . (A4)

In the usual manner, "one combines the propagators of Eq. (Al) by introducing Feynman parameters ct;

as labeled in Fig. 7. Then by performing the integrations over the internal momenta one arrives at a para-
metric representation for the amplitude,

j'eg6 7

0 s=],

(A5)

FIG. 7. Labeling of internal momenta, color indices, and Feynman parameters for sixth-order graph that we present

in detail. Paths I'a} and (b} for momentum transfer are indicated by broken lines.
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where U and V are the parametric determinants:

II=(n, +n, y n, ) (n, + n, + n, +n,)+ n, (n, +n, ),

V= —A'( .n, + n, + n, + n, )+ U '(&n, [n,(n, +n, +n, )+n,n, ]~k"n, [n~(n, + n, + n, )+ n, n, ]
l

+q'n, [n, (n, + n, + n, )+ n, n, ] + k'[n, n, n + n, n, (n, + n, + n,)]}.

The numerator function N, is given by the following substitution for the internal momenta in Eq. (A2):

~ n~+ 8+ n~) [(&2 —&~)n4- &in6- k'n7] —nsn5& J
U '(n, [(p —p )n —p&n6 —k'n ] —n (n&+n3+n&+n6+n7)P&j.

(A8)

The functions N," and N2 involve the two-index
I,orentz tensor X;&, in the notation of Nakanishi. "
The terms in Eq. (A5) which involve these functions
do not contribute leading logarithms and they will
be omitted from the remainder of the discussion.

Using well-known techniques, we now extract the
leading behavior from Eq. (A5). The regions of
parameter space which give the dominant contribu-
tions are the neighborhoods of the point where the
coefficients of the large variables k' and k" (note
q'=k'+k") in Eq. (A7) vanish. These may include
regions where all of the parameters of a closed
loop vanish. To facilitate the inclusion of these
regions, we first perform a scale transformation
on the parameters of each loop. Specifically, we
scale the variables

Q2 = 0'1Q2, Q = (X1Q3
I

and

(i) ( o, )( n, n, n,)( n, n, n,)( n, n, n,),

(ii) (n, n, n, )(n,n, n, )(n,n, n,)(o,n, n,),

(iii) (o,n, n,)(n,n, n, )(n,n, n, )(n, n, n,),
(iv) (n, n,n, ) (n, n,n, ) (o,n, n, ) (o,n, n, ) .

(A10)

Typically, we shall find that the leading contribu-
tions come from regions where a continuous path
of gluon lines carries the full large minus com-
ponent. of the momentum transfer (P, —P,) and all
remaining' gluons carry no large momentum com-
ponents. The possible paths are indicated by the
dashed lines in Fig. 7. For the region of param-
eter space corresponding to the scalings of Eq.
(A9) we find that the substitutions for the internal
momenta, in Eq. (A8) can be approximated by

Q1 = V2Q1, Q3 (X2Q3 y Q4 (X2Q4

Q6= 0'2Q6, Q7=(X2Q7,

Q'+ Q" + Q' + Q'+ Q' = 1.1 3 4 6 7

(i) (o,) (n,n, n, ) (n, n', n, ) (n~n, ),

(ii) (n, n, n,)(n,n,n, )(o,n, n, )(n4n, )

(A9)

We shall consider the parametric functions ap-
pearing in Eq. (A5) expressed in terms of these
scaled variables. Next we perform scale trans-
formations, with a scale factor p, on the sets of
parameters of minimum effective length which
cause the coefficients of the large variables to
vanish when they themselves vanish. (The leading
terms will come from end-point contributions. )
The dominant asymptotic behavior is then extracted
by performing the integrations in the limit where
p- 0.

For our calculation, we construct the following
independent sets of scaling sequences:

&,- n,'(p, —p,),
r2 —Q'P1.

(A11)

N" - 2k'n'(k2u y f'y" u u4y~u, + k'2u, y"u,u4g, u, ).

(A12)

It is necessary to retain the terms of O(p) because
for this momentum routing there is a trigluon ver-
tex involving three soft gluons. The neglected
terms of higher order in p will not produce leading
logarithms.

Evaluation of the parametric integrals for these
two scaling sets gives the result

Both of these substitutions are linear in a vanishing
scale factor p. We have not retained the higher-
order terms in p. Because the effective r; is
small, these two scaling sets will correspond to
the momentum routing of path (a).

Using the above substitution, we find an approxi-
mation for the numerator function to O(p):
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2 2

Tt t--ted (t —t') (
— P„tu (2'/2') (t)t,. (I), , I, u y tt y'u tt y u +—2 y u u ttu I, (A13)

The first term in curly brackets corresponds to a piece of the Born term with a weight, —', as shown for the
mirror image in Fig. 5(g). , The second term in the curly brackets, which does not have the form of any
part of the Born term, will be canceled when the contribution of a gauge-invariant (electromagnetic) subset
of diagrams is included.

Similarly, the scaling of Eq. (A10) corresponds to the momentum routing

r, -(p, p), r, -O, (A14)

as indicated by path (b) in Fig. 7. There are no vanishing trigluon couplings for this routing and the numer-
ator can, be approximated by

2k (2kt u y"t((y u udy&up+ k u y~uzuz pinup —2k' upy"u2ud pinup) . (A15)

Extraction of leading-logarithmic factors for these four sets of scalings gives

(A17)

u ( t);; (t)t t
—u y dy u u y u +, u y u u tt u, ——,ty y u ty tt u

I
. (A16)

The first term in the curly brackets is a contribution to the Born term structure with a weight factor of —,

as shown in Fig. 5(g). The other two terms in the curly brackets are non-Born pieces which again cancel
in the gauge- invariant sum.

We shall also illustrate the use of the infinite-momentum technique by calculating the contribution for
momentum routing of path (b). For this routing, where there is no trigluon vertex involving the soft gluons,
the numerator factors play no role in the integrations, but instead they can be approximated by a leading
power, as in Eq. (A15). This power then constitutes the only difference between the full theory and the
equivalent (t)' graph (except for "shortcuts" allowed in Q'—these will not concern us here). For such cases
infinite-momentum methods are quite straightforward.

Kinematics is as in Eq. (2.1):

T(,)
— ,'ieg'C„'(t t(')-2(—t)(.( ~ (t) ...,(27()- N(„)I(»

where N(» is given by Eq. (A15) and I(» is the contribution of

from the momentum routing of path (b). We write D in terms of P„P,P„, and use the volume element
d'r; = ,'dr, ,dr, d'r—, The . f"„d.r, , is performed by closing the contour and using Cauchy's theorem; these
integrals are in general nonzero only for finite values of the r; integrations. It is convenient to write &;
as scaled variables:

r, =x(p, —p) .

This is significant because in our frame (P, —P,) is the large minus component which must be carried over
to q'. We find

1 1
tt»= „(2e)'fd'r, d'r, dh, dk

P ~ X2 Xp X( —Xp) 1 —X()

+1 +1 ~ +1 +1 ~ + +2 +1 +2

X y2 1 2 12
Q I2 1 + 1 $2+A I2 1

X QI2 — 1 — 2 12 l pI2+ 1 + 2+ 12 (A18)

where we have defined

4(=r( +X, 0~2=(r~ —r2)2+X2.
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(We ignore the distinction between &; and the factor r; which appears from fermion denominators. This
will have no effect on our final answer. )

Ln this integral, there are potential logarithmic contributions from end points in the &; integrations. For
path (b), we pick up contributions only from x,- 1, x,- 0 (any x; -1 corresponds to the associated line
carrying the full minus component).

The contribution from this path is correctly given by retaining only the singular & behavior and dropping
nonsingular terms, i.e. , 1 —x, =y and &, compared to 1. We find after some algebra that the x, and &, in-
tegrals of Eq. (A18) are given by

where we have used more algebra and recognized that the leading behavior in the (r„r,) integration comes
from the region where ~; can be dropped compared to s. Thus

Substituting this result in Eq. (A17) gives Eq. (A16).
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