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High-energy quark-quark scattering is calculated in quantum chromodynarnics (QCD) using the infrared

equation of Cornwall and Tiktopoulos. In contrast to ordinary quantum electrodynamics, the high-energy

behavior is determined by the infrared structure. The infrared divergence is regulated by introduction of a
small gluon mass; the amplitudes obtained agree with previous perturbation calculations (for t fixed, s ~ m)
in QCD modified by the addition of a Higgs meson in the limit of small gluon mass. A proposal to calculate

the infrared-finite behavior at fixed angle using asymptotic freedom is made, based on the hypothesis that
the infrared divergence can be factored from an infrared-finite and renormalization-point-dependent part. The
latter is calculable for the colorless exchange amplitude but not for the color exchange amplitude,

I. INTRODUCTION

In this paper we study high-energy scattering of
quarks according to quantum chromodynamics
(QCD). QCD is a Yang-Mills theory' of quarks
and massless gluons having SU, as the local gauge
symmetry. We shall be interested in two high-
energy regimes, namely fixed momentum trans-
fer and fixed angle, though we shall concentrate
on rather different aspects of the two. At fixed
momentum transfer we shall study the high-energy
behavior in leading-log approximation, which
turns out to be equivalent to studying the infrared
behavior" [something which, incidentally, is
not true in quantum electrodynamics (QED)j. At
fixed angle, we shall study the asymptotic be-
havior of the infrared-finite part of the ampli-
tude —that part which remains after the infrared-
singular (and dominant at high energy in leading-
log approximation) part of the amplitude is fac-
tored out. In this regime, since QCD is asympto-
tically free, the high-energy behavior of the in-
frared-finite amplitude is correctly given by the
leading-log sum and may be found through use of
the renormalization group. 4 In the forward direc-
tion, in contrast, we effectively study the high-
energy behavior by looking at the infrared (IH)
behavior, and since QCD is decidedly not asymp-
totically free in the IB region, one may well be
suspicious of anv results obtained through a lead-
ing-log sum. Nevertheless, we feel results in
this approximation can be of value, both in that
they reproduce with miniseule effort results previ-
ously obtained only through laborious calculations
in perturbation theory, ' ' and that the techniques

employed may be rather easily modified to include
non-leading-log effects (and perhaps even alt non-
leading-log effects).

Our work is an extension of previous efforts in
the following ways. At fixed momentum transfer,
as mentioned above, the only thing which has been
done before is leading. -log approximations through
the eighth order' in perturbation theory. We are
able to sum all orders of perturbation theory. At
fixed angles the infrared-singular part of the am-
plitude has been studied, again in leading log, in
all orders of perturbation theory. " We study the
remaining infrared-finite part, and in a regime
where the leading-log approximation is justified
through the asymptotic freedom of the theory.

A major defect of QCD as presently developed
is the lack of a convincing demonstration of the
confinement of the quarks and colored gluons. It
is hoped that a deeper understanding of the infra-
red behavior will shed light on confinement. And

since the high-energy behavior which concerns us
is intimately intertwined with the infrared behavior
we should in principle be concerned with this
problem.

One basic question is whether or not soft gluon
emission cancels the infrared singularities of

exclusive amplitudes, so that inclusive amplitudes
are finite in analogy to the situation in QED. There
are, at present, conflicting views on this question.
On the one hand, several authors" "have found
order-by-order cancellation of internal and ex-
ternal infrared singularities in close analogy with
QED, concluding thereby that there is no suppres-
sion of gluon emission in perturbation expansions
of mass-shell quark amplitudes. Gn the other
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hand, Cornwall. and Tiktopoulos' summed certain
infinite classes of graphs and found suppression of
gluon emission and, moreover, of non-color-sing-
let amplitudes in leading-log approximation.
(The same set of graphs has been summed by a
different technique by Crewther. ")

It seems likely to us that the confinement issue
cannot be settled within the IR leading-log ap-
proximation, and an understanding of other IR
effects, particularly those associated with the
behavior of the coupling constant g(k') (renormal-
ized at gluon mass k') for small k' is essential.
Insofar as we deal with leading logs only, the
question of where the coupling constant is renor-
malized is unimportant since the choice of renormal-
ization point affects only nonleading terms) and we are
therefore able to finesse this interesting but diffi-
cult issue, both in the fixed-momentum regime
(since there we deal with leading log only) and at
fixed angles (since there we deal with the IR-finite
amplitude only).

We are to deal with infrared singularities. The
question of how to regularize these therefore
comes up. Two basic choices exist. One is to
deal only with off-shell amplitudes, which are all
IR finite, and to study their behavior near the
mass shell. The other is to insert a cutoff. This
can be done in several ways; one may insert an
artificial gluon mass X and study the limit as
X-0; one may insert a real gluon mass through
the use of Higgs scalars and study the zero-mass
limit; one may dimensionally regularize. The last
two of these manifestly preserve the gauge invari-
ance of the theory, and are therefore "safe." The
first does not (and is "unsafe") but is technically
easier. Our experience is that essentially the
same results are obtained with a11 three methods;
therefore we opt for the artificial gluon-mass
cutoff because of its technical simplicity.

We have remarked above that the high-energy
limit of a given Feynman graph is determined by
the infrared contributions of virtual gluons, as
has been noted by various authors. " However,
the leading contribution of a given graph may be
cancelled by other graphs in the same order of
perturbation theory so that the true asymptotic
behavior actually depends on surviving subasymp-
totic terms. In QCD the superficially leading
graphs involving gluon-gluon interactions cancel
extensively. In QED, extensive cancellations also
occur in electron scattering as explained by Chang
and Ma." However, in QCD the internal-symme-
try factors lead to constructive interference of
the leading behavior of the QED analog graphs so
that the longest-range (infrared singular) forces
do determine the high-energy behavior of the
quark-quark scattering amplitude. With this in

Sir ~ exp[(-g'/4v') In(-s/m') In(-t/X')] —1
0 4 1 ln(-s /m')

T, = T, exp[(-g'/4m') In(-s/m') In(-f/X')] (1.2)

for the color-singlet exchange amplitude T, and the
isovector exchange amplitude T, . [SU, results are
given in the text; Eqs. (1.1) and (1.2) are for SU,
in order to compare with most other work in this
field. ] T~ is the Born term. That T, is a Regge
pole was known previously to eighth order. The
simple structure found for To had not been sur-
mised previously from the complicated form of the
individual terms in perturbation theory.

Whether the amplitudes (1.1) and (1.2) have any-

mind, the very different qualitative results of
massive QED found by Cheng and Wu" and of
QCD"" do not seem astonishing. (In contrast,
the vertex functions of QED and QCD are very
similar in the limit q'- ~.)

In order to sum the (virtual) infrared singulari-
ties we use an equation proposed" by Cornwall
and Tiktopoulos (CT) (a similar approach to the
QED vertex was given by Korthals-Altes and de
Rafael)." This equation is supposed to include
the leading "infrared singularities of the ampli-
tude as s —~ (at t fixed or at s/f fixed) and may
include all (important) infrared singularities with

appropriate choice of the renormalization point
of the coupling constant (see Sec. III). In this
limit the structure of the QCD equation is topologi-
cally similar to the QED case. The infrared limit
is approached by inserting (by hand) a gluon mass
X and examining the theory in the limit X-0. For
t fixed, s- ~ it is easy to solve the CT equation in
coordinate space." When expanded in power series
the solution agrees with the small-gluon-mass
limit of the explicit perturbation calculations of
McCoy and Wu, Tyburski, and others to eighth
order for both the color-singlet and isovector
(they use SU, rather than SU,) exchange ampli-
tudes. This lends support to the CT equation and
further suggests that the limit of the McCoy et al.
variant of QCD joins smoothly with our way of
approaching the infrared limit.

The decisive calculational advantage of a closed-
form solution, in contrast to arduous perturba-
tion calculations involving amazing and tricky can-
cellations among individual graphs indicates the
value of further work to understand better the
foundation and range of validity of the CT equa-
tion.

Simple consequences of our solution are the ex-
plicit asymptotic forms
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thing to do with the true high-energy scattering
of hadrons is a moot point because of the singular
behavior as X-0. The scattering of positronium
off positronium is a useful analogy. The infrared
singularity in electron-electron or electron-posi-
tron scattering is associated with the long-range
Coulomb force. But since positronium is electri-
cally neutral, the long-range Coulomb force can-
cels in positronium scattering; the residual Van
der Waals force is of finite range and is infrared
finite. The inference is very strong that the in-
frared-singular part of quark-quark scattering has
nothing to do with hadron-hadron scattering. In-
deed, it is easy to see that the leading IH singu-
larities cancel for color-singlet cluster scatter-
ing. 'O'" The only part of (1.1) that is infrared fi-
nite is the -1/ins term. Only this could conceiv-
ably be relevant to physically interesting process-
es.

The arrangement of this paper is as follows.
In Sec. II we- analyze the infrared singularities
of the fourth-order scattering amplitude in detail
to motivate the CT equation. The K-0 photon
decomposition of Grammer and Yennie" is shown
to be a useful formal device to simplify the spin
structure. In Sec. III the CT equation is analyzed,
solved in suitable limits, and compared with per-
turbation expansions. Finally in Sec. IV we study
the infrared-finite part of the s dependence for
fixed-angle scattering using Weinberg's variant"
of the renormalization group. This application
is based on the (thus far unproved) assumption
that the full amplitude can be factored into an
infrared-singular part and a renormalization-
point-dependent party in analogy in QED. The use
of the renormalization group for on-shell ampli-
tudes to obtain asymptotic behaviors is possible
only for amplitudes having no mass singularities.
We find that T„at fixed angle, has no singulari-
ties is the quark mass m-0 in fourth and sixth
order while T, is singular. Hence it should be
permissible to use the asymptotic freedom of
QCD to obtain the fixed-angle asymptotic behavior
of the infrared-finite part of T„but not that of
TJ

T = To+ w, 7',T, (SU,),
T = To+ 7i ' X2Ti (SU~),

(2.1)

(2.2)

respectively. To has the significance of the color-
singlet exchange while T, corresponds to pure
color-vector or color-octet exchange. Generali-
zations to SU„are immediate.

The Born term (Fig. 1) is pure T,:

(2.3)

where" the factor C is

C = u(p,')r„u(p, )u(p,')~„u(p,).
The factor C simplifies at large energies:

(2.4)

C s5)t')t 5v)t x
1+ cos~y

(2.5)

where A.„X, (A.'„Y,) are the initial (final} helicities
of quarks 1 and 2, and s = (p, +p, )' is the squared
c.m. energy and 8 the c.m. scattering angle. We
shall use the variables

P =p, +p„s=P',

Q =p& pg t=Q'- (2 6)

R =P', -P„u=&'.
where s-~ with t fixed the factor (2.5) is simply
2 for helicity-nonf lip scattering. The necessity
of the vanishing of T~ for-8=~, Xy ~21s a con-
sequence of angular momentum conservation. We
shall frequently suppress the factor C from our
equations, understanding that it is to be rein-
stated in the final results.

It is instructive to analyze the fourth-order box
diagram (Fig. 2}. The invariant amplitude is (in
the Feynman gauge)

T(s) ~+4(t, t )2

II. ANALYSIS OF FOURTH ORDER

The quark-gluon coupling has the form qz"t,.qA',
where the t,. are matrix representations of the
gauge group in the fundamental representation and
the gauge fields A~ belong to the adjoint represen-
tation. For SU, and SU, 6= ,'7 a-nd —,'X, respective-
ly, where 7 are SU, spin matrices and X,. are the
SU3 matrices. In these cases we write the inter-
nal color symmetry structure as

f d4$ gp Q @v8
X (a)' u"-~2 u2-~'

P) Pp

y8
(a'-2f p)(a'+2I p')' (2.7)

FIG. 1. The Born term for quark scattering is shown. where the numerator spin structure factor is
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FIG. 2. The s- and I-channel box diagrams are shown.

„~= u(p,')y, (p', —p'+ m)y, u(p, )

x u(p', ) y (P', + P'+ m)y, u(p, ). (2.8)

It is useful to note that k' = k+ Q and that Q P,
= —Q p, = ~ t. Equation (2.7) has infrared singu-
larities for k=0 and for k'=0. (To expose the
symmetry note that k' —2k p, = k" —2k' 'P', and
k'+ 2k'p, =k"+ 2k' 'p,'.) For these dominant re-
gions the detailed spin structure of X is irrelevant
and, in addition, the numerator k factors do not
contribute. Consideration of p„p,-~ leads to
the same conclusion.

A systematic way to collect the infrared-domi-

(2P ~ k k~)(2P ~ k+ k~)
' (2.io)

With (2.10) the K-photon contribution simplifies
the numerator factor as follows:

b(p„p,)k"k'N„„,=4p, p,u(p,')y„u (p, )u(p', )y u(p, ).
(2.ii)

The IR-singular part [denoted by Fig. 3(a)] is
therefore

r;(K)= zg'(f, f,)'C-4p, p, l,(p„p,), (2.i2)

nant terms is the K, G photon method of Grammer
and Yennie. " These authors treated the vertex in
detail, and a slight generalization is needed for
scattering amplitudes. " The method is to write
in the photon (or gluon) propagator

Z,.=&~v+ G~v~

K~„=b(P, P')k~k„,

where p, p' are the momenta of the fermion lines
and the factor b is chosen so that G„„gives O(k)
for small k, thereby suppressing the IR diver-
gence. We can isolate the IR divergence of Fig.
2 by replacing the line & by a K photon having'4

d4k 1
s(P1&P2) (~)4 (k2 y2)(k/2 y2)(k2 2k P )(k2+ 2k, P )

' (2.I8)

The same result is obtained if we replace the k'

line by its K component [Fig. 3(b)]. The IR-domi-
nant contributions are not sensitive to the detailed
spin structure of the coupled current, and the
"K photon" method is just a convenient technical
way of isolating the dominant zero-spin components
of that current. The occurrence of the spin term
C as a factor persists in higher orders. The
crossed-box diagram [Fig. 4(a)] gives, with one
K photon substitution,

T",(K) = -ig~ t, ' (t, ' t,)t,C4p, p', Z„(p„p,'), (2.14)

I„(p„p',) =1,(p„-p',). (2.i5)

T,'(K) = -ig4t, (t, t,)t,C ','f, (p,',p, ), (2.I8)

where
d k 1

t( ls I (2v)4 (k2 y2)(k2 2k, p )(k2 2k, pt )
'

(2.IV)

A K substitution on the other line [Fig. 4(b)] gives
the same result, noting that

t, ' (t, ' t,)t, = t, ' (t, ' t,)t, .
Similarly the IR contribution due to the vertex

correction [Fig. 5(g)) is

FIG. 3. The x on a gluon line means that the g» in
the propagator has been replaced by ~» of Eq. (2.9).
The contribution of Fig. 3(a) [equal to that of Fig. 3(b)]
contains the entire infrared singularity.

(a)

FIG. 4. The -channel analog of Fig. 3 is shown.
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The mirror image of 5(g) gives an identical con-
tribution to (2.16). The corrections of the vertex
due to gluon self-coupling [Fig. 5(i)] are IR finite
and nonleading for -t » X'. We shall not consider
them further.

The asymptotic behavior of the functions I„ I„,
and I, can be obtained by standard techniques. For
s»m', -t»~', m'»X' we have

T4+ T4+ T4- ~2 ln —
2 ln 2—;T~,

(2.24)

where the sum runs over the Casimir operators
C,. = t,-' of all the external particles. In differential
form Eq. (2.24) reads

I,-,—ln( —s/m') ln( —t/X'),
X—T4=, ln, C] T, ) (2.25)

I„-8, ln( —u/m') ln(-t/X'),

I,-, , In(-t/m') In(t/X').1''t

(2.18)

(2.19)

which is the prototype of the equation holding for
all orders.

The operation &9/BX removes IR-finite parts of
the amplitude and in addition has a simple graphi-
cal interpretation. From the identity

(For massless quarks replace m by X.)
For fixed t and s- ~, the leading terms come

from the s- and u-channel boxes

&& [(t, ' t,)' ln(-s/m')

—t, (t, 't, )t, ln(s/m')] (2.20)

In order to find the corresponding T, and Ty we
use the identities (for SU,)

(v, v,)'= 3 —2v, v.„

2X
1 1 1

y2 p„2 y2 y2 y2 y2 (2.26)

we see that M/&A. acts as a mass insertion in the
gluon propagator. Thus XS/BX applied to a given
Feynman graph produces a sum of graphs in which
each gluon propagation receives an insertion in
turn. For example, to fourth-order the relevant
graphs are shown in Fig. 5. One makes (single)
insertions in all possible ways and adds up the
result. We notice that graphs 5(g)-5(k) can be com-
bined with the Born term 5(a). Henceforth we omit
all terms obtained by differentiating the (one-par-

v, ~ (v., ~ v,)v, = v., *. (v, v, )v, = 3+ 2v, ~ v.„
(v, v', )v, =v, (v, 7.,)v', = -v,

(2.21)

or, for SU„
(7. 7 )'= —"+~47. ~ x,1 2 9 3 1 2P

~, (~, ~ ~,)~,=~, ~ (~, ~ ~,)X, = —", —f7., X„
x, ~ (7., 7.,)7., =7., (7., 7.,)7,= 87, 7,

For brevity we give explicit results for SU, only.
In T, the leading behavior cancels; the term in the
square brackets in Eq. (2.20) becomes 3[in(-s)- ln(s)] = -3' giving

(b) (c)

r"'- — " ~ In(-t/~2).
16t 4m' (2.22)

(e) (g)

There is no competition from other (nonleading)
graphs since they are pure isospin-one exchange.
For T, we find the behavior

T, '- ——,In(-t/X') ln(s/m'). (2.23)

These results are in agreement with previous cal-
culations. Note that T, = Cg'/4t occurs as a factor
in (2.22) and (2.23).

For fixed angle the contribution of each channel
is of the same order of magnitude, giving (see Ref.
17 for a more detailed analysis)

FIG. 5. The dot denotes that a mass insertion has
been made on the gluon line [see Eq. (2.26)]. Contribu-
tions due to various mass insertions are shown to fourth
order. Graphs (g-j) combine with the Born term to
make g{t) the effective coupling constant. Graph (k) also
contributes to g(t ). The soft-gluon infrared corrections
have the structure of Eq. (3.1).
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-Sig'x'p p'
(k2 $2)2(k2 2k P)(k2/ 2k IP )

(2.27)

This function has the symmetry properties

K(P P' k ~)=K(P' P k X)

=K(-p, -p', -k;X). (2.28)

Equation (2.23) simply says that the IB-singular
part of T, is obtained by making (inserted) infra-

ticle-reducible) gluon exchange line. As before,
the spin structure is much simplified by replacing
inserted gluons by inserted K gluons. After some
relabeling, we find the contributions of graphs
5(b) —5(g) to XS T~/BA tobe givenby the right-hand
side of Eq. (3.1) below, with T replaced by Ts.
The basic infrared function is

red corrections to the Born term in all possible
ways. One simply connects external quark lines
in all possible ways.

III. THE CORNWALL-TIKTOPOULOS EQUATION

AND ITS SOLUTION FOR QUARK-QUARK SCATTERING

The results of Sec. II suggest that the (at least
the leading) IR singularities might have a simpler
structure than is evident on casual inspection of
the full array of extra graphs occurring in QCD.
Indeed, Cornwall and Tiktopoulos have suggested, "
on the basis of a detailed examination of several
examples, that the extensive cancellation of QCD
graphs leads to the following simple rule for t;he

leading IR singularities: attach inserted soft K
gluons among all pairs of external lines. The cor-
responding infrared equation is just a generaliza-
tion of the fourth-order calculation

4
+

( ), [K(-P„-P„k;X)T(P,Q —k, R+kX)t, t, +K(P'„P'„k;X)t, t,T(P, Q —k, R —k, X)

K(P„—P—'„k;A)t, T(P —k, Q+K, R, X)t, +K(P'„-P„k;X)t, T(P —k, Q —k, R, X)t,

—K(p~, -p~, k; X)t~' T(P —k, Q, R —k, X)t~ —K(p2, -p2, k; X)t2' T(P —k, Q, R+ k, X)t2].

(3.1)

We can cancel the common spin factor C [of Eq.
(2.4)] from Eq. (3.1) for simplicity of writing.
This can be seen by recalling Eq. (2.11) ff. and
considering the iterated version of (3.1).

Equation (3.1) is advertised as an equation valid
in leading-log approximation only. In this approxi-
mation it is not necessary to specify where the
coupling constants occurring in T~ and in K are
renormalized. But if, as is the case in QED, the
equation is to have validity beyond leading log, it
can only do so for a particular choice of g. In
QED, the correct coupling constant is the physical
one, renormalized at the physical electron mass
and at zero photon mass, as is evident from the
fact that the near-mass-shell virtual particles
control the infrared singularities. In QCD the
same is true, as is evident from the corrections
of Figs. 5(h)-5(k) discussed in the preceding sec-
tion, with only the modification that the photon
mass at which the renormalization is made should
be t in T~ and 0' in K due to the singularity expec-
ted ing(t) and g(k') as f and k' approach zero.
Thus one would conjecture that (3.1) is exactly
true, to all orders (not just leading log) in the
infrared singularity, if one uses g(t) in Ts and
g(k') in K. If this is true, and if g(k') really is

singular as k'-0, the leading-log results we
shall obtain here could be drastically altered.

Equation (3.1) is of interest in two limits:
(a) fixed angle

s -~, s/t, s/u fixed;

(b) fixed momentum transfer

s -~, t fixed.

(3.2)

(3.3)

P+k=P, Q+k=Q,

R +k=R (fixed 8),
(3 4)

while for fixed (= Q' we must keep k relative to Q
but can write"

Pak=P, R+k=R' (fixed t). (3.5)

Equation (3.1) is a pair of coupled equations for
the amplitudes T, and T,. Using the identities
(2.21) we get the coupled equations for fixed t (in
the case of SU, gauge group")

Our basic assumption is that the dominant contri-
butions to the integrand of (3.1) come from the
infrared region. Hence for fixed angle we can
ignore the k dependence of the off-shell amplitude
T



15 HIGH-ENERGY SCATTERING OF QUARKS IN GAUGE THEORIES

sT, 3 d'k 3 d4k,K~(k, X)TO(P, Q, R, A)+
4 (2 )4[K,(k, A) —K„(k,X)]T,(P, Q —k, R, ))), (3.6)

' + — [K,(k, A.) -K„(k,A,)]T (P, Q k, R, X) —
2 2 [K,(k, A.)+K„(k,A.)]T,(P, Q —k, R, A, )

BT, sT, 1 d'k

4K)(k, X) Ti(P, Q, R, X),
1 d'k

(3.7)

= -pB)TO+ 2(B,—g)T„ (3.9)

8T~ 8Ti' + .'(B, B„)T-,-(B,+B„)T,+B,T, .

The functions I3„,, „, defined by

(3.10)

where the functions K, , „are defined by

K.(k, &) =K( p„-p-„k; ~)+ K(p, ,p„k;~)
K.(k, ~) =K(-p„p'. , k; &)+K(p,', —p„k„~), (3.6)

K,(k, &) =K(p„-p,', k; ~)+K(p„-p„k;~).
It should be remembered that these functions de-
pend on P, Q, and R. For fixed angle we can use
(3.4) to simplify (3.6) and (3.7) as follows:

point out several features in common with the
fixed-t case, which we now treat. As suggested
by the perturbation calculations of Sec. II T, is
smaller than T, by 1/ins ina given order of pertur-
bation theory. Just as (B,+B„)T,is O(ln's) larger
than (B, B„)T,i-n (3.10) we expect that the term
(K, -K„)TO is negligible compared with (K,+K„)T,
in Eq. (3.7). For fixed t the term B,T, is O(1/lns)
times the (K,+K„)T, term (and in any event can
be dealt with by an integrating factor. ") A similar
inspection of (3.6) shows that the first term ~B,T,
is expected to be O(1/lns) times the term involving
T,. Hence we adopt as an approximate leading-log
version of Eqs. (3.6) and (3.7) the following:

(3.14)

d4k
B,=,K(p„p„k;~),

d4u
B„=

( ),K(p„-p„k;X), (3.11)

8T, 8T~~ 1 d4k

( ), (K,+K„)T,(P, Q —k, R).

(3.15)

dkB,=
(

)4K(p, , -pi, k;X),

have several equivalent forms due to the symme-
try relations (2.25). They are the usual infrared
factor due to attaching an external line (see Ref.
27) as shown by writing B, in the form

8B = -ig X—
8X

4pp,
(2')' (O' —X )(k' —2k p, )(k + 2k p ))

(3.12)

As s-~, and for fixed angle, the asymptotic
forms are

B,—-(g'/4m') in(-s/m'),

B„--(g'/4m')[in(s/m')+ inn„], (3.13)

B,—-(g'/4))')[in(s/m')+ inn, ],
where n„, n, =-,'(1+cose). [When m = 0, the scale in
(3.13) is X.]

The fixed-angle case was treated in detail in Ref.
17. We will not repeat this calculation but will

X —, T,(x, ~)=-,'K (x, X)T,(x, ~), (3.16)

T,(x, X) = X T, ——'K, (x, X)T,(x, X), (3.17)

where K, =—K,+K„.

The structure of the analogous (single) equation
for QED is not so simple because all terms are of
the same order of magnitude due to cancellation
rather than enhancement of the leading (logs)
terms associated with the s- and u-channel terms.
We have not been able to solve that equation"; in-
deed, the equation is probably not even justified,
due to this cancellation of the leading behavior,
for the purpose of finding the dominant s depen-
dence of the amplitude. 'Hence the QCD scattering
ampbtude behaves more simply than its counter-
part in QED. This simplicity is due to the disposi-
tion of signs associated with the non-Abeljan gauge
group.

Since Eqs. (3.14) and (3.15) have convolution
structure" we go over to coordinate space, ob-
taining (suppressing the fixed-P and fixed-R de-
pendence)
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Equation (3.17) has the form (f is Ink)

t t
/(~) r=«~(i)8~ r k2 )dl )-"

to tt
(3.19)

In our case g is a derivative sB/st and (3.19) can
be written

t
f(t) = a(t)+ dt'k(t')G(f, t'),

to

where G(t, f') is defined to be exp[ f,k(t")dt"].
Applying the result (3.20) to Eq. 83.17) gives

(3,20)

Ti (P, Q & R, A.) = Ti (P, Q,R, X)

d'x e'~'"

x, T~&(P,x,R, X') K,(x, X')]. s 0 1 +

I ' dX'

x'

(3.21)

—„=a(f) k(f)f(f), (3.18)

so that the solution is (apart from the solution to the
homogeneous equation, f,= const x exp[ f 'k(f')df')])

I tp

The choice of lower limit X, is arbitrary since
changing it only changes the definition of the in-
frared-finite part of the amplitude. Although the
original equation was only valid when A.'«m', —t, s
we can choose X,=~ for convenience. This has the
effect of suppressing completely the contribution
from the lower limit. For example, the fir'st non-
trivial term in the expansion of (3.21) gives the
exact fourth-order s and u K-photon box diagrams
(2.13) and (2.15) with this choice of A..

T, is found by direct integration of Eq. (3.16):

T,(P, Q, R;&)=
4

d'xe'o", K.(x, A, ')

x T,(P,x,R, V).
(3.22)

The explicit solutions (3.21) and (3.22) have a
simple form in coordinate space, which probably
merits further study. Here we show how to make
contact with ordinary leading-log perturbation
theory by expanding the exponential and worki~
out the asymptotic behavior term by term In (3..21)
we express Te(x) and K, (x) in terms of Fourier
coefficients and perform the x integration to get

4 ~ 2"(22 I)!, y, , X2, X„(22)' (2m)4 (Q k, k, "~ k„)'

4 1 1 2 dX, d'k, K,(k„&,) 1 dX, ~ d&2 d'k, d k, K,(k„X,)K, (k„X2)
g' ' f —A.

2 2 2 Xi (2m ) (Q —k,)' —X,
' 2 ~ X, i &2 (2&) (27/) (Q —ki —k,)' —X,2

(& 24)

—,T, '=, ln, ln —,. (3.25)

The second term of (3.24) is easily integrated
explicitly. It yields the exact fourth-order s- and
u-channel box graphs with one K photon inserted
(cf. Sec. II), as of course has to be true according
to our previous discussion. Its asymptotic value

' dX' d'k—T = —— — K(k X')g' ' 2 „x' (27/"

x w(P, Q —k, R; X'). (3.28)

Except near k =Q and large V (which is unphysical
since we'expect 7 to cut off around X2= f) we can-
use the asymptotic form of ~. Hence we write
(3.28) as

The asymptotic form of

d'k ' dX' K,(k, X')
J (22)' ~' (Q-k)'-~"

(3.26)

—T = — ln
4 (6)
g' ' 4&' m'

d'k K.(k, ~')
(2 )' (Q-k)'

X2

did dX2= dX2 d (3.27)
1

we find that this (sixth-order) term has the form

is therefore (g2/22'2t) In(s/m2) In(-f/X'); cf. Eq.
(2.22).

If we interchange X integrations in the last term
of (3.24) according to the rule

(3.29)

To investigate the nature of the singularity, note
that for large s the t dependence of 7 is actually
of the form

r
d2: - 2 (t2 - 4~2&)' "+t

y2 f (I ~) (f2 4fy2)l/2 (f2 4y2f)1/2

(3.30)
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For —f » A.
' this becomes -2 In(-f/X')/f as before.

For small -t «X' the t pole goes away, giving
2/X'. So we can fix up the pole by writing (Q —k)'
—(Q —k)' —pX" with p = O(1) in (3.29) as an inter-
polation formula. The numerator is smooth so
we have simply dropped the k dependence in
ln[-(Q —k)'/X']. It is now straightforward to ex-
press (3.29) in terms of the fourth-order box con-
tribution. Comparing with (3.26), we have for the
integrals in (3.29)

N'
BX', ln 2 =Tpln x2

— - Tpdln, 2

ln —,ln' —,. 3.31

Note that 7~ differs from the usual box in that
one of the propagators has its pole at pX' instead
of A.'. Evaluation shows that the In(-f/X') is re-
placed by ln(-f/Xp) if the two poles are at X' and
p,
' respectively. Hence the asymptotic behavior is

unchanged; we continue to use A, as the length
scale. Combining with the factors in (3.29) gives

the structure of the necessary induction. There-
fore in leading-log approximation the amplitude
(3.21) reduces to

T~=T~ exp ln 2 ln —
~ ~ (3.35)

This has a Regge form as confirmed in low orders
by other authors. "

To is evaluated using Eq. (3.22) rewritten in the
form

3 ' dh'
To(P&Q&R&X) i

( )4K (k&X )

x T, (P, Q —k, R, A'). (3..36)

Introducing the expansion of (3.35}and treating
the k = Q singularity as before, we obtain

4 oo 1

g ' ' ' 4 onI 47r m
T(P Q—R X)= —g— ln

(-tl
"

—,T,' =
2
—,ln ln (3.32)

The first three terms now suggest exponentiation
of the series

T, =T, 1 —4, 1n —,ln &,

+ —~, ln, ln —, +''' 3 33 ln" —,M, X +2n
' dX'

1n" ' —„M,X' .

Defining the function

K (k, ~'}
M(Q X)

( )g ( }2 2 (3 38)

the integral in (3.37) can be written as

We now extend (3.33) to all orders by using T, to
evaluate T„etc. in the manner just described.

Repeating the calculation of Eqs. (3.28)-(3.32)
for T,"' using the identity

(3.39)

The function M(Q, X) is the difference of the s- and
&-channel box contributions and so involves
ln(-s) —Ins = —i v:

dX~ dX2 dX3 = dX3 dX2 dX~
M(Q, V) - M, ln( „). (3.40)

(3.34)

gives the expected next term in (3.33) and shows
Evaluating the leading part of (3.39) now allows
(3.37) to be written as

To ~ Tj ln
&g 4

ln", ln" —, n+ 1

3' ~ exp[(-g'/4m'} In(s/m') ln(-f/X')] —1
4 ' In(s/m') (3.41)

Again, this formula agrees with perturbation
evaluations to eighth order" in the limit of small
gluon mass.

Note that T, has a fixed cut at j —1 in addition
to a moving Regge cut located at the same position
as the Regge pole in T,.

If we take the limit X-0 in (3.41) there is a con-

stant surviving term; T„' then has the form

s
T,= const & i t 1ns

(3.42)

on reinstating the spin factor of the Born term.
Thus we obtain a nonzero amplitude for the scat-
tering of colored particles. This does not quite
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IV. THE INFRARED-FINITE PART

The discussion in the preceding sections sug-
gests (though it does not prove) that the quark-
quark scattering amplitude can be factored, as in
@ED, into the product of an infrared-finite part
and an infrared-singular part:

T T»Ty (4.1)

where T,„contains all dependence on the gluon
mass X and T is independent of X. Equation (4.1)
is presumed written for the unrenormalized ampli-
tude; thus T depends on the bare coupling gp and
an ultraviolet cutoff A. If T is the color -flip amp-
litude T„ the lowest-order contribution T, is the
Born term T~; if T is the nonf lip amplitude T, the
lowest contribution to T, is of order gp ~ In fact,
if the infrared -singular factor T» is defined"
through the K, G gluon decomposition outlined in
Sec. II, the lowest-order contribution to Tp is

contradict the statements of C ornwall and Tik-
topoulous since T, is nonleading relative to T, ~

Moreover, the vanishing exponential is really the
sum of a series whose terms are divergent as
X-0 and one can wonder if it makes sense to keep
the -1~ We expect, however, to find the same
structure for the finite off -shell amplitude so that
the infrared-finite factor is to be taken seriously.

Although (3.41) clearly is useful as an explicit
amplitude for the small, but finite, X case its
meaning in the truly massless gluon case depends
on whether external gluon emission occurs. If
not, then the 1/lns term corresponds to "physics. "
If so, then the divergent radiation amplitude will
presumably cancel the vanishing exponential term
in (3.41). This interpretational difficulty should
disappear in a correct off -shell treatment of the
quarks in a bound-state problem. This approach
is currently under investigation.

It is interesting that the (nonleading) amplitude
T, is given correctly (i.e., in accordance with
perturbation theory) by the infrared equation. The
differential equation approach is so much simpler
than brute-force summation of Feynman graphs
that this approach deserves further work to deter-
mine more clearly the range of validity of the CT
equation. In fact, comparison with the leading
diagrams even in sixth-order (cf. especially Ref. 6)
which all involve gluon-gluon couplings make the
agreement appear somewhat miraculous.

precisely the sum of the box graph and the
crossed -box graph calculated with a G gluon for
one (not both) of the exchanged gluon lines, while
the lowest-order contribution to the infrared-
singular factor consists of the same boxes with
a K gluon inserted for one (not both) of the ex-
changed gluon lines. Further, with our explicit
choice of the K-gluon propagator, T» is ultra-
violet finite so it is independent of the ultraviolet
cutoff ~ . Conversely, T is independent of the
infrared cutoff X;" if the IH divergence of the
coupling-constant renormalization34 is included
ln T~R,

Upon renormalization T becomes replaced by
a renormalized amplitude depending on a renor-
malization point M and a coupling constant g~ and
is no longer dependent on A. Furthermore, T
(since it is independent of X) will satisfy a (new
improved) renormalization-group equation":

M,M +f1 (Z) +y—(Z)+ &(a)m
8

T = 0 (4.2)
Bg ~m

(m here is related to, but not identical to, the
quark mass). As a result, we can obtain the as-
ymptotic behavior, at fixed angle, of T from as-
ymptotic freedom provided that there are no mass
singularities [i.e. , factors like ln(s/m )] in the
perturbation expansion of T."

In fourth order, direct evaluation of the box dia-
gram with one G gluon shows it to contain mass
singularities of the form In(t/m'), but not ln(s/m').
[The box with one K gluon, in contrast, does con-
tain terms like ln(s/m') as we have already seen;
but this contributes to T», not T.] In the ampli-
tude T„ the crossed box with one G gluon exactly
cancels this mass singularity so that the entire
Tp amplitude, in order g', contains no mass sin-
gularities. This does not hold for Ty Ty does
have mass singularities in order g4 ~

Let us elaborate a bit on these remarks. First,
look at the box graph with one G gluon. This is
proportional to (for SU, as the gauge group)4, 4 1 1 1 1Z(r, r,)' d'k —,—. . .—, , 2a' (q+ k)' (P,-k)'- m' (P'+ 0)' -m'

xgy„(P', —1 + m)y„],[y„(P',+ 0'+ m)y„], -4p, p,).
(4.3)

Upon inserting Feynman parameters Q, and shift-
ing the integration variable k this becomes (drop-
ping an obviously finite term as m —0)

1

LSQ3Q4+ tQ2(1 Q2 Q3 Q4) M (Q3+ Q4)

x(4p, p,[ n, n, + n,n, 2n, (1 —n, —n, —n, )](y„),(y ),
+ n, n (y„p',y, ),(y„p,y„),+ 8n (1 —n —n, —n,)(p,),(p, )2]'. (4.4)
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FIG. 6. The fourth-order box graphs are labeled with
momenta and Feynman parameters to facilitate discus-
sion of the mass singularities.

Inspection of the various numerator terms in (4.4)
shows us that the only term which can be singular
as m-0 is that proportional to (n, + n, ). Evaluat-
ing this term gives the result, for the m -0
singularity,

g'(t, ' t,)' —(y„),(y~),gin(t/m')]'+ [In(s/t)]'}. (4.5)

The corresponding crossed graph gives

g~t, ' (t, t,)t, —(y„),(y~),([ln(t/m')]'+ [In(u/t)]'}

(4.6)
The isospin factors [of Eq. (2.20)] are such that
these two subtract in T, and add in T,. Thus the
m singularities in the box and crossed box cancel
in T„but do not in T,. The surviving factors in
T, involve ln(s/t) and In(u/f); these are, of course,
finite in the fixed-angle limit. The same structure
persists in SU„.

The other fourth-order graphs involve vertex
and propagator corrections. These are all indi-
vidually finite as m -0. Thus, in general, to order
g', T, has no mass singularities but T, does.

The cancellation of the leading m'- 0 singularity
for the color-singlet exchange amplitude is in
fact systematic and easy to see in higher orders.
The mechanism can be seen in the box and
crossed-box diagrams, Eqs. (4.5) and (4.6). These
expressions differ only by the exchange p, -p,'
(i.e., s-u), an overall sign, and the color factor.
The singlet pieces of these color factors are how-
ever, identical. If one can show in general that
the m' dependence is governed by s or u, and the
X' dependence governed by t, then the overall
sign difference between the two graphs will give
cancellation of the leading behavior in any order
of perturbation theory. To see that the t depen-
dence is scaled by A,

' and the s (or u) dependence
is scaled by m', we write the complete box [Fig.
6(a)] in Feynman parametrized form. When the
k-loop integral is performed, the denominator
in the integral over Feynman parameter space is
then the second power of

s~,n, + tn, n, -m'(o. ,+ ~,)' —&'(o.,+&,), (4.7)

as already noted in Eq. (4.4). The fact that t is
scaled by X' is a simple consequence of their
common Feynman parameters in Eq. (4.7), and
we find a similar si;tuation for s and m'. This
fact would continue to be true in the IB-finite be-
havior of the two graphs under discussion, because
one requires a modification (by, e.g. , the K, G

photon method discussed above) of the n, and n,
propagators. The color-singlet exchange, IB-
finite piece, of double-gluon exchange is there-
fore singularity-free.

While we cannot show the complete cancellation
of singularities in higher order for the color-
singlet exchange amplitude, we can show that the
leading logarithmic singularities cancel, in pairs
of graphs. We demonstrate the technique for sixth
order; extension is straightforward and perhaps
provable by induction. Figure 7 shows the sixth-
order graphs considered. (Pure form factor or
t-channel pole terms do not contribute to the
color-singlet exchange amplitude, and in any case
are nonsingular for the finite-t limit. Other
graphs are similarly uninteresting. )

Graphs 7(a) and 7(b) (or rather the color-singlet
pieces of them) again differ by an overall sign
and the exchange s -u. For the scale of the loga-
rithmic factors, we need consider only a Q' ana-
log, and perform the k„k, loop integrations exact-
ly after applying the Feynman parametric identity.
With the parametric labeling as in Fig. 7(a) we
need to notice only that the coefficient of m' in the
remaining denominator vanishes only with
(n„n„u,), and at the same rate as the coeffi-
cient of s (namely, quadratically with any pair,
as for the fourth-order case). Similarly, f and
X' are controlled by the set (n„n„c.„n,). The
cancellation of leading logs between Figs. 7(a)
and 7(b) then follows as for the fourth-order case.

Also in Fig. 7, (a)= (b), (c)= (d), and (c)= (f) with
s -u with no color factors. For these graphs,
the color algebra gives us the required minus sign
in the above equalities in the color-singlet piece
only. In this way, we again need only check the
controlling kinematic variable in the m -0 limit.
The same calculation outlined above shows the re-
quired relationship: The coefficients of both s
and m' vanish quadratically with pairs of
'(n„c.„c.„n,) (see Fig. 7) while the t and X' de-
pendence is governed by (n„n„n,).

We finish by noting that it is really the large-s
and not the m'-0 li:mit which is of interest, and
that this, difference can be nontrivial. The pair
of tower graphs in Fig. 8 bear the same relation-
ship to each other as the graphs of Fig. 6. When
parametrized as in Fig. 8, the s coefficient is
governed by a,&yp While n, and +yp do come into
the m' coefficient, clearly so do ( „on„„oo)9
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FIG. 7. Some sixth-or&)er graphs pertinent to the
mass-singularity problem are shown.

from the internal loop. However, this is enough to
ensure that the leading logarithmic s dependence
will be scaled by m', not X'.

We are therefore led to conjecture that T, has
no mass sj.ngularities in any order. Hence Eq.
(4.2) permits us to obtain the fixed-angle asymp-
totic form of T,:

7 [ b ln(s/)&a)]-a-~ &'»T &4&(e) (4.8)

where p. is the renormalization-group invariant
mass, defined by

(4.9)

so that the running coupling constant is g, = I/
[ bin(s/p')]')'. H-ere P= bg'+ and y = cg'+ ~ ~ ~

define b and c, and finally, T,'4'(e) is the fixed-
angle limit of the fourth-order color-nonf lip amp-
litude with one exchanged G gluon which is a func-
tion only of the scattering angle 8.

Several authors'"' ""have used the renormal-
ization group to investigate mass-shell scattering
amplitudes of theories having tame infrared be-
havior. The present argument purports to strip
away the troublesome infrared singularities in a
manner allowing similar arguments for the infra-
red-finite part of the amplitude.

a7

,
i a( a2, '

a5

a8

ag I

a)O

(b)

FIG. 8. These tower graphs are discussed in the text.

It must be stressed that our results do not neces-
sarily have a lot to do with the properties of the
Pomeron, which describes the near forward scat-
tering of physical hadrons. To apply our results
to this problem would require proof that the over-
all process is describable by the contributions of
individual qq (and also qq) scattering amplitudes.
However, consideration of the scattering of quark
clusters immediately reveals the existence of a
host of potentially important graphs not included
in the "additive" quark picture. For fixed t we
could calculate the infrared dominant part of qq or
qq scattering but could not estimate the subdomi-
nant terms. Since the infrared singularities can-
cel"'" for color-singlet scattering, as is physi-
cally obvious whether confinement occurs or not,
the amplitudes obtained here do not bear a close
relation to the physical ones for near forward
scattering. For fixed angle the situation is more
hopeful, both because we could obtain part of the
noninfrared determined energy dependence and
because the kinematical situation is simpler. "

Thus the gauge theory description of the Pomer-
on remains in a primitive state. Besides Ref. 8,
we refer to the papers of Low" and Nussinov"
for further ideas. We are presently investigating
colorless current-current scattering in the hope
of obtaining information about the Pomeron without
confronting the infrared singularities directly.

Our results do, however, confirm a more de-
tailed agreement of the infrared equation of Corn-
wall and Tiktopoulos with perturbation calculations
to rather high order. Since the remarkabl, e can-
cellations among individual graphs show that the
perturbation expansion is at best exceedingly
clumsy, we are encouraged to study further non-
perturbative approaches to the infrared problem.
These can be of several varieties. For example,
we can exploit the conjecture that the equation of
Cornwall and Tiktopoulos is exact with the use of
coupling constants g(t) and g(k') renormalized at
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gluon masses t and k' as discussed in Sec. III.
We can (in the absence of any theoretical guidance
as to how these behave) guess some singular be-
havior such as g'(k') o- k ', and see what effect this
will have on high-energy fixed-angle quark-quark
scattering. It will certainly modify our leading-
log results in a nontrivial way. Or, we can study

other ways of regularizing the infrared singularity,
in particular by dealing with'off-shell quark-quark
scattering, since this is obviously what is rele-
vant in any physically interesting process.

Either of these (and doubtless other) nonpertur-
bative studies will be of interest, and we hope to
explore them in the future.
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replaced by

AV d4Q
Z (X X)= de' esQ. (x x) ~ (Q +l g)(») t
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