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We consider a Yang-Mills-Higgs Lagrangian invariant under local gauge transformations belonging to an
arbitrary compact group G, The Higgs fields are assumed to belong to a real representation of G. We
analyze in detail the conditions imposed on the fields due to the requirement that the static Hamiltonian or
the total energy of the system be finite. We then seek static finite-energy solutions for which the radial
dependence of the fields is factorized. We show that for the coupled system of nonlinear equations emerging
from the Lagrangiarf the equations for angular functions which carry the internal-symmetry labels and the
equations for the radial functions separate into two separate systems of coupled nonlinear equations. We
solve the equations for angular functions completely and show that the gauge fields vanish outside a fixed
SO(3) subgroup of G and that inside the SO(3) group they reduce to the 't Hooft-Polyakov solution with

unit magnetic charge in appropriate units. The Higgs fields may belong to any integer representation of
this SO(3) group. The static Hamiltonian and consequently the total energy or mass of the monopole depend
on the representation of the Higgs field. Thus we obtain in principle a mass formula for the monopoles, the
one with the lowest mass corresponding to the 't Hooft-Polyakov case.

I. INTRODUCTION

Non-Abelian gauge theories of the Yang-Mills
type have created a great deal of interest recently
as possible candidates for a unified theory of
strong, weak, and electromagnetic interactions. '
While the full quantum field aspects of such theo-
ries are still far from being thoroughly understood,
classical solutions to the field equations have
proved to be quite interesting from several points
of view. ' Thus 't Hooft' and Polyakov' independent-
ly found a static, finite-energy solution in a non-
Abelian model consisting of a triplet of isovector
gauge mesons and a triplet of isovector Higgs
mesons with interactions invariant under local
gauge group $O(3). 'fhe solution has the very in-
teresting feature that it can be thought of as cor-
responding to a magnetic monopole with magnetic
charge of strength 4m/e, which satisfies the famous
Dirac quantization condition. Subsequently sever-
al authors have attempted to generalize the model
in various ways. '

In this paper we consider the 't Hooft-Polyakov
model generalized to an arbitrary compact gauge
group G. In the next section we describe the no-
tation, set up the Lagrangian, and derive the co-
variant field equations. We consider the most gen-
eral Higgs potential allowed by renormalization
requirements. The conditions for the minima of
such a potential and the ensuing mass spectrum of
the Higgs mesons are discussed at some. length
in the Appendix. In the third section we examine in
detail the consequences of the assumption that the

total energy be finite. This leads to several in-
teresting and strong restrictions on the Higgs and
the gauge fields on a sphere at infinity. Of special
importance is the integrability condition for the
well-known equation' which relates the value of the
Higgs field at one point on the sphere to that at
another point by a gauge transformation. In Sec.
IV, we derive the necessary condition for the
existence of a solution for this equation and ex-
plain its physical significance.

To proceed further, we assume in the remain-
ing sections that the fields can be expressed as
products of functions involving separately the ra-
dial coordinate x and the polar angles ~ = (8, g).
'The internal-symmetry indices are associated
with the angular functions. This hypothesis is a
natural generalization of the 't Hooft-Polyakov
model and it enables us to accomplish a complete
separation of the nonlinear coupled system of equa-
tions into nonlinear coupled equations for the ra-
dial functions and the angular functions. We solve
the angular equations and show that the gauge-field
angular part is unique; it vanishes outside a fixed-
SO(3) subalgebra of the original algebra. Inside
the subalgebra, it is the 't Hooft-Polyakov solu-
tion. The Higgs fields must also belong to a re-
presentation of the fixed SO(3) but, in contrast
to the 't Hooft-Polyakov case, they may belong
to any integer-valued representation. However,
the strength of the magnetic charge is still a unit
multiple of 4w/e as in the 't Hooft-Polyakov model
before. The stati. c Hamiltonian and consequently
the mass or total energy of the monopole depend
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on the representation of the Higgs field. We dis-
cuss the existence of solutions to the ensuing
radial equations and show that the 't Hooft-Polya-
kov monopole is the one with the lowest mass.

II, THE LAGRANGIAN AND THE FIELD EQUATIONS

local gauge transformations

A -A' = O'"'"'A 4 —4 ' = e'"~" 4

as

N(x) = -4(E~„)E„„)—2(D~C') D~4) —V(4), (2.8)

We consider a compact Lie group G; its Lie
algebra, denoted by g is assumed to be k dimen-
sional. Let the generators I'", Q. =1,2, .. . , k

satisfy

where

8 8

We note two other useful forms for F,„,

(2.9)

[Tn T 8] Ce8 r 7 r (2.1)

where C ~' are the structure constants of G. If
a and b cg, then (a, b) given by

(a, b)= ——,a b trT TB, a=a'T, b=b"T

(2 2)

defines the group-invariant Cartan inner product
which is nondegenerate on the semisimple subal-
gebra of g.

We are interested in a I.agrangian consisting
of a set of gauge fields A~(x)=A, (x)7 and a set
of Higgs fields 4(x) and invariant under local G

transfor mations.
The gauge fields A~(x) belong to the adjoint re-

presentation of G given by the antisymmetric ma-
trices v= (w ), where

8 8PA (t.)BAA))D" 4)B 08x'— 8CA (2.11)

8„F""' —eC ' 'F""'"AB —e(D"4")(t )" 4 = 0 .8x

(2.12)

If we define

J'(4)=(4, tD'4) ri.e., Z"' =4"(t )"BD'4 ],
(2.13)

the field equations (2.11) and (2.12) take the form

I' ~„=D ~A „— „A„= ID „,—D„]. (2.10)
8

From the Lagrangian (2.8}we can derive the co-
variant field equations

(P) r C~Br (2.3)
8PDvD @, (2.14)

The fields A~(x) can be looked upon as vector fields
valued in g.

We shall assume that the Higgs fields 4(x) belong
to an arbitrary real representation (not necessar-
ily irreducible) of G. Let the corresponding vec-
tor space be denoted by 8. There is actually no
loss of generality in assuming that the C repre-
sentation is real, since any complex representa-
tion can be combined with its conjugate represen-
tation to form a real representation and the result-
ant skew-symmetric invariant does not occur in
the Lagrangian. We denote the matrices of the
representation to which 4 belongs by t,

(ta)AB (ta)BA (2 4)

n = 1, 2, . . . , k, A, I3 = 1, 2, . . . , K .
The eovariant derivatives of the i and A~ fields
are defined by

(2.15)

D I V=O

where

(2.16)

y gv & ~tJvepp=2 ap

The potential V(4) is a function of 4), which is
bounded below and invariant under G. For classi-
cal solutions there are no further restrictions on
the functional form of V but, if we require a re-
normalizable quantum field theory, U(4)) is re-
stricted to be a fourth-degree polynomial. In
simple models with spontaneous symmetry break-
ing, one generally considers a V(4 }of the form

2.
V(4) = —(4, 4)' — (4, 4)'. (2.17)

D „E""= -eJ "(4 ) .
Note from (2.10) that E'" also satisfies the Jacobi
identity,

4,A s 4,A (tn)ABAu4, B

D A =8 A~ eC ~A~ A".
/L v p v+ V '

(2.5)

(2.6)
The symmetry-breaking direction is then given
by an arbitrary vector v such that

Using the above-described fields, their covariant
derivatives, and the metric

(v, v)'~' = t), /WZ. (2.18)

-happ

= g j.j.
= 822 = g'33 = 1 ~ (2.7)

we can write the Lagrangian Z(x) invariant under

In general, however, a fourth-degree potential
may contain trilinear and quadrilinear invariants
which are not isotropic in the group, that is, they
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do not allow an arbitrary direction. for spontan-
eous symmetry breaking. Full details for such
potentials are given in the Appendix. The general
form is

v(e) =—(t(e), c)+—(e, c)'+ (b(e), e)

(e, c), (2.19)

where t(C) and b(C) denote vectors in 8 which are
trilinear and bilinear (and symmetric) in C. The
condition for an extremum of V(C ) is then

—-= at(e)+ x(e, e)e+ pub(e) —p'e = 0. (2.20)
dV

Hence we assume

limC (r, (u) =cP((u), (Q((u), $((u))=1,
g ~00

(3 6)

limreA(r, ur) = a(~) & ~,
+ QQ

(3.7)

which implies that

where Q(v) lies on a group orbit which is deter-
mined by the other invariants according to (2.20)
with eo= cP(ru).

We next note that, since each term in the Ham-
iltonian (3.3) is positive, (3.4) imposes a condi-
tion separately on each term. For the pure gauge
term we satisfy this condition by assuming in the
standard way that

For any solution C = C, of (2.20), the mass-squared
matrices for the Higgs and gauge fields are given
in the usual way by

lim r 2e F(r, a&) = f (&u) & ~ . (3.8)

AB (2.21)
For the kinetic term for the Higgs field in (3.3),
the finite-energy condition (3.4) implies

e'm. , =(t e„t'e,),
respectively.

(2.22) lim r(rDe, rDe) =0,

which takes the for m

d y((u) = [8 + a "((u)t "]y((u) = 0,

(3.9)

(3.10)
III. FINITE-ENERGY CONDITIONS IN THE STATIC CASE

We are interested in the static solutions of the
field equations (2.14) and (2.15). In addition we
shall assume for the moment that A, =0. When all
the time derivatives and A, are equal to zero, the
equations of motion reduce to

(3.1)

where

a =~v.

Equation (3.10) implies that on the infinite
sphere the values of P(tu) for different &u are re-
lated by a group transformation, a result which is
perhaps more familiar in the integrated form

y(~) = ft(g(~, ~.)) y(~.) (3.11)

D x F = -eZ(e),

where

(3 2) If we take the scalar and vector product of (3.10) by
the unit vector ~, respectively, we obtain

r a" t y((u) =0 (3.12)

The Hamiltonian or the total energy of the system
ls

and

J P(~) =-(r" xd)P(~) = (L +b)4(~) =0, (3.13)

K= K(x)d'x= [-.'(F, F)+-,'(De, DC)+ V(e)]d'x.

r'K(x) = 0, (3.4)

and by the spontaneous symmetry-breaking mech-
anism. The latter requires that all the group in-
variants in the potential V(C) tend to finite con-
stants for large x. In particular

lim(C (r), e(r))=c'&~, c&0. (3.5)

(3.3)

The boundary conditions for the solutions of (3.1)
and (3.2) are imposed by the requirement that K
be finite, i.e., K(x) be integrable,

where

L =-r xa and 5=-txa.

e'M„8(ru) = c'(t "y(~), t6(b((u)}. (3.14)

Now, although this mass matrix is co dependent, it
is physical because the covaxiant angular monzen-
tum acting on it is zero on account of (3.10), that

Note L and J are the ordinary and covariant angu-
lar momentum operators (except that they are anti-
Hermitian since we have found it convenient to
omit the usual factor i).

With (3.6), the mass-squared matrix (2.22) for
the gauge field becomes
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is,

J,M„8 =L,M 8+a&(C~ 'Mn'8+C~ss'Mae') =0.

(3.15)

we can derive the integrability condition

where

(4.8)

In particular the eigenvalues of M 8 are indepen-
dent of ~.

Finally we note for later convenience that, taking
the scalar product of (3.10) with tsar(m), we obtain

(3.16)

~g] —& y»~» (4.9)

(4.10)

In contrast to f;, h;& has the remarkable property
that

which expresses the massive gauge fields in terms
of the Higgs currents. From (3.16) we also have

(3.17)

f;h, q
=0

and hence

&gy
=

~&&» ~» f ~

(4.11)

(4.12)

ay((u) =-a, t y(u)), (4. 1)

IV. INTEGRABILITY CONDITIONS FOR P(w)

The equation (3.10) which connects the v depen-
dence of P with its internal-symmetry structure
is the most striking consequence of the condition
that the energy should be finite. However, such a.

partial-differential equation has global solutions
if and only if its integrability conditions are satis-
fied. Hence it is interesting and also turns out to
be very useful to study these conditions. If we
write (3.10) in the form

where f is the scalar

(4.13)

Thus k„has the same radial component h„=If as
f„but, unlike f,&, it has no transverse compo-
nents. The reason for this is that Eq. (3.13) is
weaker than (3.10) since the former can be ob-
tained by taking the cross product of (3.10) with r",

but not conversely. The result is that the vanish-
ing of h, &

implies only that the transverse compo-
nents of a(u&) can be gauged to zero.

Note in particular that
we see that the integrability conditions for these
equations are fr=0. (4.14)

s, (a,"t"y) s,(a, ty)—=-(s,. sj.—s,.s,.)y
=«»L» Q

Thus f is scalar in ordinary space, vector in the
adjoint representation of Q, and is in the little
group of P(&o). From (3.14) we then have

e'y» &»4 ~

Thus they can be written in the form

(4.2)
M„8f =0. (4.15)

f(~ 4'=0

where

f;& =B, ~a
—s a, +[a „a&]+a;»b».

(4.3)

(4.4)

a, ((u) =S '(u))s;S((o), (4.5)

and for u& in S, and G compact, S(&u) is homotopic
to zero. We also note that

f() = lim r F (q. (4.6)

Similarly, if we write (3.13) in the form

L, y((u) =-b, y(a)), (4 7)

The fields f,, are the analogs, on the sphere, of
the field I &, in Minkowski space. If they vanish,
the fields a& can be gauged to zero locally. As a
matter of fact, because v, (G) =0 for any compact
Lie group, they can be gauged away globally. That
is to say, if f„=0, there is a function S(&u) valued
in 9 such that

f =2@+V, (4. 16)

where

2u =-L ~ a, v =-e,»r"; a& a„. (4.17)

Finally we note that the integrability condition
(4.3) shows that there are only three possibilities:

(i) f,&
=0. In this case, the potentials can be

gauged away leading to a trivial solution.
(ii) f„.&0, f„/=0. Then there e.xists a solu-

tion which is nontrivial.
(iii) f, &

NO, f,&
$00. Then there are no solu-

tions.

Thus f (+) is massless and is therefore a suitable
but generally not unique candidate for defining an
electromagnetic direction in the Lie algebra.

In any case Eq. (4. 14) will play an important
role in the sequel and it is convenient to expand
the function f into
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V. SEPARABILITY HYPOTHESIS:

ANGULAR AND RADIAL EQUATIONS
j (R, a) =-ds'a((o) —R(r)(a, r s a),

I (R, y) = (y, t d, y). (5.7)

C "(r) = P((u) c, eA (r) =a((u)
S(r) - R r

(5.1)

with the boundary conditions, when r- ~,

In this section, we seek solutions to the field
equations (3.1) and (3.2) in which C (r) and A(r)
have the form

Equations (5.4) and (5.6) are coupled nonlinear
equations. It is not obvious that the separability
ansatz (5.1) will lead to separate equations for the
radial functions S(r) and R(r) and the angular func-
tions P(&u) and a(&u). We next prove that this in-
deed is true and derive the radial and angular
equations.

s(r) - 1, R (r) -1, and S (0) R (0)= 0 . (5.2) A. Polynomia1s q(R) and Q(R)

The above separation of variables requires for its
definition the choice of a gauge which we take to be
the Landau gauge specified by div A =0. Equation
(5.1) constitutes a straightforward generalization
of the %u-Yang hypothesis' in the case of pure
Yang-Mills fields and the later adaptation by
't Hooft' and Polyakov' to the case of Yang-Mills
fields supplemented by Higgs fields. The internal-
symmetry indices are carried by the angular func-
tions P(u&) and a(&u). To begin with they are as-
sumed to be arbitrary but for the usual smooth-
ness properties. In particular, they are not as-
sumed to be spherically symmetric. '

The radial separation (5.1) reduces the Landau
gauge condition to two separate conditions

F a(|d) =0=a a((u), (5.3)

implying a(z) has no radial component and it is
divergence-free. Thus the Landau gauge is the
most convenient and natural gauge to impose the
separability hypothesis. Using (5.1) the static
field equation (3.1) can be written as

P(e)r'S"(r) =S(r) -d~'P(u&) +r'p, 'W p(&o)
s(r)

(5.4)

where

dan =se+R(r)a t0 =dse'+[R( ) —rIla t0 (5 5)

By taking the scalar product of (5.4) and (5.6)
with p(+) and a(a&), respectively, we obtain

r 'S" (r) = S(r)[q(R) +r 'p'W(s/r)], (5.8)

v'(&u)r 'R" (r) =R(r) v'(&u) Q(R)+ e'c', , S'(r) dq(R)

(5.9)

where we have used (Q(~), P(&u)) = 1 and defined

v'(w) = (a(w), a(&)) . (5.10)

q(R) = -(4(~), d&'@(~))

= —[(q) ((o), s'4((u))+ 2R(r)(4((u), t a sp((u))

+ R'(r)(0(~), (t a)'p(~))1 (5.11)

v'(~) q (R) = (a(~), I(R, a))
= —[(a(~), 8 a((o))+ 3R(r)(a((u) r a sa((u))

+ R'(r)(a(&u), (r. a)'~a((u))] . (5.12)

Both the polynomials q (R) and Q(R) have apparent
(d dependence in the coefficients of the different
powers of R. However, consider (5.11); if we take
two different values of &u, say cu and ao, in (5.8)
and subtract one equation from the other, we ob-
tain an equation of the form

q(R) and v'Q(R) are quadratic polynomials in R(r),

and

W(x) = (x - I)(~' x+ I), (5.5')

0 = Q [X ((u) -X„((u )]R '(r) . (5.13)

where v ~ 1 is a dimensionless parameter which
depends on the assumed form for the Higgs poten-
tial (see Appendix). Similarly, using (5.1) the
static field equations (3.2) can be written as

Now if R(r) is a constant, R(0) =0 forces R(r) to
vanish everywhere leading to the trivial solution
A = 0 everywhere. If R(r) is not a, constant, since
the different powers of 8 are linearly independent
functions, it follows that

a(&u)r 'R" (r) =R(r)( j (R, a))-e'c'S'(r) j (R, Q), X,((u) =X„((uo), (5.14)

where

d~ a(~) =s a(&u)+R(r) a r a(e)

(5.6) i.e. , the coefficient of different powers of R(r) in

q (R) are ~-independent consta, nts. Repeated argu-
ments along similar lines prove that v(u) is a con-
stant independent of & and so also are the coeffi-
cients in the polynomial Q(R). Thus we obtain
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(4(~), &'0(~)) = -t(i+ I),
(P((u) t a ~ sP((u))=rnv

(y(~) (t a) y(~))= n-v',

(a((u), s'a((u)) = L(I-, + 1)v',

3(a(u)), ~ a e a((u)) = 2M v',

(a((o), (~ a)'a((u)) = -v'/N.

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

and hence

2

Q ( R) = L (L, + 1)(1 —R) 1 — R (5.28)

This is the required analog of (5.22) for Q(R).
However, note that it contains two parameters, I.
and v'/N. Secondly, if we take the r-~ limit of
(5.9) and use (5.27), we obtain

l(I+1) = rnv=nv' (5.21)

and hence, from (5.11), that the polynomial q(R)
takes the form

~(R) =i(I+ 1)(1—R)', (5.22)

where there is only one free parameter.
Derivation of an analogous expression for Q(R)

is more involved. The key to the derivation is to
prove that the r-~ limit j(1,a) of the current
j(R, a) defined in (5.7) is zero. For this purpose
we observe that, from (5.7) and the finite-energy
condition (3.10),

j"(1,a)t"p =0. (5.23)

But then from the definition of j(R, Q) in (5.7),

(i(1, a), i(R, i ))=(0, i(1, a) ~ t ~ d.y)
= -(i(»a) t 4, ~Re) = 0 (5 24)

Note that Eq. (5.24) holds for all R in j(R, P). If
we now take the scalar product of (5.6) with j(l, a)
and use (5.24), the j(R, Q) term drops out and we

obtain

In the above equations l, m, n, I, M, N, and v

are constants. We have chosen to write them in the
specified form for later convenience.

Using the finite-energy condition (3.10) and Eqs.
(5.15)-(5.17), we see that the constants I, m, and
n satisfy

S' dq
2 dB

lim ——=lim S'(1 —R) =0. (5.29)

B. Angular equations

We can extract more information than is con-
tained in (5.15)-(5.20) from (5.4) and (5.5). For
this purpose consider the Hilbert space U, of real
functions defined on the sphere, valued in 5 with
the scalar product (denoted by double bold paren-
theses)

((0(&) x(~)))= 4 (4(~),x(~))d~.1
(5.30)

Take the scalar product of (5.4) in p, by +(~) such
that

1
((@(&u), Q(&u))) =

4 (4'(u)), P((o))d&u =0. (5.31)

Since S - r as r-~, the above equation shows that
(1 —R) falls off faster than r ' as r ~.-The as-
ymptotic condition (5.29) will be crucial in what
follows.

The physical meaning of the equations q(1)
= Q(1) = 0 can be seen from the radial equations
(5.8) and (5.9). As we shall see in Sec. VIII, be-
cause of q(1) = Q(1)= 0, the fields (S r) an-d (R —1)
fall off exponentially with increasing r and hence
are massive. On the other hand if q(1) or Q(1)
were notzero, then one can easily see that (S -r)
and(R —l)wouldfalloffliker 'andr ', respectively,
and hence they are long-range or massless fields.

(j(1,a), a) r'R" = R(l(1, a), l(R, a)) . (5.25)
Then

However, if R (r) - 1 as r -~, r'R" - 0 as r
Consequently, taking the limit as r ~, (5.2-5)

yields

(i(1, a), i(l, a))=o

and hence the desired result

((+((u), („'cg((u)))= abR++cR'=0, (5.32)

a=b=c=0

where a, b, c are numerical constants. Since R(r)
is not a constant,

j(1,a) = 0. (5.26)

Then taking the limit r -~ of (5.12), it follows that
for all 0 (&o) satisfying (5.31). Hence

Q(l) =0. (5.27)

Equation (5.27) has two consequences. First it
shows that Q(R) must have a factor (1 —R); also
from (5.18)-(5.20) and (5.12),

2Mv=L(I +1)+v'/N

((+(~), &'0(~)))=((+(~),t a 64(~)))
= ((@(e), (t a)'0 (&)))

=O. (5.33)

Equation (5.33) combined with (5.15), (5.16), (5.17)
give
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8'y(&d) = -I(t+ 1)y(~),

t a sy(&u) =mvy((o),

(t a)' y((u) = n-v'y((u) .

(5.34)

(5.3 5)

(5.36)

Similarly, consider a Hilbert space V, of real
vector functions defined on the sphere and valued
in the algebra 9. If X(&d) are vector functions such
that

(5.37)((X(~) a(~}))=o,

taking the scalar product of (5.5) by X(&v), we ob-
tain an equation of the form

a [1 —R(r)] + b [1 —R (r)] '+ c [1 —R (r)]'

+S'(r)(g+ 8[1—R(r)])=0, (5.38)

where a, b, c, g, and h are numerical constants
which can be easily determined from (5.5) and
(5.18)-(5.20). Now, from the asymptotic conditions
R-1 and S'(1 —R)-0, we see that. (5.38) can be
satisfied for nontrivial 8 only if

a=b=c=g= k=0. (5.39)

From identifying a, b, c appropriately, we obtain
three equations

s'a(u)) = L(L + 1)a-(&v),

2a r s a(&u) + (a, 79 a) = 2Mva(e),

(5.40)

(5.41)

[7 a (u))]'a(&d) = ——v'a((u),

which are the counterparts of the corresponding
equations (5.34)-(5.36) for y(v). We also obtain
two additional equations relating y and a, , viz. ,

(5.42)

(y, tsy)=-(y, t(t a)y)=na, , (5.43)

where the constant n has been computed from
(5.43) and (5.35).

(a,) By(~) = [al+t a(&)]y(&d) =0,

(y(&d) y(~))=1

(b) &i'a(&) = -3(a), (a(~) a(&v)) = v'

(c) 8'y(~) =-t(I+1)y(~),
9'a(&d) = L(I. + 1)a(u)), -

2

(d) (a ~)'a=[a;, [a;, a]] = ——a,

(e) ( ,yt3)y= n.a

(5.44a)

(5.44b)

(5.44c)

(5.44d)

(5.44e)

C. Summary of all the equations

Utilizing the relations between the numerical
constants to eliminate some of them, we summar-
ize all the equations obtained above for both the
radial functions S(r) and R(r) and the angular func-
tions y(&d) and a(~).

Equations for angular functions.

VI. DISCUSSION OF THE CONSTANTS IN THE EQUATIONS

Before we discuss the solutions to Eqs. (5.44) and

(5.45), it is instructive to analyze them briefly
and see the nature and significance of the various
constants appearing in them. First of all we note
that the radial separation implies that all the equa-
tions valid in the &-~ limit are valid for all &.

This is the case of Eq. (5.44a), which is the basic
finite-energy condition (3.10). The analogous equa-
tion for a(&u) contains a Higgs current term in the
&- limit, but the radial separation, as shown in
the preceding section, leads to a stronger condi-
tion, namely, Eq. (5.44b) involving only a fields.
The latter equation can be written in the equivalent
forms

(d; f„)=0, (d, f) =0, (6.1)

where f, ~ and f are defined in (4.4) and (4.13).
Equations (6.1) are pure Yang-Mills equations for
the angular functions a(&u) or equivalently for f (v)
on the unit sphere. However, note that (5.44e)
relates a(&u) to (y, tey).

Equations (5.44c) show that y(~) and a(~) are
spherical harmonics of definite order l and L,
respectively. Thus this property true for a sys-
tem of linear equations is also true in the case of
the coupled nonlinear system of equations under
study. Therefore, l and L are positive integers
[if one of them were zero, we would have the tri-
vial solution y(&u) = a(&u}= const]. If t is apositive in-
teger, it then follows from (5.21) that n&0. As-
suming v&0, we see from (5.21) that m&0. Final-
ly, since (a r)' is a sum of negative operators
(being a sum of squares of antisymmetric opera-
tors), it follows from (5.44d} that N& 0.

The same equation (5.44d) can be used to prove
that, for each u&, the a, (&u) generate an SU(2) sub-
algebra which we shall denote SU(2) . For this
purpose, consider at each ~ a triad of unit vectors
n"'(&u), n"'( ), r&dsuch that

n&» ~ n&» =0 r(~) =n«& xn&»

Then

(6.2)

Equations for radial functions.

r'S" (r) = (t(l+ 1) [1 —R(r)]'+r'V'W(S/r))S(r),

(5.45a)

r'R" (r) = [1-R(r)] (L(L + 1)R(r) [1 —cR(r)]
—e' c' nS'( r)), (5.45b)

where

t(i+1)
L(L+ 1)Nn
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2

k+l +~ k l ~kl ~
«) «)

e(i&(~) n(i) .a(~)
VN

V
2-1 2

Now, since N)0, we can define

(6.3)

(6.4)

where c, is the multiplicity of the (22 +1)-dimen-
sional irreducible representation in the reduction
of the adjoint representation 9 restricted to a
specific SU(2) subalgebra. Of course c,) 1 and,
since 9 is real, c. is even when 3 is half-integer.
then (6.11) shows that

and using (6.3) and f' a(&u) =0, we find
2

a, ((u) = Q n")e&() . (6.5)

A straightforward computation using (6.2), (6.4),
and (5.44d) yields

& is an integer -2. (6.12)

To summarize, at each &u, a(&u) generate an SU(2);
for different:u the different SU(2) are conjugated.
N is a purely group-theoretic number which de-
pends only on the embedding of these SU(2) in 9.
For instance, the values of N for some low-rank
groups are the following.

e(2) ~ (2) e(l ) 8 (I )

(6.6)
SO(3) SO(4) SU(3)

N 2 224 312 (6.13)

Hence, if we define

e(s) [ e&i) e&2) j v(~)
V

(6.7)

The only constant that remains to be discussed is
First of all we note that, from the definition

(3.14) of M„() and the Eqs. (5.44a) and (5.44e), we

have

[ e(i) e(i)] ~ e()')
fjk (e.e)

Now any compact Lie algebra splits canonically
into th'e direct sum of an Abelian algebra and a
semisimple algebra. From (5.44d), since we can
write a((u) as a commutator

we see that the three e"' form the basis of an

SU(2) Lie subalgebra of 9 with the usual structure
constants ~„.k, i.e.,

M„B (&u)a~ = c'na", (6.14)

—(e ' t)' &II)-~ (e ' t)'&t& =nN&t)

or also

(6.15)

which shows that the nonvanishing gauge fields are
actually eigenfields of the mass-squared operator
with the same mass squared ~' =c'n. Next, Eq.
(5.36) can be written as

V—a=[v, b],N— (6.9)

2

g(e'" t)'+(e"'t)' y [t(t, l) ]

=nNQ, (6.16)
the a(&u) fields take their values inside the semi-
simple 9, of 9. There is only a finite set of SU(2)
Lie subalgebras in any Q„up to a conjugation by
the group G. Since we are interested only in the
regular solution a(&u), we conclude that all SU(2)
for different ~ are conjugated into each other by G.

The normalization constant v' [Eq. (5.44b)] de-
pends on the arbitrary scale which one can choose
for the invariant orthogonal metric (i.e., the Car-
tan-Killing bilinear form} on 9,. However, as can
easily be verified, - the scalar product of e's in G

space is independent of &2, but depends only on N,

(e"' e"')=(e"' e"')=(e"' e"')=N/2. (6.10}

Since all the representations of the SU(2) Lie
algebras are known, Eq. (6.10) yields

where 2t, (t —m, ) are non-negative integers and
-t-m, - t. This implies that, if we call t the spin
of the irreducible representation of SU(2} which
appears in the space of &t), P(&u) is an eigenvector
of (a t)' and

2nN=2[t(t+1) —m, '] is an integer &0, (6.17)

barring the trivial case &t&(&u) = a(&u) = const.

VII. SOLUTION OF THE ANGULAR EQUATIONS

In this section we obtain the complete solution of
the angular equations (5.44). The first step is to
use Eq. (5.44b) to show that the functions u and v

which make up f in (4.16}are not independent but

satisfy the relationship

N = —,
' tr(e&'&)'

=Q —,'c,& (& +1)(2& +1}
2=0

i'2i+2)=~ 2C&
&=0

(6.11)

f =u=-v. (7.1)

For this purpose we introduce the identity

L, L, +8,.9,. = (S(i —r,x, ). L2. . . (7.2)

for functions on the sphere. Using this identity we

have, from the definition (4.17) of u, the relation-
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ship Thus v, and therefore f, are proportional to u;
indeed (4.16) yields

a(~)= L( }
I.u(u&), (7.3) f =(2+3.)u . (V.15)

which shows that u(~) acts as a potential for a(~).
We next note that, since for &'a=0

(v.4)

We assume that the integrability condition (4.14) is
satisfied nontrivially, i.e., f + 0. Then Eq. (4.15)
reads

Eq. (5.44b) yields

d;f =0, (v. 5)

I„&us =0 =I Svs .
To determine ~, we consider the equation

(v.16}

Using the definition f =2u + v, we then have from
(v.5)

S,. v+2[a, ,u] =-2b,.u —[a„v]. (V.6)

L(L+1)
b i t (V. 7)

The terms on the right-hand side of (7.6) can be
evaluated as follows: From (7.3) we obtain by tak-
ing the cross product with &

a =2(u + v) (7.17)

and operate on it by the mass matrix M. Now

M„~(J a)8 =J' (M„~as) =c2n(J a, ) (7.18)

where we have used (3.15) (vanishing of the co-
variant derivative of M) and (6.14). From (V.16),
(7.17), and (V.18}, since c'nt0 for a nontrivial
solution, we obtain

and from (5.44d) and the definition (4.17) of v we
obtain

u+v =0 or ~=-1. (7.19}

Using & =-1 in (V.14), we also pick up the relation
P

[a, , v]= —b, (7.8) v~ L(L +1)
N 2

(7.20)

Hence (7.6) becomes

s, v +2[a„u]=-[L(L+1)+v'/N]b, (V.9)

If we now take the (noncovariant) divergence of
(7.9), recall that a is divergence-free, and use
(7.7) twice, we obtain

8'v +L(L+1)[a„,b„]=2[L(L yi)+ v'/N]u,

(7.10)

which from the definition (4.17) of v reduces to

8'f =-L(L+1)f, (7.21)

so that f also is a spherical harmonic of order L,
and from (7.3) we have

for the constants. This completes the first step
in the solution of the angular equations.

The next step is to construct a self-coupling
equation for f. This is not difficult since we have
f = u. First from (7.1) and (7.13) we see that

s' v —2L(L +1)v = 2[L (L +1)+ v'/N]u . (7.11)

Now from the definition (4.17) of u and from
(5.44c}we see that u is a spherical harmonic of
order L. Hence operating on (7.11)with &'+L(L
+1},we obtain

2

L(L 1)

but from the angular equation (6.1}we have

d,.f =s,f+[a„f]=0. .

(V.22)

(7.23)

[s'+L (L +1)][S' —2L(L +1)]v =0. (7.12)
Inserting (7.22) into this equation, we obtain

[s2+L(L +1)]v =0. (7.13)

Thus v is also a spherical harmonic of order I.
If we now insert (7.13) into (7.11)we obtain

But for nontrivial L (L & 0) the operator 5' —2I (L
+1}is negative definite and therefore nonsingular.
Thus (7.12) implies that

2
gf = L(Lil) [f,L;f], (v.24)

which is the required self-coupling equation. Fur-
thermore (6.1), which is similar to (3.10), means
that the values of f in 9 for different &o are ob-
tained from each other by a transformation of G
[similar to (3.11)]. Hence

v(u&) = A. u((o), (f (~),f (~)}= &' (7.25)

where

A. =-2[L(L +1)+ v2/N)/3L(L +1).
(7.14)

where w' is a constant. To evaluate w' we use
(7.22), which gives
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v' =(a, , a,.)

2 (;f, ;f)

2 2

L(L,1) (f'f)
Hence from (7.21) we have

where we have used the antisymmetry of the struc-
ture constants in P and y. Equation (7.33) is then
of the form (7.29). Hence if we use the inversion
formula we obtain

S —X o g

L(L 1) sw r s

L(L+1) —' — I (I +1)

and from (7.20)

(7.26)
P. «9

s
d&u Y, (&u)&,Y„(&u),

(7.34)

K =ÃL (L+1) /8. (7.27)

f"(~)=Qt"Y'(~), t"=(-1)"t" (7.28)

Finally, we note from (7.21) that f has the expan-
sion

where m is not summed over because nz= —p. = x+ s
on account of the integration over ~ and the ad-
ditivity of the magnetic quantum number in the
3 —j symbols.

Similarly, if we insert the expansion (7.28) into
(7.25) we obtain

in terms of one spherical harmonic Y~. Since f
is real and the Y~ are complex, the expansion
coefficients t are compl, ex, but they satisfy the
relation displayed.

To exploit the self-coupling equation (7.24), using
the form (V.28) for f(v) we need the following in-
version formula which can be proved using stan-
dard spherical-harmonic analysis.

Let X(ur) be a function such that

rs
t„t,Y„(d Ys (7.36)

(&~ s oji
(7.36)

which is also of the form (7.29). Hence, by the
inversion formula, we have

y((u) = Q c„,Y~((u)Yz((u), c„,= c,„. (7.29)
We now use (7.36) to analyze (7.34) as follows:
Define the matrix

Then 2L+ 1P ~= pZ, t„t~„(-1)", p= (7,37)

c„=Q
/ ( / f F j~(!d)Xl~)&'d,
(Ex s p)I

where

(7.30) It is easy to see that the matrix I'
~ is a projection

operator, since from (7.28) it is real and sym-
metric and from (7.36) we have

& t &j.=& ' (7.38)

(L L J
x~/

s

I

L ~1(2L, I)
&000)

(7.31)

S,f (u)) =
L(L 1) cg „f ((u)L,f "((u),

(

and if we now use the expansion (7.28) we see that
it becomes

(7.32)

gt„&,Y (&u) =g L,L 1
cz„t~t",Yz(e)Y~(&u),

and (~ ~ „)are the conventional 3-j symbols. '
When written out explicitly in terms of the struc-

ture constants the third component of the self-
coupling equation (7.24) reads

Furthermore from (7.36) we see that

P ~
t~ = t „and P ~f~ ((u) = f ((u), (7.39)

f ((o)A. = 0 t„X = 0 Pg~A. ~ = 0, (7.40)

we see that f (e) spans the complete subspace 6:

onto which P z projects. But since from (7.36)
the trace of I'

&
is 2L+ 1, this subspace is 2L+ 1

dimensional.
If we now return to (7.34) and operate with the

projection operator (5,—P,), the right-hand
side drops out and we obtain from (V.39)

I

so that the t„and f (~) are eigenvectors of P 8

with eigenvalue unity. Finally, since from (7.28)
and (7.37), respectively, we have for any vector
X~

(V.33) L L+z (V.41)
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But since c~yt~ ty vanishes in any ease for x= s, we
then have

0t I(5«, —P«.)c~,~.Ps's P~'r 0. (7.42)

Now let '"'p, , x= 1, 2, beanytwoelementsof the
Lie algebra lying in the (2L+ 1)-dimensional sub-
space 5 projected out by P ~. Then by hypothesis

( ) (r) ~ (r) (7.43)

and hence

r
(1) (2) 1 (1) (2) y = y

p,g&P~p ~Pgi gc~aTy —W vy ~

(7.44)

space F of the Lie algebra projected out by P, is
actually a subalgebra of Q.

Every compact Lie algebra is the direct sum of
an Abelian Lie algebra and semisimple Lie al-
gebra, the latter being generated by the commu-
tators of the algebra. The Lie algebra 7, which
is compact since it is a subalgebra of g, is gen-
erated by the fields f (&u) = —v(~) which are commu-
tators [see Eq. (4.1V)]; hence P is semisimple.

For the last step of the solution we return to
(7.36) which shows that the spatial rotation group
acts on P by its, (2L+ 1)-dimensional irreducible
representation:

But from (7.42) we have
D'i'(R), f~((u) =f (R(u). (7.46)

Pyy, W = F (7.45)

Thus the commutator also lies in the subspace 5
projected out by P ~. It follows that the 2L+1 sub-

By this action, SO(3) is a group of automorphisms
of the Lie algebra 6'; indeed, with the use of (7.30)
and (7.39), one obtains from (V.36) the explicit
expression for the structure constants of 5,

(2L+ 1)'I.(L+ 1) ~ ~ 1 q q—((—L L
C8

47TK yg g r S .

(( ))I
Yg((d)e~ Y~((d)d(d ~ (7.4V)

f = vr"„a; = eq;, r-, , v= (N. /2)'~'. (7.48)

Since we had absorbed the charge e in the definition
of f (~) and a(~), Eq. (7.48) is exactly the 't Hooft-
Polyakov solution for the charge e„=e(2/N)' '.
This charge, which varies with the embedding in
G, is the natural charge for SO(3)„and the mono-
pole strength has the minimum value of 4v/e„.

Equation (7.48) completely solves the angular
Eqs. for a(~), and it remains only to consider the
Higgs fields. From (5.44a) and (V.48)

(t )" a; Q = (t )"-ze;,r;-Q, (7.49)

which implies that

and the integration in this equation shows that the
structure constants are invariant by the rotation
on ~ defined in (7.46). For a semisimple Lie group
every connected Lie group of automorphisms is
a group of inner automorphisms. Hence F contains
an SO(3) subalgebra. which acts irreducibly [by
(V.46)] on the (2L+ 1)-dimensional algebra 0; this
is impossible unless this SQ(3) is 8: itself. This
requires I. to be unity.

We denote by 80(3)I the fixed-SO(3) subalgebra
of 8 generated by the f (~)'s. From (7.1) and (7.3),
we see that 80(3)~ is also generated by the gauge
fields a(&o). If there are several nonconjugated
80(3) subalgebras of g the Higgs mechanism will
in general choose among them. Equations (7.24),
(V.l), and (7.22) yield, up to an arbitrary ortho-
gonal choice of basis in 80(3)I,

where the t, are the generators of SO(3)z, nor-
malized in the conventional way. Equations (V. 50)
and (5.44c) show that the SQ(3) representation of
Q(~) if fixed to be t(t+1)=t(l+1). For given I=t,
it is easy to construct explicit solutions for Q(M)
in terms of linear combinations of real and imag-
inary parts of appropriate spherical harmonics
with real coefficients.

The above results show that the condition of
separation of variables is so strong that it reduces
the solution for general G to that for G = SO(3), and
that for SO(3) the solution differs from the original
't Hooft-Polyakov ansatz only in that the Higgs
field can belong to an arbitrary integral repre-
sentation of 80(3) [and then only if the spin and
isospin compensate as in (7.50)]. Thus the 't Hooft-
Polyakov solution for G = SO(3) is essentially the
only solution with separated variables for arbitrary
G.

VIII RADIAL EQUATIONS

Finally we come to the discussion of the radial
equations. Using (7.50) to determine the constants
and replacing l(l+ 1) by its gauge-invariant counter-
part t(t+ 1), the radial equations (5.45a), (5.45b) are
easily seen to reduce to

r'K"=K[(K —1)+ t(t+ l)8'], K= 1 —R— . (8.1)

'The boundary conditions for these equations are

(L;+ t, )P(cu) = 0, (7.50) K(0) = 1, H(0) =0
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K(r)-0, S(r)-r as r -~.
(8.2)

K{r) c-onst && expI —e„c[at{t+1)]'~'r],

S(r) r-+ const x exp[-p(1+ o')'~'r].

Thus K(r) and S (r) —r describe fields of mass

(8.3)

Inserting the conditions at x-~ in the radial equa-
tions we easily see that K(r) and S(r) take the
asymptotic forms

e „c[t(t+1)/2]' ' and p(1+ o')'~', respectively.
'This is exactly what we should expect since, as
we have shown in the Appendix, t), (1+o')'~' is the
mass acquired by the Higgs field after the spon-
taneous symmetry breaking and, from (2.22),
e~c[t(t+ 1)/2]' ~' 'is the mass acquired by the gauge
field through the Higgs mechanism.

It is worth noting that the radial equations are
derivable directly from the Hamiltonian (3.3),
which now takes the form

(a.4)

Now the existence of nontrivial solutions that mini-
mize X [equivalently, solutions to the radial equa-
tions (8.1)] has been proved by Tyupkin et al. ,

"
in the case when t= 1. It is easy to verify that the
proof can be extended to any t&0. Thus finite-en-
ergy solutions to the radial equations (8.1) cer-
tainly exist.

An interesting feature of the solutions for general
tisthattheyprovidea mass formula m(t)=X on ac-
count of the dependence on t in (8.4). Differentiat-
ing X with respect to t (which is isospin, not time),
we obtain

5X ay, sX
st + st, ]l), —(H, K)„,„„„(8.5)

and, since the first term on the right-hand side of
(8.5) vanishes on account of the field equations,
we have

de 83' 2t+ 1 " dr
dt Bt 2

Thus the mass is a monotonically increasing func-
tion of the isospin and the solution with t=1 is the
lowest-lying nontrivial solution.

In conclusion we note that the above formalism
can be extended to include dyons by making the
ansatz

(8 8)

Since A, plays the role of a second Higgs field,
which lies in the adjoint representation and which
has no potential and no interaction" with )I)(&u), one
sees by analogy with Q that the only effect of A,"
on the field equations is to add to the Hamiltonian
density a term of the form

, ,— [-.'(r~' Z)'+-.' J'K-'] . (8.7)

The corresponding equations of motion are then the
generalization of the Julia and Zee equations" for
the special case t= l.

Note added tn proof. We are grateful to John
Rawnsley for pointing out that since the value of
m(t) is less than the value of (8.4) for any trial

APPENDIX

In this appendix we study the symmetry-breaking
minima of G-invariant polynomials, where G is a
compact Lie group acting linearly on a finite-di-
mensional real vector space b:

6 eg- s(g) e 2($) (Al)

where Z(g) is the space of linear operators on g.
For this representation we only assume" that it

does not contain the trivial representation, i.e.,
there is no nonzero vector in 8 invariant by G.
Since G is compact, this representation is equiva-
lent to an orthogonal representation; hence, with-
out loss of generality, we assume

&(g ') =&(g)' (A2)

%e denote by C an arbitrary element of 5 and by
P~"](C), a G-invariant nth-degree homogeneous
polynomial on S. It satisfies

P'"'(& (g)@)=P'"'(4'), P'"'(~@) = ~"P'"'(4 ) .
Any linear combination of two such polynomials
for a given n is again aP&"~. So the most general
G-invariantpolynomialpotential V(4)) is of the form"

V(4) = p p'"'(C). (A4)
.n=0

functions and the t dependence drops out for non-
overlapping trial functions H and K, m(t), although
it increases monotonically, must tend to a finite
limit m(~) as t- ~. A more detailed discussion
of the radial equations will be given elsewhere.ACKNOWLEDGMENT'S
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Since we are interested only in the extrema of V,
the constant term is irrelevant. From our as-
sumption of no invariant vectors on 8, V has no
linear term, and its gradient dV/d4 vanishes at
the origin. To obtain symmetry breaking we do not
want the extremum at the origin to be a minimum.
Hence the quadratic term on at least one G-invari-
ant subspace of 8 has to be of the form -k(4, 4),
i'2&0, where (C, 4) is a G-invariant, strictly posi-
tive orthogonal scalar product on g. We assume
that, on the whole space g,

P&'&==,'g'(4, 4), (4, 4) -0, (4, 4)=0 4=0 (A5)

and leave to the reader the straightforward gener-
alization. The notation p. '/2 for, the coefficient of
the quadratic term is traditional in the literature
on this subject, p giving the mass scale. Further-
more, V has to be bounded below in order to have

a lowest, firiite-value minimum, this requires

P&'O(4) ~ 0 for every 4, (A6)

which implies that N is even. The lowest possible
value of N is therefore 4. It happens that this is
the only possible value for the quantum theory to
be renormalizable. However, no such limitation
exists for a purely classical field theory.

Given aP" (4),& one obtains by polarization an n-
multilinear form

t?-1
t'"'&n„". , n.)= —,Z &-t)' Zt'"' Z n;),

4=0 (0)

(AV)

where Z, means the sum over n —k different
vectors among the n variables of l" and the first
4&» means the sum over all possible terms.
For example, for n=3,

f'"(4„4., 4,) = —,[P"'(4,+ 4.+4.) -P"'(4,+4.) -P"'(4.+ 4,) -P"'(4.+ 4,) +P"'(4,) +P"(4.) +P'(4.)j (A6)
1

n

l"' is completely symmetrical in its n variables and is G invariant. We can also define from P"' a vector
t&" '~ and a linear operator T&" 2~ depending linearly and completely symmetrically on, respectively, (n —1)
and (n —2) variables by

l&"~(4„.. . , 4 „)= (4„, t&" '~(4 „.. . , 4„,)) = (O' „,T&" ' (4„.. . , 4„,)4„,),
i.e.,

(4 lt ' ' ' t 4n-2)4n-1 t (41t ' ' t 4n-1) '

Note that T is a symmetric operator and that t and T are covariant under G:

(T'= T),
t&" 'C . . . C =t&"'&a e . . . ~ C(g) ( lt t tt 1) ( (tg) lt t (g) tt 1) t

~(g)T&" "(4„,4. .)&(g)'=T'" "(&(g)4„",&(g)4. .)
We finally remark that the gradient dP "~/d4 and the Hessian d'P&"~/d4' of P" are given by

(A9')

(A10)

(A 10')

(A10")

(ft)

dC
=n«" l(4, . . . ,-4), y2p (~)

=n(n —1)T&"-2l(4, . . . , 4). (A11)

Consider the simplest examples

P' ' =(4 4), t"' =24', T' ' =21 (I =identity matrix),
P"' =(4, 4)', t'" =2[(4„4,)4, +(4'„4,)41+(4„41)42j,
T& ( „4)4=-,[( „4)4+i[ 4&& I4+I 4&& l4l,

(A12)

(A13)

(A12')

where ~4, & &4, ~
is the dyadic operator whose action

on 4, is 4, (4„4',). Hence
If we denote the general third- and fourth-degree

invariants by &(4) and &d(4), we can write them as

d
(4, 4)' =44(4, 4), g(4) =(tt (4) 4), «t(4) =(t(4), 4 ), (A16)

d2
d4. (4, 4)'=-', (4, 4)(1+2&e),

(A14)

where I'+ is the orthogonal projector on 4', i.e.,
~.=(4, 4) I4&&4I.

where for simplicity we have set the bilinear vec-
tor" t"'(4, 4') =tt(4) and the trilinear vector t"'(4,
4', 4) = t(4). With this notational simplification the
most general inhomogeneous fourth-degree Higgs
potential has the form
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V(4) =-'[~(4, 4)'+»(4)1+ 3' p 8(4) —
2

(4, 4),

the invariant ru(P) is in general linearly independent
from (4, 4}',and further it is assumed to be positive
since, if necessary, we can always add a term
k(4, 4)', b&0 to &u(4) and call the new term &u(4).
I.et g and g„be, respectively, the minimum and
maximum of &u(4) on the unit sphere (4, 4) =1
(0 ~ y & y„). The condition that V is bounded below
gives

X.=X. i««XO=X&. (A2 5)

d V, P) =3(i +ax )c' —4, '=20, '.

Finally, we need to compute the polynomial W($),
used in Eq. (5.5') of the text, which is defined by

The case n = 0 [which occurs when G is the ortho-
gonal group O(n) and 8 is the n-dimensional space]
is well known. In any case, the mass square in

the radial direction is

0&~+eg for g

From (A16), we obtain

d4 =~t(4)+Pp b(4)+[~(4, 4) - ~'14dV

(A17)

(A18)

—($cP) = W($) p, '&t& .dV

We find from (A18) and (A23) that

W(g) = $' —1.

(A27)

(A27')

=I»(4, 4)+Pp&(4)+[~(4, 4) —
I '11j 4,

(A19)

O'V
, =3 T(4, 4}+2~.&(4)+[~(4,4)-'u

+ 2A.(C, 4)P@, (A20)

and V(4) is minimum for the 4 which satisfies

dV d'V
d4

@ @
' d4' (A21}

Furthermore the spectrum of d'V/d4'~&=~ gives
the squares of the masses for the Higgs fields ~';
however, the 4"s in the kernel of d'V/d4', i.e.,
those of the form t(a)4, for all a EB (they form the
tangent plane to the orbit G 4) constitute the zero-
mass Goldstone bosons. The gradients of the latter
fields t"~„c' become part of the gauge-field com-
ponents A„" which then acquires a mass in the Higgs
phenomenon.

Let us first' study the simple case P =0, which
is the most general case when there are no third-
degree invariants" on 8.

I et 4', be a vector of 8 which minimizes V; we
write

40 =cQ with (Q, Q) =1, c&0.

Then Eq. (A18) yields

(e, e)=1, b(e)=~.e=~e,
f(0) = X.e with X.-X.&X~'

the extremum condition (A18) then gives

(A28)

(A+a X,)c'+. P p:rl c —p'= 0 . ,

As we expect for a fourth-degree polynomial with
a maximum at the origin, there are two solutions
for c; that which corresponds to the lowest radial
minimum and therefore to the lowest bound for V
is (with the convention c &0)

c =
(~ ~ ) i&2 [(1+p')" + p1

P=
2(X+ A xo)

(A29)

Then W($), as defined in (A27) and used in Eq.
(5.5'}, can be written as

Returning to the general case (A16) when both n
and P are nonvanishing, we assume that the mini-
mum is attained when the three vectors t(4), b(4),
and 4 are collinear. More generally it might hap-
pen that t(4, 4, 4), b(4), and 4 form a two-plane
and then there are two independent conditions for
the minimum. We shall not consider the latter
case here. The lower bound of V is therefore
reached on the orbit of 4, = cQ with

2
c'= with X, =e(Q),

A. + Ofxo
(A23) W($) = ($ —1)(c'$ + 1) with cr = (1+p')'&'+ p & 1.

4

+~x.
This shows that

(A24)

which is consistent with (A17). We also obtain
from (A16) the value of the minimum for the poten-
tial V,.„,

Note that

(A30)

(~ x.)"' (A31)

gives a generalization of (A23) when P o 0. The
generalizations of (A24) and (A26) are easily found
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to be

min

4(1+po)' —1
A. + o. XO 3

o'(o' + 2)
A, +(y Xo 3

(A32)

and the "radial" mass squared

where we have used the identity 0'= 1+2po.

(A33)
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