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Motivated by the work of Fogel et al., who showed that the dynamics of the classical sine-Gordon soliton
in the presence of external perturbations is essentially the dynamics of a Newtonian particle, we have looked
for such particlelike behavior in those cases where sine-Gordon solitons interact with each other rather than
with an applied field. We find that, although a direct soliton-particle equivalence is not possible in these
cases, there is an indirect representation in terms of the poles of the Hamiltonian density when the latter is
assumed to be a function of a complex space variable. These poles have well-defined motions in the complex
space plane, and we show that there is a strong correlation between the dynamics of the poles, considered as
classical particles, and those of the interacting solitons they represent. Thus, all the qualitative features of
the two-soliton (and/or antisoliton) interactions, as well as analytic expressions for the forces between them,
are predicted by analyzing the motions of the poles of the Hamiltonian density in the complex space plane. If
this “particle” picture is used to identify the individual solitons in a two-soliton profile, then it turns out that
the solitons move at a constant speed, but with a changing rest mass. Hence, solitons do not maintain their
“free” mass identity when interacting with each other. A few analogies with quantum behavior are also

discussed.

L. INTRODUCTION

The sine-Gordon equation (SGE) is one of several
classical quasilinear partial differential equations,
the Korteweg-de Vries and Boussinesq equations
are other well-known examples, which are cur-
rently being used to model the dynamics of nonlin-
ear wave phenomena, that is, the generation,
propagation, and interaction of waves in media
which are nonlinear and dispersive, but not dissi-
pative.! These equations all represent theories of
single scalar fields in one space and one time di-
mension and, interestingly enough, they all pos-
sess exact soliton solutions and some of the assoc-
iated formal properties (infinite number of conser-
vation laws, Bicklund transformations, inverse
method of solution, separable Hamiltonians, etc.)
The importance of this is easily seen if we recall
that the soliton is the nonlinear, dispersive equi-
valent of the linear, nondispersive wave packet.
The analogy with particle behavior is strong and
hence this family of equations should make an ideal
starting point for nonperturbative theories of par-
ticles in which the particles appear as pulselike
excitations in nonlinear wave fields, as, for ex-
ample, in the Born-Infeld model of the electron.?

What distinguishes the SGE from the other mem-
bers of this family is that it is, essentially, the
only Lorentz-covariant member and hence is the
“natural” equation to use for a fully relativistic,
quantum theory of elementary particles. Its use in
this context was first proposed by Skyrme,® who,
after rediscovering its soliton modes,* suggested
that in a quantized field theory these modes appear
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as fermions with interactions of the Thirring-mod-
el type. This conjecture has recently been proved
by Coleman,® who showed, within the framework of
perturbation theory, that the quantum SGE is com-
pletely equivalent to the charge-zero sector of the
massive Thirring model, modulo an identification
of couplings and fields. Even more interesting,
from the classical point of view, is the work of
Dashen ef al.,° who quantize soliton solutions of the
classical SGE (using a field-theoretic version of
the WKB method) and obtain results in agreement
with Coleman even for strong coupling.” This is
both surprising and suggestive, since the WKB me-
thod is a semiclassical approximation which effec-
tively turns a quantum problem into a classical
one, whereas Coleman’s proof is based entirely on
the quantum theory and is exact.

Now the fact that the semiclasscal analysis,
mentioned above, shows that the soliton mode of
the classical SGE corresponds to a particle in the
quantum theory — the quantum soliton — leads us to
ask whether this particlelike behavior is present at
the classical level itself. In particular, we can ask
(a) whether the dynamics of the soliton is equiva-
lent to that of a classical Newtonian particle and
(b) whether the N-soliton solution can be repre-
sented as an N-body interaction of classical parti-
cles. As far as (a) is concerned, a partial answer
has been provided in a recent paper by Fogel ef
al.® They show that the dynamics of the translation
mode of the classical soliton, or, what is the same
thing, the motions of its center of mass in the pre-
sence of external perturbations, are essentially
those of a Newtonian particle moving in external
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fields of force. Thus, the answer to (a) seems to
be affirmative. The N-soliton solution, however,
is quite a different matter. Firstly, since there
are no static (i.e., permanent profile) solutions for
1<N <= the individual solitons in an N-soliton so-
lution can only be identified in the asymptotic limit
of time —+. For all finite times their identities
are lost in the ever-changing total profile. Second-
ly, the motion of a soliton in the presence of anoth-
er one is an extremely large, rather than a small,
effect and hence cannot be treated in perturbation
theory.

Thus, the problem of the translation mode for the
N-soliton case can be posed as follows: Can we
obtain an alternative representation of the N-soli-
ton solution in which the centers of mass of the in-
dividual solitons are clearly identifiable at all
times and the dynamics of their interactions with
each other is made explicit? This paper is a re-
port on an attempt to obtain such a representation.
The main results of the investigation are as fol-
lows:

(1) Associated with the two-soliton solution is an
invariant which can be used to construct the gen-
eral two-soliton interaction from a linear super-
position of two single solitons. The method can
then'be extended to construct the N-soliton solution
(N>2) from a linear superposition of N single soli-
tons by considering the constituent solitons in
pairs. Thus, the N-soliton interaction may be
thought of as a combination of two-soliton interac-
tions and hence is somewhat similar to the N-body
interaction in classical electrodynamics and New-
tonian gravitation.

 (2) If the space coordinate is extended to complex
values, then the Hamiltonian densities of the one-
and two-soliton solutions develop an infinite set of
regularly spaced poles along lines parallel to the
imaginary axis. The single-soliton solution has
one line of poles, while the two-soliton solution
has two lines which are symmetrically positioned
when the solitons are in their center-of-velocity
frame. The real parts of these poles are time-de-
pendent and hence, as time develops, they move
across the complex plane along lines parallel to
the real axis. If we analyze the dynamics of this
motion we see that it corresponds to that of a clas-
sical particle moving in a potential which is con-
stant for the single soliton, repulsive for the soli-
ton-soliton interaction and attractive for the soli-
ton-antisoliton interaction. Thus the poles of the
complex Hamiltonian give us a localized or par-
ticlelike representation of free and interacting so-
litons.

(3) If this “particle” representation is used to
identify the individual solitons in the two-soliton
profile then their dynamical behavior can be inter-

preted as follows: Interacting solitons move in a
fashion so as to preserve their speeds, but change
their rest mass in a well-defined way (the rest-
mass energy is transformed into interaction energy
and vice versa). Thus solitons do not maintain
their “free” mass identity when interacting with
each other. )

The analysis leading to these results is given in
Secs. II, III, and IV below. Section V contains our
concluding remarks and some conjectures.

II. GENERAL FORMALISM

The SGE is the equation of motion for a theory of
a single, dimensionless scalar field ¢, in one
space and one time dimension, whose dynamics is
determined by the Lagrangian density

£=%(¢¢2—cz¢x2)+mT cos <%¢> - W (2.1)

Here c is a limiting velocity while m, A, and p are
real parameters. ¢, and ¢, are the partial deriva-
tives of ¢ with respect to f and x, respectively. In
the terminology of quantum field theory, m is the
mass associated with the normal modes of the lin-
earized theory (i.e., the Klein-Gordon equation),
while A/m? is a dimensionless, coupling constant
that measures the strength of the interaction be-
tween these normal modes. In classical theory, of
course, m is proportional to the characteristic
frequency of these normal modes.

If we now scale the variables so that

x—=x/m, t—t/m, ¢-mo/ NN (2.2)
and, as is conventional, set ¢ =1, then the Lagran-

gian density becomes

=106, - 97) +2 cos ] - @3

with the corresponding Hamiltonian density being
given by

R:%(¢ﬁ+¢f—200s¢)+u- (2.4)

By choosing
L= m‘*/)\ (25)

the minimum energy of the theory is made zero
and (2.4) can be written as

x:?—;[¢t2+¢x2+2(1-cos¢)]. (2.8)

Except for the scaling factor m*/x, this is the ex-
pression normally employed for the Hamiltonian
density in classical SGE theory. However, in clas-
sical physics there is no natural scale of energy
and hence this factor is irrelevant. On the other
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hand, in quantum theory there is a natural scale of
energy, namely Planck’s constant 7, and hence the
factor becomes important.® Note that, in this con-
nection, the semiclassical analysis mentioned in
the Introduction is a small-7 approximation.

If we use the Lagrangian density written in terms
of the scaled variables then the SGE takes the form

¢xx_¢tt=Sin¢7 . (27)

with an obvious notation for the second partial de-
rivatives. We shall work in terms of the scaled
variables in the bulk of what follows [i.e., on the
basis of Eq. (2.7)], but shall, on occasion, return
to the original variables of (2.1).

The SGE is obviously invariant under Lorentz
transformations as well as translations in space
and time. In addition, it possesses some discrete
symmetries, since it is invariant under the trans-
formations

x—=-x, t==t, and ¢~2nrxp, ncZ. (2.8)

The last symmetry is due to the periodic nature of
the potential (1 - cos¢).

III. N-SOLITON SOLUTIONS AND CANONICAL FRAMES

The vacuum solutions of the SGE are given by
o=2nm, ncZ (3.1)

and correspond to the infinite number of discrete
and degenerate absolute minima of the potential (1
—cos¢). However, since we have adjusted the vac-
uum energy to zero these solutions are rather tri-
vial. The first nontrivial finite-energy solution
which cannot be reached from the vacuum by per-
turbation is the soliton

¢ =4 tan™! [exp(xy& +a)], (3.2)

where £=(x —ut), y=(1-u?"12, and « is a real
parameter. The physical picture is that of a soli-
tary kink traveling in the positive x direction with
a constant speed #, while y is the Lorentz factor of
the observer’s frame and « is the phase of the
wave at the origin. The amplitude of the soliton is
bounded by 0 and 27 and the plus and minus signs
correspond to profiles which increase and decrease
with increasing x, respectively. It is conventional
to call the first profile a soliton and the second an
antisoliton.

Since the soliton moves at a constant speed we
can make a transformation to its rest frame. This
is accomplished by means of a Lorentz boost and a
translation leading to the static solution

¢ =4 tan"le** (3.3)

where x is now the space coordinate in the rest

frame. In terms of the unscaled variables this so-
lution takes the form

¢ =j—7% tan™'e*™, (3.4)

and so we see that the “width” of the kink profile is
proportional to 1/m. Increasing m sharpens the
kink and decreasing m flattens it. Note that de-
creasing X also reduces the soliton width.

Although the single soliton is interesting to study
in its own right, it is essentially a free entity. It
corresponds to a free particle and the most we can
do with it is to investigate its behavior in the pre-
sence of weakly coupled fields as was done, for ex-
ample, in Ref. 8. Thus, as far as particle physics
is concerned, both classical and otherwise, the
more interesting solutions of the SGE are those
that tend asymptotically to a linear combination of
single solitons. Such solutions can then be thought
of as an interaction of solitons and, using this pic-
ture, it is then only one more step to see if they
can indeed be represented as interacting particles.

The expressions we need to carry through this
analysis can be found in a paper by Hirota,? who
has written down solutions of the SGE that tend as-
ymptotically to N solitons, each with a different
speed (N-soliton solution). However, Hirota’s
formulas are somewhat involved and it is difficult
to see how the solution is constructed in terms of
interacting solitons. Thus, our first task is to re-
write Hirota’s solutions in a form which makes this
feature transparent. We do this in two stages.
Firstly, we analyze Hirota’s two-soliton solution in
a preferred or “canonical” frame of reference.

‘This leads to an invariant which characterizes the

interaction. We then construct the N-soliton solu-
tion from a linear superposition of N solitons by
considering them in pairs and using the corre-
sponding canonical frame invariants.

To get an idea of what we mean by a canonical
frame, consider the single soliton. Here the stan-
dard or canonical frame is the rest frame and
from the static solution (3.3) all other forms of the
single-soliton solution can be generated by opera-
ting with elements of the symmetry groups of the
SGE. Similarly, all weak-coupling perturbations
of the soliton are best understood in this frame;
indeed perturbation about a static solution is
sometimes essential.”

For the two-soliton solution the choice of a ca-
nonical frame is again unambiguous and unique.
Since this solution does not have a permanent pro-
file, symmetry dictates that we choose the center-
of-velocity frame. However, for the N-soliton so-
lution, with N>2, there is no unique choice of
frame and the best one can do is to consider the
solitons in pairs via their corresponding center-of-
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velocity frames. Our first step, therefore, is to
look at the two-soliton solution.
Hirota’s formula for the two-soliton solution is

2 exp(y;&;+a;)
tan(s) = L 2 — (3.5)
L+exp[B,+3 (i€ +@))]

i=1

where £;=x —u;t, y;=(1-u;?)""/2, the a,’s are
phase factors, and

(V1= 79)% = (v, 0, =7, u,)° (3.6)

exp(B,,) = .
p( 12) (71+72)2“(Y1u1+72u2)2

With one notable exception this solution tends as-
ymptotically to the sum of two solitons, each with
velocity u; in the x direction. The exception is
when #, =u,. In this case the solution degenerates
into a single soliton. To transform this solution to
its center-of-velocity frame we first make the
translations

+'y2u2(a1 +1Inu) -y, u (o, +1nu)

Xx=x'=x

ylyz(uz_ul) ’ .
(3.7)

t—-t'=t+72(a1+mu)_71(0‘2*1““)

71}’2(u2—u1) ’

where

— (1 — 2.2\ (1 — 4y 2)]2/ 2

u=1 = [(1—u,2)(1 —u,?)] (3.8)

U —uy

is the common speed of the solitons in their canoni-
cal frame.
After translation, (3.5) reduces to

2
X ZE exP(')’i%’i)
tan(3¢) =———————= . 3.9
(0) =TT ~ oxp(;E0] (3.9)
We now make the Lorentz transformations

x! ——x”='y’(x’ — vt I)’

(3.10)
t ”"t n=,yi(tl - vxr) ,
where the boost velocity v is given by
— . 2)(1 _, 2)]1/2
v___1+u1u2—[(1 u,*)(1 —u,?)] , (3.11)

U, +U,y

and ¥’ =(1 =022, A simple computation now
leads to the canonical form for the two-soliton so-
lution

exp[y(x —ut)] + exp[y(x +ut)]

tan(3¢) = u[1 = exp(2yx)]

,  (3.12)

where y=(1 —%2)"1/2 and we have omitted the double
primes since the context is unambiguous. In terms
of hyperbolic functions (3.12) can be written as

coshyut

l = -
tan(z¢) = % sinhyx

(3.13)

or, since ¢ +27 is also a solution, in the well-
known form

u sinhyx
coshyut *

tan(zop) = (3.14)
Equations (3.12), (3.13), and (3.14) are canonical
forms for the two-soliton solution and any two-so-
liton state can be studied by using one of these
forms. It is then a simple matter to transform
back into the original state. However, the impor-
tant point about the analysis given above is the
emergence of the canonical invariant exp(B,,) = —u?.
It gives us, in effect, a simple way of introducing
the interaction into a linear superposition of the in-
dividual solitons. Thus, consider the two solitons

tan(ig)=exp(v; &;+a;) (i=1,2), (3.15)

where the notation is the same as before. A linear
superposition of these solitons is given by

¢=2 b, (3.16)
=1
leading to the expression
. .
27 tan(3)
tan(i¢) = =1 (3.17)

1-T1] tan(zo,)
i=1 '
This represents the profile of two noninteracting
solitons. We now “switch on” the interaction by in-
troducing the invariant #2 into the product term in
the denominator giving

2
2 tan(ig,)

tan(zo) = 5 , (3.18)
1-u? ] tan(:¢,)
i=1
which is the same as Hirota’s two-soliton formula
(3.5) once the identification of —u® with exp(B,,) is
made.
This method of switching on the interaction can

be extended to the N-soliton solution. In this case
Hirota’s general formula is

12)

tan(i¢) = g /f, (3.19)
where
(e) N
f=Z exp[ﬁ:B,-j ﬂi#i*‘z #i(7i§i+ai)]’
=01 i<j 1=1 (320)
(0)
g= Z exp[zﬂ;Bﬁ i “’j"’i“i(yigi*'ai)] ’
n=0,1 i< 1=1

while 22} | and 22(%, , imply summation over all
possible combinations p,=0,1; u,=0,1;...; uy
=0, 1 under the conditions 27, u; even and 1)V, u,
odd, respectively. If we set exp(B;,)=-1 for all
and j in Egs. (3.20), then (3.19) will just represent
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a linear sum of N noninteracting solitons. In the
case of three solitons, for example, this is just

27 tan(3¢,) - I tan(io;)
tan(s¢) ==t :
1-3 tan(3¢,) tan(io,)

i#j

(3.21)

Introducing the interactions between pairs of soli-
tons leads to the expression

27 tan(3¢,) - (u,u,,uy)? I tan(ie;)
tan(y¢) =1L =t )
1-3 u? tan(ig,) tan(z o))

i=j

(3.22)

where #;; is the common speed of the ith and jth
solitons in their center-of-velocity frame. Equa-
ting —u;,;® with exp(B;;) then makes Eq. (3.22) iden-
tical to Hirota’s three-soliton solution. This ex-
ample shows quite clearly that the N-soliton solu-
tion can be thought of as pairwise interactions de-
termined by the various canonical invariants —u ;2.
Furthermore, and more importantly, it shows that
if a particlelike representation can be found for the
two-soliton case then it should be extendible to the
N-soliton interaction.

IV. INTERACTION PICTURES

A. Conventional interpretation

Since the soliton is the nonlinear, dispersive
equivalent of the linear, nondispersive wave pack-
et, it seems natural to associate such amplitudes
directly with particles. In such a picture the rest
mass of the associated particle is given by the en-
ergy of the soliton computed in its canonical or
rest frame. If we use the Hamiltonian density

=3¢+ ¢, 2+2(1 - coso)], 4.1)

where we have omitted the irrelevant scaling factor
m*/x of Eq. (2.6), and substitute the canonical so-
lution (3.3) this leads to an energy

E=f sedx

= f 4 sech?x dx

=8. (4.2)

Thus, the rest mass of the classical soliton parti-
cle is 8. In terms of the unscaled variables it
would, of course, be 8m*/x. If we perform the
same calculation for a soliton moving with a speed
u, then its energy turns out to be 8y [y=(1
—u?)"Y/2], which is the same as that of a particle
of rest mass 8 moving with a speed #. This shows
that the identification of a soliton with a particle is

consistent at least as far as the free translation
mode is concerned.

The next step in building up the particle picture
is to investigate the behavior of the soliton under
weak-field perturbations, and this has been done in
a recent paper by Fogel et al.® They show that the
soliton maintains its integrity to a high degree in
the presence of weak applied fields and scattering
potentials and, furthermore, that the dynamics of
its interaction with these perturbations is essen-
tially the dynamics of a classical Newtonian par-
ticle. These results show that the domain in which
a soliton has particlelike behavior can be extended
to include both free and weakly perturbed transla-
tion modes.

This direct equivalence between the dynamics of
a classical particle and the translation mode of a
weakly perturbed soliton leads us to ask whether
the soliton maintains these properties, not in the
presence of other weak external fields, but rather
in the presence of another soliton. In other words,
is the dynamics of the two-soliton interaction es-
sentially the same as that between two classical
particles, each of rest mass 8? In looking at this
problem we immediately come up against two dif-
ficulties. The first is that, unlike particles, inter-
acting solitons do not accelerate or decelerate.
However, this shortcoming can be overcome, to a
certain extent, by assuming that solitons in inter-
action lose or gain momentum by changing their
rest masses rather than their speeds. This pre-
serves the particlelike behavior of the soliton, but
is somewhat unsatisfactory since the associated
particle has to have a variable rest mass. The
second difficulty, however, is more serious and
concerns the interaction energy of the two solitons.
Thus, consider the canonical form of the two-soli-
ton solution as given by Eq. (3.14). This is

(4.3)

os=4 tan“(u sinhyx) '

cosh yu?

Substituting into the Hamiltonian density (4.1) gives
the energy of the two-soliton solution as

Eg= [ 0sar

0 uz .
= f *F [y?u® sinh®yx sinh®yut

+cosh?yut(sinh?yx +7y? cosh?yx)]dx ,
(4.4)

where A=cosh?®yut+u? sinh?yx. Since the SGE
represents a conservative system, this integral
can be evaluated at £=0 and leads to the result Egg
=16y which, of course, is the same as the energy
of two free solitons each moving with a speed u.
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This result could have been foreseen if we had re-
called that the two-soliton solution tends asymptot-
ically to a linear sum of two free solitons. On the
other hand, it also means that the interaction ener-
gy of the solitons cannot be extracted from calcula-
tions of the type given above.

The same situation arises with the soliton-anti-
soliton scattering solution

_ .1fu coshyx
e, =4 tan (———smhyut ) (4.5)
but in the case of the “breather”
_ o) sin[ot/(1+02)'2]
$p=4tan {v cosh[x/(1+v3)72](’ (4.6)

which can be thought of as a bound soliton-antisoli-
ton pair whose relative separation oscillates in
time with period 7=27(1 +2?)!/2/v with v real, the
energy turns out to be 16/(1+22)'/2, This is less
than that of two free solitons and indicates that the
forces between a soliton and an antisoliton are at-
tractive. However, once again there seems to be
no way of extracting the potential; the soliton and
antisoliton are always within a finite distance of
each other and one has no information at all about
their speeds.

Having said this, one should mention a paper by
Rubinstein'! in which he puts forward a formula for
the forces acting between solitons. By considering
the two-soliton and the soliton-antisoliton scatter-
ing solutions as small perturbations on a linear
sum of the corresponding profiles, he predicts that
the forces acting between them are given by the ex-
pression

F~32N,N,e?, 4.7)

where N; =+1 for a soliton, ~1 for an antisoliton,
and 2q is the relative separation between the pro-
files, which he assumes to be large compared to
their widths. However, we have serious misgiv-
ings about Rubinstein’s approach to the problem
and our views can best be summed up as follows:
Firstly, if his analysis is valid at all it is only val-
id in the asymptotic region where the solitons are
virtually free. For all finite times his basic as-
sumptions are violated. Secondly, he assumes the
existence of a two-soliton solution in which the so-
litons are at rest relative to each other. But, as
we have mentioned in the Introduction and else-
where, there is no static two-soliton solution of the
SGE. Finally, his interpretation of the force is ra-
ther ambiguous since what he has is an impulse ra-
ther than a force. In view of these remarks, we
feel that Rubinstein’s analysis does not provide a
solution to the difficulties of calculating the soli-
ton-soliton interaction potentials and so the prob-
lem still remains.

This inability to extract the potentials, and hence
the forces, between interacting solitons and anti-
solitons is surely a severe shortcoming of the di-
rect particle-soliton equivalence. The existence
of the breather solution and a consideration of the
phase shifts of the scattering solutions indicate that
the soliton-soliton interaction is repulsive and the
soliton-antisoliton interaction is attractive, but
there seems to be no way of getting a quantitative
estimate of these features, that is, it does not
seem to be possible to divide the total Hamiltonian
intoa free and interaction part.

B. Poles of the Hamiltonian density

The discussion given in subsection A shows quite
clearly that we cannot directly represent the two-
soliton solution as an interaction between classical
particles with fixed rest masses. The simple pic-
ture we had with the single soliton has not been re-
peated. This leads to one of two conclusions: Ei-
ther no such interacting particle interpretation is
possible or else it is implicit and has to be ob-
tained via an indirect representation. Now the suc-
cess obtained with the semiclassical analysis and
the quantum SGE, mentioned in the Introduction,
leads us to believe that the latter is true, i.e., the
necessary information is contained in the Hamilto-
nian density and the problem is to extract it. One
way of doing this is to consider the Hamiltonian
density to be a function of a complex, rather than
a real, space variable. Then, for a given solution
of the SGE, the poles of this complex Hamiltonian
density provide us with a possible link between the
soliton amplitudes and localized point particles.
We shall show that there is, indeed, a strong cor-
relation between the dynamics of these poles, con-
sidered as classical particles, and that of the soli-
tons they represent. Thus, all the qualitative fea-
tures of the two-soliton (and/or antisoliton) solu-
tions, as well as analytic expressions for the for-
ces between them, are predicted by studying the
motion of the poles of the Hamiltonian density in
the complex space plane.

We begin with the N-soliton solution in the form
given by Hirota,

p=4tan”(g/f). (4.8)
Substituting into Eq. (4.1) gives us a Hamiltonian

density

8 2
“=W[(fgx— gfy)

+(fg—8gf ) +g8%f2]; (4.9)

assuming that the space variable is complex, ra-
ther than real, allows 3C to develop poles at points
in the complex-space plane where
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f=tig. (4.10)

Now f and g are time-dependent and hence, as time
develops, these poles will move across the com-
plex-space plane in a well-defined manner. Let us
analyze the dynamics of this motion for the one-
and two-soliton solutions.

Consider first the one-soliton solution which, in
terms of the complex variable z, is

(4.11)

~ Using Eq. (4.10) the poles of ¥ corresponding to
(4.11) occur at

¢s=4 tan™ exp[y(z —ut)].

z=ut+%(1 +21) (m=0,+1,+2, etc.). (4.12)
Thus, there is an infinite set of regularly spaced
poles lying on a line parallel to the imaginary axis,
all moving with the same constant speed # along
lines parallel to the real axis and in the direction
of increasing x. Any one of these poles then gives
us a localized representation of the single soliton
and predicts correctly its motion as a free particle
with fixed speed u.

For two solitons the solution in the canonical or
center-of-velocity frame is given by

= -1(% sinhyz 4.13
Pss=4tan <cosh-yut>' (4.13)
Thus, the poles of J€C occur where

sinhyz:i% coshyut . (4.14)

Solving for the real and imaginary parts of z gives
us respectively

1 [coshyut+ (cosh?y ut —u?)t/2

X=+-1In ] (4.15a)
y u

and

y =;}7(1+2n) (n=0,+1,+2, etc.). (4.15b)
This time there are two sets of poles lying on lines
parallel to the imaginary axis and symmetrically
placed on either side of it. These poles move in
pairs (i.e., two with the same imaginary part)
along straight-line trajectories parallel to the real
axis and any such pair then gives us a localized
representation of the two interacting solitons. We
can now use Eq. (4.15a) to compute the velocities
and accelerations of these representative pole par-
ticles. We find

. u sinhyut
X=x (cosh?yut —u?)'/? (4.16)

and

¥ u? coshyut
X=i-y(cosh2yut_uz)3/z, (4.17)

where the plus signs in Eqgs. (4.16) and (4.17) go to-
gether and likewise for the minus signs. Analyzing
the motion represented by these equations and Eq.
(4.15a) we have (see Fig. 1) the following:

(1) As t~—o, X—=Foo, X1y, and X 0.

(2) At =0, X=F(1 —u?)2 cosh™'(1/u), X =0, and
X= Fylul. . ..

(3) As t—~e, X~Fo, X—~Fu, and X —~ 0.

Thus, the two pole particles star: out (f=—) at
opposite ends of the real axis and move toward
each other with steadily decreasing speed. At¢=0
they come to a stop at a distance of 2(1
~u®)*2cosh (1 /u) apart — the distance of closest
approach. They then turn around and accelerate
away from each other back to where they came
from. The force between them is obviously repul-
sive and its magnitude can easily be computed from
Eqgs. (4.15a), (4.16), and (4.17). It turns out to be

F =8y% sech’y X, (4.18)

where IZX’ is the distance between the pole parti-
cles in the canonical frame and their rest masses
are taken to be the same as that of solitons, i.e.,
8. The particles thus move in a potential given by
(see Fig. 2)

\\x=-uto %In u

x= ut% Inu,/
/

,/x=uhi|n u x=-ut —%Inu \
/

\

FIG. 1. Pole-particle trajectories for the soliton-
soliton (SS) solution. Note that the magnitude of the
phase shift for the solution is given by the intersection
of the asymptotes and the x axis, i.e., AB= (2/y)|lnu]|.
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A v
8¥

FIG. 2. Potential for the soliton-soliton interaction in
the pole-particle picture.

V(X)=8y(1 -|tanyX]). (4.19)

Thus, the representation of the two-soliton solu-
tion in terms of the poles of its complex Hamiltoni-
an density gives us a particle picture which repro-
duces all the qualitative features of the two-soliton
interaction. It confirms the conjecture that the in-
teraction is repulsive and provides us with a poten-
tial that is valid for all times and not just in the
asymptotic region. However, if we consider the
asymptotic form taken by the force acting on a pole
particle we find, from Eq. (4.18),

Fr32y2e72Xl (4.20)

which only agrees with Rubinstein’s value [Eq.
(4.7)] wheny=1, i.e., whenu=0. But, as we
pointed out, there is no two-soliton solution of the
SGE with #=0.

We turn now to the soliton-antisoliton scattering
solution. In its canonical or center-of-velocity
frame this takes the form

_ .1 /u coshyz
gy =4tan <—~—-——Sinhyut ) (4.21)
Thus, the poles of 3C occur where
coshyz:ﬂ:;— sinhyut, (4.22)
leading to
i inh2 2)1/2
X:d:l lrl[smh'yut+(smh yut +u?) ‘J’ (4.232)
v u
y=%(1+2n) (n=0,+1,42 etc.). (4.23b)

Again, as in the case of two solitons, there are
pairs of pole particles which move along straight
lines parallel to the real axis with velocities and
accelerations given by

u coshyut

X =t iy at +ad) e’

yut +u (4.24)

. u? sinhyut
= 4.25
X q:y(sinhz'yut+u2)3’2 ’ ( )

where, in this instance, the plus sign in (4.24) goes
with the minus sign in (4.25) and vice versa. Ana-
lyzing this motion we have (see Fig. 3) the follow-
ing: . .

(1) As t = -, X ~Fo, X—~+u, and X ~0.

(2) At =0, X=0, X=%1, and X=0.

(3) As t~ 40, X =+, X=~+u, and X~ 0.

The particles thus accelerate toward each other
and meet at the origin of the real axis at /=0 and
with the maximum possible speed, i.e., |X|= 1.
They then pass through each other and separate at
a steadily decreasing speed which tends tou as ¢
-, The interaction is obviously attractive and the
force between them has a magnitude

F =8y? csch®’yX, (4.26)
corresponding to a potential (see Fig. 4)
V(X)=8y(l - |cothyX|). 4.27)

Thus, once again, the poles of the Hamiltonian
density give us a particle representation which
correctly reproduces the characteristic features
of the soliton-antisoliton scattering solution. The
attractive nature of the interaction is confirmed
and the form of the potential specified.

A
- 1 = 1
x=-ut+glnu x = ut-ginu
3 ¥
\A S/
N 4
\
A /
\ /
\ /
\ /
\
\ 7
\ /
\ /
\ /
\ /
\ A B, »r
7 A) Ll
/ \
/ \
/ \
AY
/ \
/ \
7 \
/ \
/ \
\
/ \
/ )
v \
/ \
s A \
/ \
\
/ N
Vj X
v, \
/ 1 -2\
4 x=ut+ glnu x=-ut-Zinu \\
¥ 3

FIG. 3. Pole-particle trajectories for the soliton-
antisoliton (SA) solution. Note that the magnitude of the
phase shift for the solution is given by the intersection
of the asymptotes and the x axis, i.e., AB= (2/v)|Inu|.
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Ay

- X

FIG. 4. Potential for the soliton-antisoliton interac-
tion in the pole-particle picture.

Finally, we look at the “breather” solution. Run-
ning through the relevant details we have the fol-
lowing:

(1) The solution

_ -1( sinouvt >
¢p=4tan (—————U ), (4.28)
where o=(1+0%)'/2, veR.
(2) The pole positions
3 in2 21/ 2
X=i:l ln[smovt+ (sinovt +0?) ]’ (4.292)
o v
y=§%(1+2n) (n=0,1,£2, etc.). (4.29b)

(3) The velocities and accelerations of the parti-
cles

M v COSOovE

X=i(?"—‘~)T5,

inovt + 02 (4.30)

. v® sinovt
e .

X o(sin®ovt + v?)3/ 2 (4.31)

(4) The attractive force and potential
F =80% csch’0X ,

V(X)=80(1 - |cothoX|). -

(4.32)
(4.33)

As expected, the motion is periodic and the parti-
cles oscillate about the origin of the real axis (see
Fig. 5) with a period

27.‘.(1 +Uz)1/2

7=21/0v= >

, (4.34)

and an amplitude

A=(1+v%)"2sinh™(1/v). (4.35)

They reach a maximum speed of one when they

t

A
8,73 xuiﬂlnh“;

|
!
!
|
|
|

x

\

FIG. 5. Pole-particle trajectories for the breather
solution. Note for the breather y=1/(1+v?%)!/2,

meet and pass through each other at the origin,

and minimum speed of zero at the boundaries of the
potential well. Thus, all the properties of the soli-
ton-antisoliton bound state are correctly repro-
duced by the pole-particle representation.

Although the results obtained above are, on the
whole, rather encouraging, they do have one un-
satisfactory feature. This occurs in the case of the
soliton-antisoliton interaction where the represen-
tative particles pass through each other with the
speed of light while the forces between them be-
come infinite. In our picture this is inevitable,
since the soliton-antisoliton potential [Egs. (4.27)
and (4.33)] is always attractive and the forces be-
come stronger the closer the particles are to each
other. This singular behavior is similar to that of
the inverse square law in classical electrodynam-
ics and Newtonian gravitation, and here, as there,
the only way of circumventing the difficulty is to
modify the small-distance behavior of the potential.
This can be done either by putting in a cutoff or by
introducing a repulsive core. However, this would
result in changes to the soliton-antisoliton and
hence to the SGE itself.

The extension of the pole-particle analysis to the
N-soliton solutions when N >2 is hampered by
technical difficulties. In these cases the Hamilto-
nian density is much more involved than in the case
N=2, and we have not been able (as yet) to solve
the problem of explicitly extracting the pole posi-
tions. However, the results of Sec. III lead us to
conjecture that the particles in these cases would
move in a “relativistic” superposition of the two-
particle potentials obtained above.
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C. Interacting solitons as variable rest-mass particles

The representation discussed in subsection B
above can now be used to characterize the dynam-
ics of a two-soliton interaction in terms of the con-
stituent solitons themselves rather than in terms
of the representative pole particles. Thus, con-
sider the two-soliton solution given by Eq. (4.13).
Since the pole particles are assumed to have a
fixed rest mass of 8, the Hamiltonian for either
one of a representative pair can be written as

Hgs=8y' +8y(1 - |tanhyx|), (4.36)

where y is the same as before and y’=(1 - Xz)1/2
with X being given by Eq. (4.16). Substituting for
X and using Eq. (4.15a) gives us

y'=y|tanyX|. (4.37)
Thus Eq. (4.36) becomes
Hgg=mggy +mggy(|cothy X |- 1), (4.38)

where mg=8|tany X I . Now this Hamiltonian can
be interpreted as that of a particle of rest mass
Mg, moving with a fixed speed # in a potential
y(Icoth'yX{— 1) (Fig. 6). Since the solitons them-

A (x)

(b)) (b)

(a) (a)

FIG. 6. (a) Potential for the soliton-antisoliton inter-
action in the variable-mass-particle picture. (b) Poten-
tial for the soliton-soliton interaction in the variable-
mass-particle picture.

selves move with a fixed speed #, it seems natural
to associate this behavior directly with that of the
individual solitons in the two-soliton interaction.
If this is done then the following picture emerges:
Interacting solitons are extended classical parti-
cles which move in a fashion so as to preserve
their speeds, but change their rest mass jn a well-
defined way. During the interaction there is a con-
tinuous transformation of rest-mass energy into
interaction energy, and vice versa, so that the mo-
mentum of the soliton changes continuously al-
though its speed remains fixed. Thus solitons do
not maintain their free mass identity when inter-
acting with each other.

A similar analysis for the soliton-antisoliton
scattering solution, Eq. (4.21), leads to the Hamil-
tonian

Hgy=mg, v +mg, y(|tanhyX |- 1), (4.39)

where again a variable-mass particle interpreta-
tion is possible, but this time the effective rest
mass, #Mg,, of the soliton (antisoliton) varies as
|cothy X | and the potential well y(|tanhyX |- 1) has
a finite depth (Fig. 6). Notice that the singular be-
havior of the pole-particle representation for this
case is reproduced here in the effective mass
term, which diverges as X -~ 0. However, a quick
glance at Eq. (4.39) shows that the Hamiltonian,
which represents the total energy of the interacting
soliton (antisoliton), remains fixed at the finite
value of 8y throughout the motion.

The analysis in the case of the breather, Eq.
(4.28), is not as direct as those discussed above.
Going through the same procedure as before gives
us the Hamiltonian

Hy=80|cothoX |+8¢|cothoX | (|tanhoX |-1),
\ (4.40)

which, since o=(1+22)"/2 is not a Lorentz factor,
can no longer be interpreted in terms of a vari-
able-mass particle. However, if we assume that
the soliton (antisoliton) in the breather moves at a
constant speed, then from the period and amplitude
of the oscillatory motion, Eqs. (4.34) and (4.35),
we can compute this speed. We get

up =-12;-u sinh™'(1/v) . (4.41)
Rewriting Eq. (4.40) in the form

Hy=myyp+myys(|tanhoX|-1), (4.42)
where

¥e=(1-us)?
and

my=8(0/vp)|cothoXx|, (4.43)
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then gives us a Hamiltonian with the required in-
terpretation. Thus, we find that the soliton (anti-
soliton) in a breather moves as an extended parti-
cle with variable rest mass m g, and constant speed
ug, in a potential similar to that of the scattering
solution.

A comparison of the results established in this
section with those of the preceding section reveals
a striking feature. There is a kind of duality be-
tween the two particle representations. In the
pole-particle picture the particles are localized,
have fixed rest masses, and move with varying
speeds. On the other hand, in the soliton-particle
picture the particles are extended, have varying
rest masses, and move with constant speeds. Fur-
thermore, the shapes of the potentials for the two
representatives are also interchanged (cf. Fig. 6
with Figs. 2 and 4). It would seem that, just as in
the quantum theory of the SGE, the original Hamil-
tonian density has two equally valid descriptions in
terms of classical particles: the pole particles and
the soliton particles. Whether this is linked with
the quantum results or not is a matter of conjec-
ture and might be worth exploring.

V. CONCLUDING REMARKS AND SOME CONJECTURES

The main result of our investigation is that, in
the case of the classical, two-dimensional SGE,
the constitutent solitons of the two-soliton solutions
can be represented by relativistic Newtonian par-
ticles moving in well-defined fields of force.
There are two representations which, in a sense,
are dual to each other. The first is an indirect
representation in terms of the poles of the complex
Hamiltonian density and leads to particles of fixed
mass, but variable speed. The second is a direct
representation and leads to particles of fixed speed
but variable mass. We have also shown how N-so-
liton interactions can be interpreted in terms of
two-soliton interactions leading to the conjecture
that the same behavior should occur in the particle
pictures. In other words, the N-body problem
should reduce to a set of two-body problems.

Apart from the explicit insight that these par-
ticle representations give into the nature of the so-
liton interaction potentials, they also have other
advantages. For example, they can be used as a
computational tool in the perturbation theory of the
classical SGE, since this analysis is obviously
easier to carry out in a particle picture (cf. Ref.
8). However, there are difficulties in translating

the results back to the corresponding Hamiltonian
density — it is always easier to find the poles of a
given complex function rather than to construct the
function from its poles — but we are investigating
this problem and hope to publish our results in the
near future.

Another important area in which the particle rep-
resentations should prove useful is that of finding
solutions to the SGE in the more realistic cases of
two and three space dimensions. Knowing the ef-
fective potentials in one space dimension gives us
a specific starting point for constructing them in
higher dimensions. Then, by analyzing particle
trajectories in these higher-dimensional potentials,
we should, in principle, be able to work out the
corresponding solutions via their Hamiltonian den-

‘sities. The analysis may be extremely difficult,

but it is possible.

Now, in addition to the classical ramifications of
the particle picture, there are some interesting
and suggestive quantum connections. For example,
the conjecture that the quantum sine-Gordon soli-
ton is a fermion seems to be reflected by the fact
that there is no solution of the SGE in which two
solitons move at the same speed and in the same
direction. Some insight into this property of the
SGE can be gained by looking at the corresponding
situation in the pole-particle representation. Here
the particles have zero speed and acceleration for
all time and hence they always remain an infinite
distance apart. In other words, this solution can
never get started. Thus, even classical SGE soli-
tons seem to exhibit some of the features of fermi-
onic behavior.

Even more striking is the existence of infinite
sets of poles for the complex Hamiltonian densi-
ties. If we take the imaginary part of the complex
space seriously then, in the case of the single soli-
ton, the corresponding pole particles have imagi-
nary angular momenta with magnitudes given by
dru(l+2n), where n=0,+1,+2, etc., and u is the
speed of the soliton. If we plot these poles in a
complex angular momentum plane then they all lie
on the imaginary axis, regularly spaced at inter-
vals of 87u. In this case, of course, their posi-
tions are fixed, but for the two-soliton solutions the
corresponding poles move up and down this imagi-
nary axis in a well-defined manner as time goes
from — to +. This is reminiscent of Regge-pole
theory,'® where the angular momentum is consid-
ered to be a complex function of the energy in the ¢
channel and the pole positions vary continuously
with £.
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