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For Poincaré-invariant Newtonian equations of motion for two interacting particles, there is no function of
the particle velocities that is a constant of motion over a range of values of the velocities and relative
position and is the sum of a nonzero term for each particle which is a rotational-vector function of the

velocity of that particle.

INTRODUCTION

A recent paper! showed how Lorentz-invariant
Newtonian equations of motion for two interacting
particles can be constructed, by making global
Lorentz transformations, from a specification of
the relative acceleration as a function of the rela-
tive position and relative velocity at zero center-
of-mass velocity, if the center-of-mass accelera-
tion is assumed to be zero at zero center-of-mass
velocity. For example, this includes all parity-
invariant Poincaré-invariant Newtonian equations
of motion for two identical particles.!

For three or more interacting particles, it was
pointed out® that, although Poincaré-invariant
Newtonian equations of motion can be constructed
in the same way, on the assumption that for the
entire system of particles the center-of-mass
acceleration is zero when the center-of-mass
velocity is zero, a problem arises if we require
separability or cluster decomposition. For this
implies that when the center-of-mass velocity for
the entire system is zero, and all particles except
two are widely separated in space, the center-of-
mass acceleration of the remaining two-particle
system must be zero, for a range of values of the
center-of-mass velocity of the two-particle system
depending on the masses and velocities of the other
particles. It is known that for Poincaré-invariant
Newtonian equations of motion for two interacting
particles, the center-of-mass acceleration cannot
be zero over a range of values of the velocities
and relative position.?

Everything said so far is in terms of the ordinary
nonrelativistic center of mass. The same is true
if the total relativistic kinematic particle momen-
tum and its time derivative are used in place of the
center-of-mass velocity and acceleration. Lo-
rentz-invariant Newtonian equations of motion can
be constructed for any number of interacting par-
ticles by assuming that when the total relativistic
kinematic particle momentum is zero then its time
derivative is also zero. But systems of two or
three interacting particles are not obtained from

15

a larger system of this kind when the other parti-
cles are widely separated in space. For Poincaré-
invariant Newtonian equations of motion for either
two or three interacting particles, the total rela-
tivistic kinematic particle momentum cannot be
a constant of motion for a range of values of the
momenta and relative positions.*®

In the method that has been outlined! for con-
structing Lorentz-invariant Newtonian equations
of motion, we could use any translation-invariant
rotational-vector quantity in place of the center-
of-mass velocity or the total relativistic kinematic
particle momentum, assuming that when it is zero
its time derivative also is zero. Here we will
show that there is no such quantity that we can
form simply in a kinematic way, as a sum of
contributions from individual particles, to con-
struct Lorentz-invariant Newtonian equations of
motion so that a system of two interacting parti-
cles can be separated out from a larger system.
More specifically, we show that for Poincaré-
invariant Newtonian equations of motion for two
interacting particles, there are no two nonzero
translation-invariant rotational-vector functions,
one for each particle, depending only on the vari-
ables of that particle, whose sum is a constant of
motion over a range of values of the velocities and
relative position.

KINEMATIC CONSTANTS FOR TWO PARTICLES

Consider a classical mechanical system of two
particles described by positions X, and X, and
velocities V, and V,. Suppose we have a transla-
tion-invariant rotational-vector constant of mo-
tion that is a sum of contributions from individual
particles. It must be of the form

> A0, (1)

with functions f. and f, of the squares of the velo-

cities, because translation-invariant functions of

the positions would involve both particles together
in X, -%,.
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We wish to show that if a (sufficiently differen-
tiable) function of this form (1), with both f; and
f» nonzero,” is a constant of motion (for a range
of values of the velocities and relative position),
then Poincaré invariance implies that the indivi-
dual particle velocities ¥, and ¥, are both con-
stants of motion, which means there is no inter-
action. The idea is simply that every Lorentz
transform of the constant of motion (1) must be a
constant of motion, and the only way they can all
be constant is for the individual particle velocities
to be constant.

In general, if W is a translation-invariant con-
stant of motion, so is every Lorentz transform of
W; using bracket-generator symbols [ ,H] for
time derivatives, [ ,P] for space-translation
derivatives, and [ ,ﬁ] for Lorentz-transformation
derivatives,® and using the bracket relations of the
Poincaré group,® we see that if

[WuH]=0
and
[Wzij]=O

for 1,j=1,2,3, then

[[WzaKk]yH]=[[Wz’H];Kk]+[Wz’[Kk’H]]

for I,k,7=1,2,3. (We use units such that ¢=1.)

Taking the translation-invariant constant of mo-
tion (1) for VV, we thus obtain another constant of
motion

Li; Fulns Kk} = Z < N, K+ 112 ; Vil Vi Kk]vm>
(4)

for I,k=1,2,3 where f, is the derivative of f, with
respect to »,2. For a Lorentz transformation with
velocity tanhe in the kth direction, the jth com-
ponent of the transformed position of the nth parti-
cle, that is the position at time zero in the trans-
formed frame, is

Xpj t X pplnj

to first order in €, given that X, and V, are the
position and velocity at time zero in the original
frame.®*! This means that

[xnj K] = X neUnj (5)

forn=1,2 and j,k=1,2,3. The first-order part
of the similarly transformed velocity is®*

[vnj9Kk]=[[xnj7H]’Kk]
=[[xnj’Kk]’H] ‘[xnj;[Kk’H]]
=[xnk7)nj;H] _[xnjrpk]

=[W,,P,]=0 (2) =X pOpj+ Vnglpj = O (6)
and for n=1,2 and j,k=1,2,3. (Here and in the fol-
lowing a dot means a time derivative.) Using this
P.j= .
[Lws, &), P )= LWy, Py] )+ (W3, [K,, P formula for [ ,X,], we find that the constant of
=[W,,5,;H]=0 (3) motion (4) is '
. |
2 . - 2
Z [frxnkvnl +fnvnkvnl _fnékl +f;|2Vn VX nelUm +fr’12(7}n2 - l)vnkvnl]' (7)

n=1
Taking the time derivative, we get

2

n=1

. \ | or 3 4T . s . aE R
E [fnxnkvnl + zfnvnkvnl +fnvnkvnl —fnZV,, Vnélzl +fn4vn ernkvnl + fnsvn * annkvnl

+f,’,2(11,,2 - l)vnkﬁnl +f;,2(’l),,2 - l)ﬁnkvnl +f:12(vn. Vn'*' Vnz)xnkvnl

for 2,1=1,2,3.
We write the position variables in terms of

X=3@& +%,)
and

-
X=X, -X,.

+f;,’4(V,, .Vn)zxnkvnl +f1,zl4(vn2 - 1)(671 ¢ vn)vnkvnl] =0 (8)

Then we find that the coefficient of X, in Eq. (8) is just twice the second time derivative of the constant
of motion (1), which is zero. Let € be a vector perpendicular to X. We multiply Eq. (8) by e, and sum
over k=1,2,3 to get
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2 ({F14(v,2 = 1)+F18]%, ¥, @ T )T, + [ £.200,2 - D+ £,1 @ )7, +[£.200,2 = 1)+ 2, ] * F)¥, — 1.2, * 7,08} = 0.

(9)
Suppose € is also perpendicular to ¥, X¥,. Then the dot product of Eq. (9) with ¥, XV, yields
3 Uil = 1A )@ )6, 7, x 7,20, (10)
Taking the dot product with ¥, XV, of the time derivative of the constant of motion (1), we have also
‘Z;fn%,,vv’lxvfo. “ (11)
This and Eq. (10) imply that
EACA RS A (VA FACK I VRS A (VA AREFA AL AR AT (12)

provided neither f, nor f, is zero. Since in the
first factor, the first term is a function only of
¥, and the second a function only of ¥,, and ¥, and
¥, can be varied independently in their plane with-
out changing &€, which is in that plane, it follows
that either

frw, = 1)+f,=0 (13)
forn=1,2, or

¥, ¥, X¥,=0 (14)
for n=1,2. In either case, taking the dot product
of Eq. (9) with ¥, X¥,, we now see that

2 °
3 757,088 @, xT)=0
n=1
for any vector € perpendicular to X, so
A o L3
> f2v, 0 ¥,=0, (15)
n=1

which means that

ifn ‘ (16)

is a constant of motion.

Taking the translation-invariant constant of mo-
tion (16) in place of W,, we get another transla-
tion-invariant constant of motion which, using Eq.
(6) again, we find to be

2 2 3
[Z:;me);\= Zﬂf’,‘2 iz:;vni[vni’K

=2 22: (AT, ¥t £ (002 = Dog). (17)

n=1

Taking half of this vector plus the original vector
constant of motion (1), we see that for £=1,2,3,

Z {f’ V, V nX npt fn(v - 1)+fn nk} (18)

n=1

is a constant of motion. If we write the position

variables in terms of X and X, we find that the co-
efficient of X, is just half the time derivative (15)
of the constant of motion (16), which is zero, so
we ‘can write the constant of motion (18) as

. . 2
ST,V — i Tt 2 [Fa0,2 = D+ flog.  (19)
n=1
If Eq. (13) holds for n=1,2, then
(fivx ‘ v1, "flzvz ¢ -‘72)3Z
is a constant of motion, but the direction of X can-

not be constant except when X=%, -7, is collinear
with X, so

FiV, 0V, =V, V,=0. (20)

(We will not concern ourselves with singular ac-
celerations that are zero for almost all values of
the positions and velocities.) From (15) and (20),
we have

£1%,%,=0 (21)

for n=1,2. On the other hand, if Eq. (13) holds
for n=1,2, then

fa=m (1 =027, (22)

with nonzero constants m,, for n=1,2. This im-
plies, first, that f,#0, so from Eq. (21) we see
that

¥, 0%,=0 (23)
for n=1,2. It also implies that
fra4w,?=1)+£,8=0

for n=1,2. From the latter, together with Eqgs.
(13) and (15), we see that Eq. (9) reduces to

A A A
n=1

from which it follows that

5%.=0
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for any vector € perpendicular to X, which means
that ¥, is collinear with X, for n=1,2. From this
and Eq. (23) it follows that V,=0 for n=1,2,

We are thus finished with the case of Eq. (13). It
remains to consider only the alternative that Eq.
(14) holds for n=1,2.

If we use X and X for the position variables in
the constant of motion (7), we find that the coeffi-
cient of X, is just the time derivative of the con-
stant of motion (1), which is zero. Then, adding
the constant of motion (16) multiplied by 5,,, we
see that

1 . . ey > -
3% (fi0yy = folo + 112V, *Fyv; = 1327, Vy0,,)

2
+ 2 Lt 200, = Dlvwen (24)

=
is a constant of motion for 2,/=1,2,3. The time
derivative of this constant (24) contains terms pro-
portional to ¥y, vy, = Vapy Vipy Vaps Dypy ANA Dy,
but Eq. (14) holding for n=1,2 means that ¥, ¥,,
¥,, and ¥, are all in the same plane, so the coeffi-
cient of x, must be zero by itself, which means
that

‘ . .
Ji01 =Fa0a +f;261 "V 0y ~f32V,° -‘;zvzl (25)

is a constant of motion. Comparing this with the
tinme derivative of the constant of motion (1), which
is constant because it is zero, we see that

Fidm + 112V, Vo, (26)

J

is a constant of motion for n=1,2 and [=1,2, 3.
Similarly, the time derivative of the constant of

motion (19) contains terms proportional to x,,

Vip = Vspy Vs Usy Ugz, a0d Dy, but Eq, (14) holding

for n=1,2 means that ¥,, ¥,, V,, and V, are all in

the same plane, so the coefficient of x, must be

zero by itself, which means that

fJ’_VI : 61 _févz ‘ 62 (27)

is a constant of motion. Comparing this with Eq.
(15), we see that

7129, 9, (28)

is a constant of motion for n=1, 2.

For the Lorentz transform of the acceleration
we use the bracket relations of the Poincaré group,
the translation invariance of the velocity, and Eq.
(6) to find

(D0, Kl = [0, H], K3
=[[Unj’Kk]’H] _[Unjy[Kk,H]]
= (% D+ VsV = O s H] = [03s, Py
=X g Dyt 20 U+ Uy D (29)
We use this and Eq. (6), and take the translation-
invariant constant of motion (28) in place of the

W, of Egs. (2) and (3), to work out another transla-
tion-invariant constant of motion

32V, ¥,, K] = 2V, ¥, fy 2V, [V,, K+ 1727, [V, K, ]+ 1,29, ° V. K]

. . . o
=f:1, (2-‘771 * T’n)zxnk"' :1/2-‘771 * -\7,12(0"2 - l)vnk+f’n2.‘7nzxnk+frl12-‘7n : annk "f':rz';]nk

ot - :; i =t . -; '/ 2
+fn2vn. vnxnk+ anzvn annk+fn2vn VUne

(30)

for n=1,2 and k=1,2,3. Since this is translation invariant, the terms involving x, must vanish, so we

have
P12+ 524 f120, 24 £,20,+ ¥, =0
for n=1,2. Then the constant of motion (30) is

[/12(0,2 = 1)+ 37,127, * $,0,+ 1120, = )0

(31)

(32)

Finally we take the translation-invariant constant (26) for W,, and use Eqs. (6) and (29) again to compute

yet another translation-invariant constant of motion

. .
- . . o
[fnvnl +fr,12“7n * vnUnl ’Kk] =f;12$n * vrzxnkvnl +f;,2(7),,2 - 1)Unk75n1 +fnxnkvnl +fn27)nkénl +fn’unkvnl

. . . o
+f;12-‘7n : .‘7nxnk1.}nl +f:12-‘7n * annkvnl "'frl12vn * V116lzl + [f;lzvn ¢ Vn, Kk]vhl ¢ (33)

For this to be translation invariant the terms involving x,, must vanish, so

o
. o> > 8 _
fnvnz + zfnzvn *Vilm = 0

(34)

for n=1,2 and I=1,2,3. Then, since the coefficient of 5,, is just the constant (28), Eq. (33) yields a new

constant of motion

Gnkvnl + (fn'l}nk +f;|2vn : vnvnk)vnl + [fitz(vnz - 1)+ 2fn]vnk7;nl

(35)
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forn=1,2and k,l=1,2,3, where G,, is the constant (30) or (32). Recognizing also the constant (26) in ( ),
we take the time derivative of the constant (35), use Eq. (34) to eliminate 7,,, and get

{[2 ;:z(vﬂz - l)zvﬂ. v-'.ﬂ + 4f:lzvﬂ : V'ﬂ - z(fl,'lz/fﬂ)z(vﬂz - 1)Zvn * V‘71]1)11’2 + [f:‘l4(vﬂ2 - 1)+ 3fﬂ]ﬁﬂk}1)ﬂl = 0 (36)

for n=1,2 and k,1=1,2,3. .
Using Eq. (34) to eliminate the v, in Eq. (31), we
obtain
(20, V)2 +f02V,2 - 2(F2/F )2V, * ¥ )2=0. (37)
If the quantity in [ ] multiplying 9, in Eq. (36)
were zero, we would have
fr= il =02 (38)
Then
n=Rf(1-v,)2, (39)

n

Substituting Eqgs. (38) and (39) into Eq. (37), we
find

2=~ (2%, ¥ )21 —v,2)" (40)

which, for speeds less than that of light, »,%<1,
implies that ¥, is zero. Thenfrom Eq. (36) we see
that if ¥, is not zero it is collinear with ¥,. There-
fore in the time derivative of the original constant

(1)
2 o o
2 Flnt £229,°9,3,),
n=1

the part for each » must be zero separately, so
fiV, and f,V, are each constant. If we start at the
beginning with these two separate constants in-
stead of the total constant (1), then in place of the
constant (16) we find that f, and f, are each sepa-
rately constant. Then V, and ¥, are each constant.
This completes the proof.
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