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A direct experimental test for local commutativity (i.e., [4,B] =0 if A and B are associated with
mutually spacelike regions) is proposed. It consists of a comparison of the distribution of outcomes of A4
measurements in the two cases where A alone is measured (no measurement apparatus for B present) and
where both are measured on the same sample, in short, a test of the compatibility of the two observation
procedures for 4 and B. The implication compatibility —commutativity (substantially proved by von
Neumann, but questioned by Park and Margenau) is proved in a stronger form, with close attention paid to
the distinction between different procedures corresponding to a given self-adjoint operator. ’

I. INTRODUCTION

The assumption of local commutativity'’2 (LC)
(two observables A and B commute if they are as-
sociated with space-time regions which are space-
like) is widely accepted, although no direct experi-
mental evidence seems to exist. Since there are
some theoretical doubts® about its validity, a di-
rect experimental test may be useful.

The proposed test uses two observation pro-
cedures on the same sample, each associated with
different space-time regions R, and R, as, for
instance, in the Einstein-Podolsky-Rosen (EPR)
and hidden-variable experiments.* The relative
frequency of an outcome A in R, in such an exper-
iment should be equal to that obtained in a parallel
experimental run in which no measurement ap-
paratus is present in R,.

In the following, we first summarize some rea-
sons for lingering doubts about the validity of local
commutativity and then we prove that compatibility
(of which the above experiment was an instance)
implies local commutativity.

The reasons usually given for assuming LC are
plausible but not entirely cogent. They combine
the relativistic postulate of maximal signal velocity
with the quantum-mechanical idea that noninter-
ference between two observation procedures im-
plies commutativity of the respective operators.

It would be more satisfactory to formulate maxi-
mal signal velocity and noninterference in a pre-
cise and operational way and then deduce LC by
using the axioms of quantum mechanics. Such an
attempt has been made. Haag and Kastler® have
defined operationally a property of the algebra @

of observables (later called local independence by
Schlieder®) which is the precise version of maximal
signal velocity, but it has been shown that it does
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not, by itself, imply LC.” Whether other axioms of
relativistic quantum theory, added to local independ-~
ence, imply LC remains an open question.®?®

On a more pragmatic level, the strict validity
of local commutativity has been questioned be-
cause it leads to the well-known divergence of field
theory, and attempts to construct divergence-free,
relativistic, but nonlocal theories have been con-
sidered.®> While some of these theories can be
tested by their observable consequences, it is
not clear whether a failure is due to nonlocality
or to the specific theory.

The implication compatibility — commutativity
has been substantially proved by von Neumann,°
but there are some aspects of the situation not
covered by him. Examples are nonsimultaneous
measurements and measurements with a finite
timelike duration, necessary in relativistic theory.
Also, the validity of his conclusion has been re-
cently denied by Park and Margenau,! so that a
proof from explicitly stated prime principles is
necessary. Since a good deal of doubt and dis-
agreement in the previous literature on the subject
is due to a somewhat allusive presentation, we try
to be literal.

It is trivial that there are many procedures used
to measure a physical quantity, a mercury ther-
mometer and a thermocouple, for instance. How-
ever, previous studies have assumed that the
operationally defined procedures (physical quan-
tities for von Neumann,'° observables for Park
and Margenau'') are in a one-to-one relation to
the self-adjoint operators. We find it necessary
to distinguish between different observation pro-
cedures that correspond to a given self-adjoint
operator because the operational property of com-
patibility cannot be ascribed to all procedures that
map onto a self-adjoint operator.
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II. ASSUMPTIONS AND THEOREMS

State-preparing and observation procedures are
considered here to be instruction booklets or pro-
grams for robots. For our purposes it is nec-
essary to include as procedures all “limits” of se-
quences of actual procedures. We distinguish be-
tween procedures which differ in irrelevant de-
tails—e.g. a red ammeter and a green ammeter.
The outcome of carrying out a state-preparing
procedure followed by an observation procedure
is a (symbol for a) real number. Repetitions of
an observation act @ on samples, each produced
by 'a procedure s, produce an infinite random®?
sequence ¥, of outcomes with limit mean value
M,

An observation procedure will not, in general,
use the same physical apparatus for different
state-preparing procedures. For instance, ther-
mocouples rather than mercury thermometers are
used to deal with high temperatures. But there
must be instructions included for building different
pieces of equipment so that an observation pro-
cedure can be used for all state-preparing pro-
cedures.

For the purposes of this paper a minimum
amount of theoretical development is necessary:
Accordingly only that which is needed is given ex-
plicitly here. More details can be found else-
where.” Define equivalence relations ~, and ~
on O and on 8 by

o~ B if and only if My, =Mi, @
for all s in 8 and
s~gt if and only if My, =M1, @)

for all @ in ©. Let 0/~¢ and 8/~ denote the sets
of equivalence classes of elements of O and 8, re-
spectively.

Assumption (1).

(a) For each @ in © and each Borel function
f: R—R the procedure f(a) “do a and give as out-
put f (outcome so obtained)” is in 0.*2

(b) For each a, B in O there is a procedure v in
0 such that My, =M, +Mi, for all s in §.

Assumption (2). 0/~ is identified with the set
@, of all self-adjoint operators in a von Neumann
algebra @ of operators on a Hilbert space.*

The linear operations on @ are related to the
operations of assumption (1) as follows: Let ®:
0 - @, be a many-one map from © onto @, which
Jbreserves equivalence classes.

Assumption (3).

(a) For each Borel function f and each @ in O,

&(f(@)) =f(2(a)). (3)
(b) For all @,B8,7 in 0,

[for all s € 8(Mi,q + Mg =MDg,)]—&(a)+ &(8)= 3 ().

Let S’ be the set of all maps from @, to the set
R of real numbers. Define ¥: 8§~ S’ to be the map
given by

V(s (@) =My, 4)

for all s in 8 and @ in O. It can be shown from the
above assumptions that for each s, ¥(s) is a state
on @, (i.e., a positive, linear, norm-1 function
from @, to R) and that ¥ preserves equivalence
classes of 8/~;. We extend (uniquely) ¥(s): @,
—R to a state w: @—~C.

So far, the extended ¥ is a map into the set S of
all states over @ (note that S is a subset of S’)
and is not necessarily onto. This is taken care of
by the next assumption.

Assumption (4). For every state p in S there is
an s in 8 such that (the extended) ¥(s)=p.

It then follows from these assumptions that 8/~
can be identified with the set S of all states over
Q.

To define compatibility (a generalization of von
Neumann’s simultaneous measurability),’° consider
a pair of procedures @, p, in O such that they can
both be applied to a given sample. It is by no
means obvious that this is possible for all pairs
of procedures in the equivalence classes & [ &(a)]
and ® [ #(8)] of two given operators &(a) and
&(B). For instance, if ®(a) is the position of a
particle at £=0 and ®(B) is that at =1, a pro-
cedure that measures the position by absorbing
the particle on a photographic plate at =0 prevents
the performance of a similar procedure at t=1.
On the other hand, two procedures a < &~ [ &(a)]
and B c @[ #(8)] that use y-ray microscopes at
t=0 and £=1, respectively, are at least candidates
for compatibility.

For these pairs of procedures «, 8 one obtains
from repetitions of the compound measurement of
a and B on a sample prepared by s, an infinite
random sequence ¥, , of pairs of real numbers.
Let ¥,,, and ¥, denote the sequences associated
with the respective ¢ measurement and g mea-
surement (i.e., Yo p=Pqr XVp). Let b, and g,
denote the sequences obtained for repetitions of
usual observation acts (i.e., only one procedure
used for each sample).

The definition of compatibility we shall use is
similar to that given by Park and Margenau!! and
is essentially the same as that given elsewhere.'®
Two procedures « and B are defined to be com -
patidle if ¢, and P, have the same limit relative
frequency of occurrence of outcomes and similar-
ly for i, and . More precisely, this means
that o and B are compatible if

MF[a, b)zf,)sa' =MF[¢, b)lpsa (5)
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and

MF[a,b)d)sB' =MFta,b)¢ss (6)

for each half-open interval [ a, b) of the real line
and for all s €8. MF, ., is the limit relative fre-
quency of finding an element of ¢ in [ a, b).

In this definition, nothing is assumed about the
time at which the observations are performed; in
particular, it is not assumed that they are in-
stantaneous (which would probably be incom-
patible with relativistic quantum theory).

We now define two new observation procedures
a ®p and a S8 by the instructions “do @ and g on
the same sample and add () or subtract (©) the
outcomes.” As noted above, a ®p and ¢ ©f are
defined only for those pairs «, 8 which are can-
didates for compatibility.

The outcome sequences Y,q,s and §,,., are re-
lated to U;,, and ¥ by

ZPszxq; B= Zpsm' + ZPSB, s (7)
ZPsB' H (8)

respectively. We note also that if §,, 5, the origi-

nal sequence of pairs of outcomes, is random then

one can show that ¥, and ¢, , are random.
Theovem 1. If a is compatible with g, then

@) (a®p)=2(a)+2(), 9)
(©) @(aop)=2(a)-2(8) . (10)

Proof. We give an explicit proof for (a) only;
that for (b) is similar. By Eq. (7)

Mlpsa&aB:M(lpsa""zpsBl)
= Mo + Mg, forallscs$ .

Zpscte 8= Zpsuz' -

By hypothesis and from the definition of com-
patibility, Md,,, =My, and My g =Md,,. Thus one
has

Mibggqp =Migy+Migg
=U(s)@(a))+ T(sN2(B))
=¥(s 2(a)+ 2(p)) .
By Eq. (4) and assumption (3), one has
T(s @2 (a®B))=T(s(®(a)+2(B))

for all s 8. Since (the extended) ¥ is onto S [ as-
sumption (4)] and the states of @ separate the ele-
ments of @, one has &(a ®8)=o(a)+ ®(8). Q.E.D.
In preparation for the next theorem, one notes
that by a strict interpretation of the definition of
compatibility, a is never compatible with a, be-
cause any apparatus used for a clearly interferes
with an identical apparatus in the same space-time
region. However, by convention we shall denote
the compound procedure for a and o on the same

sample by the instructions, “do @ and duplicate
the outcome.” By this convention, a is compatible
with & and with f(a) for any Borel function f.

Theovem 2. (von Neumann). If @ and B are com-
patible, then

[2(a),2(8)]=0.

Proof. By the above convention, and by the
hypothesis, «® B and o ©B are compatible and
are in 0.

Let a(® B denote the procedure which does a and
B on the same sample but multiplies the outcomes.
One clearly has a®OB=BO a and

4(aOp)=(a ®B)* - (€ OB) ,

where a®a is represented by o2 for each a in O.
Thus one has, by theorem 1 and Eq. (3),

(a0 B)=3[(2(a®B))? - (2(x ©8))?]

$(a) - 2(B) + (B) - 2(c)
= 5 . (11)

By the above definition, the outcome sequence
Ysuo s 18 given by

Vsaos() = Vsar(5) * ¥pr (7)

for each j. By iteration, the procedure (a¢®B)®B8
has an outcome sequence ¥ (,0p)0 s Siven by

lps(a@ﬁ)@ﬂ (] ): (wsa'(j) ¢ wssr(j)) °¢35'(j)

for each j. Similarly, a®(B®OB) has an outcome
sequence given by

Zpsoc@ (BO ﬂ)(j) = (l)sa'(j) .(lpsB'(j))z .
By the associativity of multiplication of real num-
bers, one has ¥y n0p)08=¥VsaoBop) Lhus for each
sin 8

Mz»bs(aos)oB:MZpsao(B@ 8)
and

(2O B)OB~,aO(BOB)
or

3((a@B)OR)=2(x® (BOR)) . (12)
By Eq. (11) one then has that

(@(a)x @(8))x @(B)=p(a) x (2(B) x 2(8)), (13)

where as a temporary notation &(a) x &(B) denotes
the symmetrized product

sl @(a)-2(B)+@(B) @(a)] .

Now the operations+ and X together with scalar
multiplication define a real commutative Jordan
algebra'® on @,,. By the theorem'® on Jordan
algebras relating commutativity and associativity,

[nI)(a),. ®(B)] =0 . Q.E.D.
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III. DISCUSSION

Consider two operators associated with space-
like regions R, and R,—e.g. the spin components
of two particles located in the regions R, and R,,
respectively, and assume that two corresponding
procedures « and B are known. Then the experi-
mental compatibility of @ and g would corroborate,
by theorem 2, the assumption of local commuta-
tivity. The test of compatibility consists in mea-
suring, with the given state-preparing procedure,
the outcome sequences J,,. and ¥y, by use of both
instruments together and comparing ¥.,. with the
outcome sequence ¥, for only one spin («), the
instrument for measuring the other spin (8) having
been removed. The two sequences ¥, and ¥,
should have the same limit frequencies of out-
comes. For finite sequences, an approximate
equality of the distribution of outcomes is cor-

roborative. Similar arguments hold for ¥ and ¥, .

Conversely, one can ask: If the sequences ¢,
and J,,. are noticeably nonequivalent, should this
be counted as evidence for the failure of local
commutativity? Thus far, we have only proved
that compatibility implies commutativity, but not
the converse. In fact, the converse is not plausible
without further restrictions, because a clumsy
instrument measuring B correctly may well inter-
fere with o and destroy compatibility. Hence, we
consider another condition on the measuring pro-
cedure: gentleness, such that (commutativity
+gentleness — compatibility). An example for a
procedure « which is clearly not gentle for 8 was
mentioned in Sec. II: a destructive position mea-
surement at /=0 which makes another measure-
ment at £=1 impossible. The best-known non-
trivial example for the nonexistence of two mutual -
ly gentle procedures o € ®~*(4) and Bc $~!(B) is
Heisenberg’s thought experiment on the simulta-
neous observation of the operators P and . The
gentleness condition is also used in Pool’s state-
ment'” of the projection axiom.®

Although no one has been able to give an opera-
tional definition, there are some cases where it is
intuitively evident. The first case is that of the ob-
servation of two operators A and B=f(A) € G,,
where f is a suitable real-valued function. By as-
sumption (1), there exist two procedures o and
f(a) in © which differ only by a software instruc-
tion, so that only one material interaction process
happens when the two procedures are carried out.
Manifestly, @ and f(@) are mutually gentle, and

this fact might seem to be useful. Indeed, in the
Abelian algebra generated by A and B, there
exists'® an element C €@, and two real-valued
functions G and H such that

A=G(C) and B=H(C) ,

so that the existence of two mutually gentle pro-
cedures a=G(y) in &~ *(A) and B=H(y) in & 1(B)

[ where y € *(C)] is guaranteed. However, this
fact is not useful for our purpose because the pro-
cedures in &~ *(C) are not known in general. We
can assume realistically only the knowledge of rea-
sonable subsets of procedures &~ !(4) and & !(B),
such as the spin measurements of two particles in
the same sample, in a given space-time region.

However, there is a simple case in which gentle-
ness is reasonably certain: when the two appara-
tuses belonging to @ and B8 are materially located
and active in spacelike regions R, and R,. For-
tunately, this is not difficult to carry out, and we
can conclude that the failure to find compatibility
in an experiment with gentleness as described
would indeed be strong evidence against the as-
sumption of local commutativity.

We add a comment on the reason for the dis-
crepancy between our conclusions and those of
Park and Margenau. Park and Margenau'! define
what in our language would be the procedure a®
for two procedures that are compatible only for
some states. Explicitly, the procedures con-
sidered by Park and Margenau are such that the
relations (5) and (8) of Sec. II are valid only for
some state-preparing procedures s 8. We feel
that it is not consistent to attribute a mutual rela-
tion to two elements a and B of O on the ground of
a numerical relation between expectation values or
distributions valid for some states. More general -
ly, if the sequences ¥, and ¥, have some mutual
relations for all s, one can (as a matter of con-
venience), define corresponding relations between
a and Sc O, but not if the relation is true only for
some s < 8. This is the analog of inferring from
the relation between expectation values

TrpA + TrpB = TrpC (14)

for all p that the operators A, B, C have the rela-
tion

A+B=C, (15)

but the inference fails if Eq. (14) is valid only for
some density matrices p.
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