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Zero-rest-mass particles in a gravitational field are considered to have energy-momentum tensors T"
satisfying T"., = 0 and also T', = 0, The latter is satisfied by a massless electromagnetic pulse, and also by
a neutrino. In analogy with the theory of material spinning particles in general relativity, moments of these
equations are taken and cut off at the dipole level. The moments of the first equation yield the usual pole-

dipole equations. The moments of the second equation yield the auxiliary conditions, which turn out to be

p, v' = 0 and v;S"' = 0, where v' is the velocity, p' is the momentum, and S"' is the spin. The special
cases of arbitrary spin in flat space, zero spin in curved spaces, and the eikonal approximation are treated
and shown to give null geodesic trajectories. However, such trajectories do not seem to be a necessary
consequence in the general case.

I. INTRODUCTION

The equations of motioningeneral relativity for
extended material particles with spin were first'
formulated by Mathisson, ' using a singular energy-
momentum tensor. These equations had to be sup-
plemented by subsidiary conditions which in effect
defined which point in the object was its mathe-
matical center.

Since Mathisson, a considerable amount of work
has been done on this subject, mainly having to do
with the details of the derivation of the equations
of motion and with the nature of the subsidiary
conditions.

Papapetrou' worked with an assumed nonsingular
localized energy-momentum tensor T" for a spin-
ning particle, and obtained equations for the mo-
ments of T'~. Tulczyjew' criticized the subsidiary
conditions and came up with a different form.
Dixon' found a way to make Papapetrou's type of
argument covariant at each step of the derivation,
and also found equations which referred to paths
described by an arbitrary parameter rather than
the world-line length. He generalized the equa-
tions to take into account quadrupole and higher
terms.

The purpose of the present paper is to extend
the method to take into account particles with zero
rest mass, which we shall describe as massless
particles for short. There are two such particles:
the photon, or, say a localized pulse of electro-
magnetic energy and momentum, and the neutrino.

The method we use is essentially Papaetrou's;
the reason is that the integrals as defined in his
paper can be easily extended to the situation where
the world line is along a null geodesic, which of
course must be contemplated for massless parti-

cles. The integrals as defined by Dixon, for exam-
ple, do not lend themselves easily to such an ex-
tension. '

In order to make the argument for massless
particles, we must discuss both the equations of
motion and the subsidiary condition. The equations
of motion are obtained with virtually no deviation
from the derivation of Papapetrou. However, the
subsidiary conditions are derived from a simple
property of the energy-momentum tensor. Accord-
ing to general relativity, the basic equation of
motion is

Tzg 0

where the semicolon means of course covariant
differentiation. In addition, for massless parti-
cles, the further condition

(1.2)

ls pl oposed.
It is well known that Eq. (1.2) is a property of

electromagnetic systems without masses and will
apply to photons. Equation (1.2) is also satisfied
for neutrinos, as has been pointed out by Brill and
Wheeler. ' From our point of view, Eq. (1.2) is
what is needed to derive the subsidiary equations
of the theory. One of these conditions will turn out
to be the analog of the equation PP' = 0 (P' = mo-
mentum) which characterizes zero-rest-mass
particles in special relativity.

It is appropriate to point out here that moment
integrals of T'~ have been used by many people
as characterizing a photon's energy and momen-
tum, and even spin. ' For example, the integral
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where

(1.4)

can be shown' to lead to intrinsic spin. Here E is
the electric field, B is the magnetic field, and
& "is the three-space alternating symbol.

In Sec. II, the material pole-dipole theory is
discussed. In Sec. III, the theory for massless
particles is described with some calculations
reserved for the appendixes. Here the problem
of whether or not the massless particles always
travel in null geodesic trajectories is discussed.
The remainder of the paper considers some spe-
cial cases in which familiar results can be de-
rived. The reduction to flat space is made in Sec.
IV. The "pole approximation" (spin neglected) is
in Sec. V, and the eikonal limit is in Sec. VI.
Latin indices take on values 0, 1, 2, 3 and Greek
indices take on values 1,2, 3. The signature is
-2 in what follows.

II. THE POLE-DIPOLE THEORY
FOR MATERIAL PARTICLES

As mentioned in the Introduction, we shall fol-
low the formalism of Papapetrou. ' Let T" be the
components of the energy-momentum tensor, con-
sidered localized so that a multipole expansion of
the moments would converge, and consider inte-
grals over the hypersurface Z perpendicular to the
time (0) axis. Papapetrou shows that the two com-
binations

The quantity in square brackets in Eq. (2.3) is just
p'. m is interpreted as the mass of the object.

Equations (2.3) and (2.4) are the pole-dipole
equations for a material particle. They do not
form a complete system of equations for the 11
unknowns v', S'i, and m. Equations (2.3) number
four, but Eqs. (2.4) number only three, since
multiplication of (2.4) by v; and summing yields
three identities. In addition to these seven equa-
tions, we also have v'v,- = 1, giving eight equations
in 11 unknowns.

Thus three more equations are needed. Mathis-
son' chose these to be

v S'~-0 (2.6)

This has the significance that in the zero-velocity
frame of reference, in which v'=(1, 0, 0, 0), S"
=0. But a glance at Eq. (2.2) shows that S"=0
means that x'(s) is the center of energy in that
system. Thus Eq. (2.6) defines x'(s).

Papapetrou and Corinaldesi' used as the side
conditions

Si 0 0 (2.7)

which means that x'(s) is the center of energy in
the frame of reference whose coordinate system
is the x . (For a spinning object circling the earth,
this would be the earth system. )

Tulczyjew' showed that Eq. (2.6) led to some
nonphysical spiral-type motion in flat space, and
suggested that

p.S'~=0 (2.8)
p'= 7'"( J, )'"dr+ I',.»S"dx'/dt, (2.1)

S'J= 5x' s T~ —5x~ s T' —g 'i' dE (2.2)

(D/Ds)[mv'+ vPS'~/Ds] = ='R,.»„'Si v (2.3)

DS i/Ds —v v+S i/Ds —viv»DS'»/Ds = 0, (2.4)

where v' =dx'(s)/ds, R&~' is the Riemann tensor,
and

transform as tensors. Here I"» is the Christoffel
symbol defined at x'(s), and x'(s) is some center
of the localized object; s is its pathlength para-
meter. 5x'(s) is x' -x'(s), where x' is the arbi-
trary point in the particle, over which the inte-
gration is performed. Integrals with two factors
of 5x'(s) in the integrand are neglected in the pole-
dipole approximation. P is interpreted as a gen-
eralized momentum, ' and S'~ is the spin tensor.

By taking moments of the equation of motion,
Eq. (1.1), Papapetrou derives the two equations

Dp'/Dq =2R',.» viS»", ( 2.9)

DSii/Dq piv J pivi (2.10)

where now q is an arbitrary parameter along the
curve, and v' = dx'(q)/dq. Equations (2.9) and

(2.10) can be derived by the Papapetrou procedure
with no difficulty, "using the p "s and S'~'s as de-
fined in Eqs. (2.1) and (2.2). In what follows, we

shall find this formulation of the basic equations
to be the most useful.

A useful consequence of Eq. (2.10) is

pi (po/v0)vi+ (v0)-1DSiO/Dq (2.11)

be the side condition. This means that x (s) is the
center of energy in the zero-momentum system
[the system in which p' = (1,0, 0, 0)]. Dixon' adopted
the Tulczyjew condition, and it seems now to be
agreed upon that Eq. (2.8) is appropriate for ma-
terial particles.

In extending the procedure so as to be system-
atically covariant in the derivation, Dixon came
up with the equations of emotion in the form

m =p'v;. (2.5) which gives a formal relation between p' and v'.
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III. THE POLE-DIPOLE MODEL FOR MASSLESS PARTICLES

The plan here 'is to extend the discussion of the
preceding section to cover particles characterized
by an energy-momentum tensor satisfying not only
Eq. (1.1) but also Eq. (1.2). Further, for such
particles, we must anticipate the possibility that
the trajectory lies along a null direction for which
v'v, = 0. Thus we cannot use the world-line length
s as a parameter describing the motion. Rather,
we must use an arbitrary parameter, q, to be
determined by convenience during the course of the
calculation.

As for the basic pole-dipole equations, we cannot
use Eq. (2.4) since that required v'v, = 1. However,
we can use Eqs. (2.9), (2.10), and (2.11), which
for completeness in this section we repeat here:

DP'/Dq --'f~' v'S'"

DS*'/Dq =P'v' P'v'. —

( 3.1)

(3.2)

v,.p' = -da/dq

and the second moment yields

b'=-v Ski=av"
k

(3.3)

(3 4)

where a is a scalar which can be identified in any
coordinate system as

a = b'/v'. (3.5)

Equations (3.3) and (3.4) are the new subsidiary
conditions, replacing v, v'=1 and pkSk'=0, respec-
tively, which are valid for material particles.

These subsidiary conditions can be simplified:
First we show that a is a constant, then that by
choice of an initial condition, the constant may
always be chosen to be zero.

Multiply Eq. (3.4) by v, . The left-hand side is
zero by symmetry, so

a(v, v') = 0. (3.6)

Nothing in the derivation of these equations re-
quired the object to have a rest mass, or required
g, ,dx'dx~ to be nonzero. They are therefore suff-
iciently general to relate to any localized object.
Higher-order multipole terms would exist in a
systematic expansion, ' but for particles with only
momentum and spin (intrinsic or otherwise), Eqs.
(3.1) and (3.2) are accurate.

Just as for material particles, these equations
must be supplemented by subsidiary conditions.
The conditions are found from the first two mo-
ments of Eq. (1.2). In Appendix A it is shown that
the moments of T'„although not tensors, never-
theless are zero in all reference frames if they
are zero in one, whence the moments of Eq. (1.2)
have an invariant significance. In Appendix B
it is shown that the first moment of Eq. (1.2) yields

pi 0 (3 8)

If the path is not a null geodesic then Eq. (3.6)
shows that a is zero. We can argue that even if
viv'= 0, initial conditions can always be chosen to
set a= 0. At the initial point, place an orthonor-
mal tetrad XYZT, where X represents the space
direction of the pulse, with v~=gi~v, where pi~
is the Minkowski metric and v = (v', vx, 0,0). In
this tetrad, from Eq. (3.5), a= (vx/v')S '. Now
S 0= 0 would mean from Eq. (2.2) that x (q) is the
center-of-energy component in the X direction.
Thus setting a = 0 has the invariant significance
that initially xx(q) is the center-of-energy compo-
nent in every tetrad that has X as the space direc-
tion of.propagation. This will be true not only ini-
tially but everywhere along the curve. We propose
then that an initial condition appropriate to the
problem is that a is zero. Then Eq. (3.4) reduces
to

Ski 0k (3 9)

Although there may be other choices, this is the
only one that gives the same form whether or not
the trajectory is a null geodesic, since Eq. (3.6)
shows that a must be zero if the path is not null.

We therefore adopt Eqs. (3.8) and (3.9) to be the
appropriate auxiliary conditions for massless
particles. Equations (3.1), (3.2), (3.8), and (3.9)
constitute 14 equations, counting only three in Eq.
(3.9) since multiplication by v,. gives an identity.
The number of unknowns is also 14 (four p"s,
four v"s, and six S'~'s). Thus to the extent that we
have as many independent equations as unknowns,
we have a determinate system.

Equation (3.8) is the generalization of p,.p' = 0
customarily used in special relativity to define
a massless particle. The form in (3.8) was found
by Jauch and Watson" long ago for a photon in flat
space but in a dielectric medium. The fact that we
have found the same equation is another verifica-
tion of the similarity of the effects of a gravita-
tional field to those of a dielectric medium. "
Note that Eq. (3.8) shows that the "m" of Eq. (2.5)
is zero.

Equation (3.9) is Mathisson's original side con-

Thus if v;v' 4 0, then a = p. But it may well be that
x'(q) traces out a null geodesic. In this case mul-
tiply Eq. (3.2) by v, . Use of Eqs. (3.3) and (3.4)
gives after some manipulation

2v~da/dq = -aDv~/Dq+ S'~Dv&/Dq —(v&v')p~

(3.V)

If x'(q) is a null geodesic, then the right-hand side
is zero, whence da/dq= 0.

Thus independent of what the path is, a is a
constant, and Eq. (3.3) reduces to
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dition, Eq. (2.6), back again, and is not the one
used nowadays by most workers for material
particles, Eq. (2.8). There is of course a major
difference in the present argument compared to
previous work: Equations (3.3) and (3.4) are ob-
tained not on the basis of a definition of x'(q), but
because they are necessary consequences of Eq.
(1.2). Our only reference to an interpretation was
in the evaluation of a by an initial condition for a
null geodesic.

The objects under discussion in this paper can
be described as "massless localized pulses of
energy, momentum and spin. " The equations,
along with appropriate- initial and boundary condi-
tions, should therefore be capable of describing-
the propagation of both neutrinos and photons in
a gravitational field. As regards photons, there
cannot be any inconsistency between the pole-di-
pole equations and Maxwell's equations, since the
former are based on Eqs. (1.1) and (1.2), both of
which are consistent with the latter. In fact, the
only way to discuss momentum and spin in classi-
cal electrodynamics is indeed to introduce Poyn-
ting's vector and the energy-momentum tensor.

Nevertheless, when it comes to photons, one
does not usually rely on T'J or its moments: One
works directly from Maxwell's equations. Con-
vincing arguments then lead to results that have
been described by Synge this way": "In so far as
they may be regarded as shock waves, waves of
light are null surfaces. Further, the bicharacter-
istics are null geodesics. . . ."

Although in Secs. V, VI, and VII below we show
that if the space is flat, or if spin is neglected,
or if the high-frequency limit is taken, the pole-
dipole equations predict null geodesics, we have
been unable to prove that null geodesics necessar-
ily follow for the general case of spin in curved
spaces. It even looks unlikely in view of the com-
plexity of Eq. (3.1). Thus there seems at least the
possibility of a deviation from the conclusion quo-
ted in the paragraph above. But since the pole-
dipole equations are consistent with Maxwell's
equations, could the pole-dipole trajectories ever
end up not being null geodesics? If they did, would

this not invalidate the whole pole-dipole approach?
The pole-dipole trajectories may end up always

being null geodesics, but there would seem to be
no necessity for it. The reason is that the usual
treatments of light propagation in a gravitational
field are made either in the eikonal limit'~'" or
by neglecting spin"; both cases are limits in
which the pole-dipole equations do predict null
geodesics. Even the quotation two paragraphs
earlier is a consequence of an argument which
at the outset Synge describes as "a modern equi-
valent of an old dodge in optics, viz. , the passage

IV. FLAT SPACE

We wish to show here that the trajectories are
null geodesics, in other words, that the descrip-
tion of special relativity is consistent with the
pale-dipole equations. In flat space, Eq. (3.1) re-
duces to dp'/dq = 0. Without loss of generality we
can use Cartesian coordinates and choose x to be
the direction of momentum: The solution to (3.1)
1s

p' = (j ",p'", 0, 0), (4 1)

where the primes indicate constants of integra-
tion.

Equations (3.2) can now be integrated:

S"=P"(x -x,) -P'"c(t f,), -
S"=P"(X -X.),
S"=p "(z z,),
S"'=P'"(y —Xo)

pl X~

S'"= P "(z -zo). -

(4.2a)

(4.2b)

(4.2c)

(4.2d)

(4.2e)

(4.2f)

Here xp'„y„yp to and E are constants of inte-
gration.

Equation (3.8) can also be integrated,

x = (p "/P'")ct+x,', (4.3)

where x,' is another constant of integration.
Substitution of Eqs. (4.2) and (4.3) into the three

independent equations of (3.9) gives

v p (-go+ yo) —Kv = 0, (4.4)

from 'physical optics' to 'geometrical optics'
by considering periodic waves of high frequen-
cy, '"" i.e., as the eikonal limit.

Thus it all depends on what light is considered
to be. If light is defined to be the eikonal ray as-
sociated with the electromagnetic shock wave, then
there is no question: The trajectories are null
geodesics. jf, however, it is defined as a local-
ized pulse" of electromagnetic energy, momen-
tum, and spin, then it should travel along trajec-
tories as defined by the pole-dipole equations,
which may, or possibly may not always be null
geodesics.

To finish this section we quote one general re-
sult obtained by multiplying Eq. (3.2) by S,.~:

d(S&rS'J)/dq = 0. (3.10)

The spin scalar is conserved.
The remainder of this paper considers some

special cases in which familiar results can be
recovered: flat space, the "pole" approximation,
and the eikonal limit.
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z =At+8,

y = Ct+D,

(4.8)

(4.9)

where ABC and D are constants related to those
of Eqs. (4.4) and (4.5); the relation is not impor-
tant. However, Eqs. (4.8) and (4.9) are valid con-
sequences of Eqs. (4.4) and (4.5) only if K is not
zero. But nothing in the equations forces K not to
be zero. K represents, from Eq. (4.2e), the
transverse component of spin. Thus any object
which initially has a transverse component of spin
will have y and z satisfying Eqs. (4.8) and (4.9).
We shall confine ourselves to objects that initially
have this property.

With each component x, y, and z now linear in
t, Eq. (4.7) shows that the velocity is c, and

v;v' = 0. (4.10)

This is about as far as one can go with the pole-
dipole equations in flat space. There are, how-
ever, certain expected features which have not
been demonstrated, namely that P,-P' = 0 and that
p' is parallel to v'. These can only be shown by
an appeal to boundedness. That is, if S'~ gets
large without limit, the very premise of the whole

v'p "(—z', +z,)+ Kv'= 0,

(x —xo}dx/dq+ ( y —yo)dy /dq+ (z —z o)dz /dq

-c(t —to)d( ct)/dq = 0. (4.6)

Equation (4.6) can be integrated immediately:

(x -x,)'+ (y -y,)'+ (z -z,)' —c'(t -t,)'=0.

(4.7)

In general a constant of integration appears on the
right-hand side, but by suitable choice of the ori-
gin of t, this constant can be set equal to zero.

Equations (4.1)-(4.7) give the complete set of
pole-dipole equations. Any further information
must come from the initial or boundary conditions,
which information of course is not contained in the
e luations themselves. Equations (4.1) give the
momentum; Eqs. (4.2) give the spin components
in terms of xyzt; Eq. (4.3) gives x as a function
of t; and Eqs. (4.4}-(4.6) give in principle y(q),
z(q), and t(q).

Equation (4.7) appears to show that the velocity
is a null trajectory, but this is not immediately
a consequence since although Eq. (4.3) shows that
x is linear in t, nothing yet shows that y and z are
also linear. In fact, if y yo cteos&t and 8 zo- ct siruet, reminding one of the spiral motions of
Tulczyjew, ' then this is also consisten with Eq.
(4.7).

To obtain the linear behavior of y and z we must
integrate Eqs. (4.4) and (4.5):

~i I
~ Sjkpm

i gem

for massless particles satisfies

(4.12)

(4.iS)

Here e,»„ is the alternating symbol times (-g)' ',
and X is a constant, the helicity.

The space parts S ~ of the spin tensor can be
found from inserting Eq. (4.13) into (4.12}:

p, oSat 8 ~&o0t A~ SBopot + Sat opS (4.14)

Take an absolute derivative of this equation and
subtract it from

DS"/Dq = (p'/p')DS "/Dq (p /p')DS~o/Dq

(4.i5)

which is obtained by substituting Eq. (2.11) into the
space parts of (3.2}. The result is

S"'Dp'/Dq = x~"'"Dp„/Dq —S"Dp /Dq

+S ODp~/Dq. (4.16)

If the helicity equations are valid in general
curved spaces, then Eq. (4.16) should also be
valid. Although we cannot prove that this equation
is satisfied generally, it is easy to see that in
flat space each term in. Eq. (4.16) is zero, and the
equation is satisfied. In fact, Eq. (4.13) is an
integral of Eq. (4.15) in flat space.

V. POLE APPROXIMATION

The pole approximation is defined to be the one
in which S"= 0. We shall show in this section
what the consequences are.

From Eqs. (3.1) and (3.2), we get

Dp'/Dq = 0,

p'= ( p /v )v'=Mov',

(5.1)

(5.2)

where M, is a scalar (since p' and v' are vectors),

calculation, namely that a pole-dipole expansion
makes sense (i.e. , converges), breaks down. Thus
we shall consider as consistent with the assump-
tions of the theory only those solutions which do
not blow up. If Eqs. (4.8) and (4.9) are substituted
into Eqs. (4.2b) and (4.2c), then unless A = C = 0,
the spin components S" and S"will increase with-
out limit as time goes on. Thus we require that
A=C=O. But this means that v'=v'=0. Since vi

has already been shown to be null, this means that

v' = (v', v'", 0, 0), v' = v'". (4.11)

Equation (4.3} then shows that p"=p'". Thus p'
= const ~ v', which is what we wished to show.

To finish this section, we shaQ say a few words
about helicity. In texts on special relativity, "it
is shown that the polarization four-vector
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and from Eq. (2.2) can be written out as

Substitution of (5.2) into (5.1) gives

(5.3)

(5.9}. An arbitrary constant has been absorbed
into q.

Equation (5.7) used in Eq. (5.5}with (5.3) gives

dM /dq 0 (d=/d=q) g f T (—g) qdg . (5.10)

v'dMo/dq+ MPv'/Dq = 0. (5 4)

For material particles, Eq. (5.4) is enough to con-
clude that M, is a constant: Multiply (5.4) by v,
and sum. Since e,v' is not zero, M, must be con-
stant along the curve. For massless particles,
however, v, v' may be zero, and this argument
breaks down.

However, we can accomplish the same end by
utilizing the arbitrariness of q: Choose q to be
such that dM, /dq is zero. If the original. q does
not do this, transform to another q, call it q' in
terms of which from (5.3)

M'= (dx /dq') J T ( g)'~ dg-

We wish to show that this is a statement of the
conservation of energy and contains the red-shift.
U we write ds'= g„c'dt'+y, „dx'dx", then g =g«y,
where y is the determinant of the y„„. Within the
pole approximation, gpp can be brought in and out
of the integral sign. Then Eq. (5.10) can be writ-
ten

(d/dq) (g )"f T '( r)"rt0 -= 0 (5.11)

where T"= (g ) 'T,'.
The conservation of energy for extended material

particles and for an electromagnetic system is
computed from the energy density'

= M, (q)dq/dq'.

Here M', is the M, function when the new q' is used.
Choose now ' to satisfy M, (q)dq/dq'=const, i.e. ,
q' = const && M, (q)dq.

With this result (using the symbol q again), Eq.
(5.4) becomes

e=(g' )'"T'
Thus the total energy is

(5.12)

dMO/dq = 0,

Dv'/Dq = 0.

Further, use of (5.2) in (3.8) gives

v] p'= 0,

v;v'=0,

(5.5a)

(5.5b)

(5.6b)

(5.6c)

dx'/dq = (g„) '. (5.7)

The reason is that the i=0 component of Dv'/Dq
=0, Eq. (5.5), reduces in a time-orthogonal sys-
tem to

d( g»dx0/dq)/dq = 0.

But from v, v'=0, Eq. (5.6),

g„(dx'/da)'= 1,

(5.8)

(5.9)

where 0 is defined from ds'=gppcRV do' The
derivative of the square root of Eq. (5.9) is zero,
a result compatible with Eq. (5.8) only if Eq. (5.7)
is valid, using dx'dq = (dx'/da)(da/dq), and Eq.

Thus the path is a null geodesic.
To complete this section we shall derive the

red-shift for massless particles in a time-ortho-
gonal system of coordinates (g,„=0, u= 1, 2, 3).
From Eqs. (5.5) and (5.6) we can show that q must
be related to x' by

= mc'+ m V+ ' ' ' . (5.14)

The second term is the usual interaction with the
gravitational field. The first term is the isolated
particle energy.

Thus in Eq. (5.13) the integral may be inter-
preted as the isolated particle energy, which if
we identify with a frequency v we can call hv.
Thus

(d/dq)(g )'/'h)/=0 (5.15)

Thus the particle frequency varies as (goo) 'A.
This is the gravitational red-shift.

In this way we recover a number of familiar
results in the case where the pole-dipole particle
reduces to just a pole particle. It should be noted
that Papapetrou' also considered the pole-particle
limit. In his case Mp corresponds to the rest mass

But this is just what appears in the square brack-
ets of Eq. (5.11), and is the M, from Eq. (5.3).
Thus Eq. (5.10), dM, /dq = 0, is a statement of the
conservation of energy.

It is well known that the presence of the factor
(g»)' ' generalizes an energy in the absence of a
gravitational field to take into account the inter-
action with the field. Thus if g»= 1+ 2V/c', where
V is the gravitational potential,

(g»)'~'ma'= mc'(I+ V/c'+ ~ ~ )
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VI. THE EIKONAL APPROXIMATION

The eikonal approximation is a perturbation ex-
pansion based, on the smallness of the inverse
frequency; that is, it is the high-frequency limit.
High frequency refers to the propagating object.
The medium in which it travels varies relatively
slowly.

There is nothing, however, in the pole-dipole
formalism that refers specifically to a frequency.
In order to apply this approximation, therefore,
we must go beyond the formalism and associate
the frequency with the momentum four-vector p',
as is customarily done. Thus we look to a pertur-
bation expansion based on p' being very large.

Equation (3.1) then gives as the zeroth-order
equation

Dp'/Dq = o (6.1)

and Eq. (3.2) gives as its zeroth order-equation

of the particle. Although the rest mass of the
massless particle is zero in the sense that P,v'= 0,
nevertheless the quantity M, that appears in Eq.
(5.2) has been made constant along the path, and
denotes the constant of proportionality between
P' and v'. So in many respects it plays the role of
a rest mass.

Notice that the trajectories are null geodesics
for massless particles of all frequencies in the
pole approximation. Under this approximation then
the geodesic hypothesis is strictly valid. Finally,
Eq. (4.16) is satisfied.

al field. Such moments exist since the energy-
momentum tensor itself exists for such particles.
Further, most of the results of the work of Papa-
petrou' can be maintained. " The only additional
feature for massless particles is that T',. = 0. But
it is just this equation (or rather its moments)
that supplies the needed auxiliary conditions for
the pole-dipole approximation.

These auxiliary conditions are first of all Eq.
(3.8), p,.v'=0, which replaces p,.p'=0 as the de-
fining equation for a massless particle in a gravi-
tational field, and is the same equation found by
Jauch and Watson for a photon in a dielectric
medium. " The second auxiliary condition is Eq.
(3.9), v,.S'~ = 0, which brings back Mathisson's
original equation. '

The basic equations governing the motion are
Eqs. (3.1), (3.2), (3.8), and (3.9). They seem at
first glance to allow the possibility of nongeodesic
trajectories (just as the corresponding equations
do for material particles), but we have not yet
located a special case in which that has been shown
to be a rigorous consequence.

However, in the special cases of flat space (Sec.
IV), or in which the spin is neglected (the "pole"
approximation, Sec. V), or in which the frequency
becomes large (the eikonal approximation, Sec.
VI), it was possible to show that null geodesics
are the trajectories, and that the usual helicity
relations occur. Thus in these eases at least the
geodesic hypothesis is a consequence of the pole-
dipole equations.

p'v' —p'v' = 0 (6.2a) ACKNOWLEDGMENTS

for which the general solution is

P' =Mv~, (6.2b)

VII. SUMMARY

In this paper we have applied the moment expan-
sion of the energy-momentum tensor to the case
of massless particles propagating in a gravitation-

where M is a scalar that can be identified from
the equation with p'/v'.

Equation (3.2) then gives as its first-order equa-
tion

(6.3)

Equations (6.1)-(6.3) constitute the eikonal limit
of the pole-dipole equations. Equations (6.1) and

(6.2) are the same as in the pole approximation,
and the argument of Sec. V can be applied here,
leading again to conservation of momentum, null
geodesics, the red-shift, and the validity of Eq.
(4.16). Equation (6.3) shows that the spin tensor
is pary. llel propagated in this limit.

One of the authors (M.B.) was on leave at the
Instituto de Ffsica e Quimica de Sao Carlos when
this work was done, and wishes to thank the Insti-
tuto and in particular Professor Boberto Lobo for
inviting him to their campus and making his stay
a great pleasure.

APPENDIX A: TRANSFORMATION PROPERTIES OF THE
MOMENTS OF THE TRACE Ti,

In this and the following appendix, we rely on
the paper of Papapetrou, ' and shall adopt his no-
tation except for the following. Latin indices are
used for 0, 1, 2, 3. Papapetrou's velocity u' = dh'/
ds is replaced by our v'=dh'/dq, and all deriva-
tives are taken with respect to q, not s. In the
equations we use, this replacement is justified.
(For example, dh'/dt can be written as v'/v'
just as well as by u'/u' in general. For light in
say flat space, it is essential since ds =0.) Final-
ly we shall use i,j,k, l to indicate the unprimed
system, and a, b, c,d, ... to represent a primed
system of coordinates, when two coordinate sys-
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tems appear in the same equation.
Papapetrou's paper uses quantities defined as

M'k= Vo yak g i/2dZ, (Al)

M~'k - v 5x'T k g 'i dZ (A2)

where T'~ is the energy-momentum tensor and
6x' is the distance between the central point X'
and the arbitrary point x' in the particle. These
M quantities are not tensors.

We shall be interested on the other hand in the
quantities

M"»=L' L",(L",— JL',/ )M'"
a

(L' L» y Li L» )M'nk»
a b ac b a bc

+ (d/dq)(L' I." I +'" /v )

(A10)

(All)

where the transformation is between the primed
and unprimed systems, and where

(A9)

to within the pole-dipole approximation.
The transformation properties of the objects

in Eqs. (A8) and (A9} are obtained from Papape-
trou's Eqs. (4.3) and (4.4) which we rewrite here
as

=v' y' -g '

Mgi» vo 5x~T' (-g) dZ,

(A3)

(A4)

I.' = ex'/Sx"
a

= s2x*jax"sx" = I.*'

ab ba'

Using

(A12)

since from these we can form the trace T', which
is zero in the case of electromagnetism:

ng ab=An~ a~ » (A13)

we see immediately from Eqs. (A10) and (A8) that

M' =0 (A5) Mi» = (L' —v~Lo /v'}M'" .k c c a' (A14)

M' =0i (A6)

=g,. (X)+ (I',.„+I', „)6x".

Then from Eqs. (A3) and (A4) we get

M' -g~ '"

(A7)

(AS)

In Appendix B we shall show that Eqs. (A5) and

(A6) lead to the auxiliary conditions of Eqs. (3.3)
and (3.4) of the paper.

In this appendix, we wish to show that if M',. and
M",. are zero in one system of coordinates, then
they are zero in all systems. Thus even though
they are not tensors, they have this invariant
property.

To do this, we relate the M'k's to the M' 's by writing
T'» = g», T'i in Eqs. (A3}and (A4) and expanding the
g;q. s:

g, ,(x) =g,.„(X)+g„„(X)5x"

Thus if M'", is zero for all c in the primed sys-
tem, then Mjkk is zero for all j in any other sys-
tem.

For M', , insert Eq. (All) into Eq. (A9) after
setting i=i and summing. Using Eq. (A13) and
the usual relation d(fg)=fdg+ gdf, we reduce Eq.
(All), and use both it and Eq. (A10) in Eq. (A9).
After some manipulation we find

M',.= M",+ (d/dq) (L'~'",/v')

[(Sg'„/ax") r'„„-r'„„]M'"'. (A15)

The square bracket is Dg'„/Dx" which is zero.
From Eq. (A15) we see that if M", and M'", are
zero in the primed system, then M',- is zero in
any other system. This completes what we wished
to show: If M'; and Mk',. are zero in one system
of coordinates, then the corresponding quantities
are zero in any system of coordinates.

APPENDIX B: DERIVATION OF THE AUXILIARY CONDITIONS

In this appendix, we use Eqs. (A5) and (A6) to derive the auxiliary conditions (3.3) and (3.4) that help de-
fine the pole-dipole model. To do this, we use Papapetrou's Eqs. (3.8) and (3.10), which we rewrite as

2Mii» (Si Jvk+ Sik 9)+ ( a/ 0)(SO/ k+ Sok J)

M' =v'v (v ) M —(v'/v )r M»™n—(v'/v )d(M /v )/dq —d(M' /v )/dq —I'» „M™
Using (Bl) in (B2) and symmetrizing M'k, we find after some calculation

M*'= v'v'(v') '(M"+ I'„„v"S™0)+,' (v*/v')dS"/dq+ ,' -(v'/v')dS"/dq+ r-'„„(v"/v')-,' (v'S' + v'S' )

+ —'(djds)(v S' /v +viS '/v')+ '(I S'"+ I ' Sk™)v

+ ~ (I k „v~+ rs „vk)vnSmo/vo

(Bl)

(B2)

(B3)
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Now from Eq. (A6), using Eqs. (AB) and (Bl),
Mi» =0= S-i»v +v4v So»/v . (B4)

This is Eq. (3.4) of the text. Further discussion of it can be found there.
The computation starting from Eq. (A5) is rather tedious. Equation (B3) is reduced by noticing from Eq.

(2.1) that the first term is

viv»p%vo ~[vi(p» (vo) 1DS»0/Dq)+ v»(pi (vo) 1DSio/Dq)]

The last form appears because of Eq. (2.11) of Sec. II.
Using

DS"/Dq=ds"/dq+ r' „S 'v"+r'„P' v",

we find from Eq. (B3)
I'"= ~» (v'p" + v'p')+» (d/dq)(v'S "/v'+ v'S "/v')+» v "(&'„p' + I'" p'™).

Rewriting covariant derivatives on the v»S" factors, using Eq. (B6), we obtain

Mi» (vip»+ v»pi) —(vo)-»(dvo/dq)(v»Sio~ iS»0)+ (vo)-1(D/Dq)(v»SiO+ viS»0)

——
(v ) i[(I"„„v+ I' „„v')S"ov"+(I' „„S"+ I"„„S )v v"

+ I 0 „v (v»S ~+ viS»g]+ F» Pimvn+ I i P»mvn

(B5)

(B6)

(BV)

(B6)

Now we go back to Eq. (A5), insert into it Eq. (A9), and then into that result Eq. (B6), where in Eq. (A9),
Eq. (Bl) is used. After considerable rearrangement we find

M', = 0= v'P, —(v ) '(dv'/dq)b + (v') 'Db'/Dq,

where b' is the zeroth component of b'= v»S»'. By defining a= bo/v', we can convert this result to

v'p,.+ da/dq = 0.

Equation (B10) is Eq. (3.3) of the text.

(B9)

(B10)
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