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Neutron-star mass limit in the bimetric theory of gravitation
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The "neutron"-star upper mass limit is examined in Rosen's bimetric theory of gravitation. An exact
solution, approximate scaling law, and numerical integration of the hydrostatic equilibrium equation show the
dependence of the mass limit on the assumed equation of state. As in general relativity, that limit varies
roughly as 1/~po, where po is the density above which the equation of state becomes "stiff." Unlike
general relativity, the stiffer the equation of state, the higher the mass limit. For po = 2)& 10" g/cm'
and P = (p —p,)c ', we found M,„=81Mo. This mass is consistent with causality and experimental
tests of gravitation and nuclear physics. For dp/d p & c ' it appears that the upper mass limit can become
arbitrarily large.

I. INTRODUCTION

I

The mass of a neutron star arising from a partic-
ular choice of equation of state and gravitational
theory is of interest for two reasons. First, since
there are now several neutron stars with approxi-
mately known masses, one can begin to compare
observational data and theoretical models to set
constraints on the equation of state P = P(p), the
theory of gravity, or both. Second, since the best
case for the existence of black holes depends cru-
cially on the value of the upper mass limit, it is
important to know what this limiting mass 1Vl,„ is
and on what assumptions it depends. Many papers
have appeared in the literature on this subject (for
a recent review see Brecher and Caporaso'}.
In a previous paper' we have examined the
effects of varying P(p) in general relativity. ln
this paper we wish to examine the effect on M
of varying P(p) in an alternative theory of gravity
and compare these results with the general-rela-
tivistic case.

The bimetric theory proposed by Rosen' appears
to be the only currently viable alternative theory
of gravity to general relativity' [other than the par-
ametrized post-Newtonian (PPN) theories coni
structed explicitly to satisfy the classic tests, but
which are otherwise without physical foundation].
It conforms to all of the experimental tests. Fur-
thermore, it does not permit the existence of
black holes. It does appear to allow binary systems
to emit "negative-energy" gravitational waves
causing the stars to move apart with time. ' As a
matter of principle, this may seem more disturb-
ing than violations of parity or of time-reversal in-
variance. However, we take the point of view that
only logical inconsistencies or observationally in-
correct predictions should be used as arguments
against the bimetric theory, neither of which exist
at present. In this paper, we will be concerned
only with particular consequences of the bimetric

II, THE GENERAL PROBLEM

If we choose y„„=q„„=diag(1,—1,-1,-1), then
the line element appropriate to the study of a non-
rotating, spherically symmetric neutron star may
be taken as'

ds =e2odP e &(d~ +dy2+dz )

where g=((r), Q= Q(r), r'=x'+y'+z'. Taking T„"
as the stress-energy tensor of a perfect fluid,
namely

T,o= p, T1'=T2'=T, '=-P, all others 0,
with density p = p(r) and pressure P = P(r), Rosen's
field equations become' (in units where G = c' = 1)

~2y y Ii+ y I —4+e o&4(p ~ 3P)
2

(2)

@2~= ~"+—~
'= 4ve '+"(p P—)

2

theory. At the very least, they will help to clarify
the very singular predictions of general relativity.
For further details and some unique features of the
theory itself, we refer the reader to the original
papers of Rosen."

The masses of neutron stars in the bimetric
theory were previously investigated numerically by
Rosen and Rosen' for a particular equation of state.
They found neutron-star masses about five times
larger than those calculated in general relativity
with the same equation of state. In a subsequent
numerical calculation' these results were extended
to "stiffer" equations of state. In the present paper
we present an exact solution for a specific equation
of state, an approximate mass-limit scaling law
for any equation of state, and the results of numer-
ical solutions for three different equations of state
in the bimetric theory. In addition, we compare
these results to some corresponding general-rela-
tivistic results.
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The energy-momentum relations' T„".„=0 yield the
hydrostatic equilibrium equation

P'+(p+P) y'=0. (4)

y =-Mir, y=M'/r,

where

(5)

Outside the star"' (for r~R, R is the neutron-star
radius)

It should be noted at this point that numerical solu-
tion of the field equations for a neutron star would
involve correctly choosing the two initial param-
eters (t), and (, until a point is found such that both
boundary conditions (7) are satisfied. However,
by making appropriate use of information contained
in (14), this two-dimensional space of trial initial
conditions can be reduced to a line.

To accomplish this we define a new variable
8(r), following Rosen, '

M = 4&&r (p+3P)e ~"2dr
0 8(r) =- e(r) —0(R) . (16)

and

R
M'= 4nr'(p'—P)e~ "2dr .

0

(Note that M' is not the derivative of M but is an-
other mass distinct from M which contributes to the
deflection of light near the star. ) The boundary
conditions for the field equations are

With this definition the field equations (2) and (3)
become

r ' — =— = 4ve '""'"'(p+ 3P)
d 2d8 1 dM

'V df' dT J' d0

(17)

1 d 2 dg 1 dM'r' —=-—, =4''"'~&"'(p-P).
'V

(II)'= P'=0 at r=0,
r &t&'+ P = 0, rP'+ P = 0 at r =R .

(6)

(7)
If we now make the transformation

(18)

(19)
Now, for x &R,

r
M(r) = 47&r2(p+3P)eo 22dr,

J p

r
M'(r) = 4wr'(p- P)e~ "2 dr.

0

(8)

(9)

(10)

With these forms for M and M' we note that (2)
and (8) and (3) and (9) yield, respectively,

where o. is a dimensionless constant, we can re-
duce Eqs. (17) and (18) to

dM(r)
dh

= 4@F'e&)'~'+'&'~'[p(F) + 3p(F)]

dQ'~- ) - 4~F2e &)&F&+3)&&P&[p(F) p(F)jdF

(20)

(21)

where 8(F) =8(r); T()(F) =p(r), P(r) =P(r); p(F) =p(r),
nM(r) =M(r), and &&.M'(F) =M'(r), and these func-
tions are given by

o(r)=o(o)+f

o(~) =o(o)-f ™~„

(12)

(13)

dM'
( 2q))

df'

Solving for (t)' and g
' in these expressions and in-

tegrating gives

" M(F)dF8r =8+
p

—
( )

" M'(F)dr
Q

M(F) = 4~F2e '"'"""&[p(r)+37(F)]dF,
0

r
M '(F) = 4&&F e 2'"&+ 2 " [P(F) —T&(F)]dF,

0

if we choose

(22)

(23)

(24)

(25)

Now, defining (t), =—P(0) and g, =-g(0) and integrat-
ing the hydrostatic equilibrium equation (4) from
~=0 to ~=R, we have

~ -~-+(R) /2 (26)

With (16) and (19) the hydrostatic equilibrium
equation (4) can be written as

P =P(p) . (15)

dP
e(R) —e.=- (14)P+p '

where p, is the central density (at r =0) and p, is
the surface density (at r=R) and where P is related
to p by an equation of state

d8(

while (14) and (16) imply that

~c dP
0 P+p

(27)

(28)
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The boundary condition (7) on g now becomes r'(P + 3 g)
' = 0 . (41')

(29)
From (36) it is seen that C, must vanish, that is,

P(r) +3&(r) = C, . (42)

~-g (g) /2 eg(g) /2R

Thus we have

(30)

so that the boundary conditions are now 8(R) =0 and
Eqs. (27) and (28).

To solve a neutron-star structure problem an
equation of state along with a central and surface
density is chosen. This gives 80 through (27). Next
a g, is chosen and the equations for p, P, M, M',
e, and g are iterated radially outward from r= 0
untal 6(r) =0. At this point the boundary condition
on T&&, Eq. (38), is tested. If the boundary condition
is not satisfied to within the desired precision P,
is changed and the procedure repeated as often as
necessary until the boundary condition is met. At
this point R, M(R), and M (R) are known. Now

(26) becomes

The hydrostatic equilibrium equation (4) and the
equation of state (34) yields

dp 4pM(r)
dy r2 (43)

p(r) =k/r'.
Substituting this into (43) we find that

e-Co
P' = 16-

(44)

(45)

Noting the similarity of this equation to the gener-
al-relativistic and Newtonian cases for P =Pp and
recalling' that p CC1/r' is a solution in both in-
stances, we seek a solution of the form

M(R) =)V(R)es&"»2",

M'(R) =M'(R)/&7&&&&~2&&

g -ate@(R)/2R

completing the solution of the problem.

III. AN EXACT SOLUTION

(32)

(33)

M(r) = ,'r. -
Now from (10)

dQ M(r) 1

Similarly,

dg 1
6y

(46)

(47)

(48)

Consider the field equations for the equation of
state so that

P=& p.
Adding Eq. (2) to three times (3) yields

(34)
y(r) -A+ —,

' lnr,

g(r) =B ——, 1nr .
(49)

(50)

V'Q+3V g= V (Q+3$) =0. (35)

/+ 3(= Co+ C,/r .
Now from (10) we have that

(36)

(37)

The problem is spherically symmetric so only x
dependence is possible. Thus A+ —,'(lnR+1) =0,

B ——', (lnR+1) =0.
(51)

(52)

Adding (51) and three times (52) we obtain A+3B
=0. But, by (42), A+3B = C„ thus

Now at some r =R, Q and g will both satisfy their
respective boundary conditions (7) if a p, greater
than zero is chosen. Then (7) becomes

If we integrate and assume that

lime —=0,dJ' (38)

and

C, =0 (53)

(54)

then

r'y'(r) =M(r) .

Similarly

Note from (49) that

1
0'(r) = —.

2%
(55)

r 'y'(r) =-M'(r) . (40)

Now adding (39) to three times (40) and recalling
(8) and (9) we have

This violates the boundary condition (6), but con-
dition (38) which was assumed in the derivation is
satisfied. It is not too surprising that condition (6)
is violated in this special case as p, is infinite.
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C

16 G
(56)

Now, selecting a density p„below which nuclear
physics is assumed known [i.e., where (34) no long-
er applies] we may find the "core" mass. Insert-
ing the appropriate physical constants, (45) and
{46)become

Thus (31) becomes

M (R) = M(R)e 30-/'.

If we now define an average density p by

( )
4wPR'

3

then

(64)

(65)

M(2') =

Now if r„ is the core radius

(57)
M (R) 4)/R2p

R 3 0

and

(66)

16mG p~

and the core mass M(p„) is

"'-.(..') (
—)"'(—.

')"'

(58)

thus

(67)

= 3.91 — ~p, (59) Using (64) and inserting appropriate physical con-
stants the mass becomes

where p, =2 x 10"g//cm3. For P=o(p in general
relativity, the core mass (for p, =~) is' I((()=( )'"( " ')"'e "i'

and the radius is

(60)
C 0 ee0/ (69)

For P= 3p and P= p, respectively, this is As an illustration consider the. equation of state
p

1/2
M(p~) = 1.55 — Mo,

1/2
M(p„) = 1.96 — M

pN

(61)

(62)

P=npc'.

Then 80 becomes

80 = — ln—

(70)

(71)
Equation (60) has a maximum when n =1. Thus
we immediately see that the core mass for P= 3p
in the bimetric theory is twice as large as the
largest core mass for P = ~p in general relativity.
This reinforces the notion' that neutron stars have
larger masses in the bimetric theory than in gen~
eral relativity. As we shall show, we have found
that this is the case for many numerical solutions.

1/2 " 2~ 3/2
—=

4 G(] )
f( ),

i/2- 2 - Z/2

4mp, t" 1+0. g(x),

where

If we put p = p, then M and R can be written as

(72)

(73)

8(R) =8, +
"M(r)dr

y—2

We expect 8, i9, and R to be related approximately
by

"M(r)dF M(R)80=- r R (63)

IV. APPROXIMATE SCALING LAW

Qualitatively, we may obtain some idea of how
the maximum mass of a neutron star depends on the
equation of state in the bimetric theory. By Eqs.
(10), (12), and (16) we see that

x=ln —'

f( )
— 3/2 -x/2(1+n)

g(X) —X 1 /2e-x/2 (1+n)

Maximizing these functions yields

x =3(1 )+=()l(n —'
f

ps

x =1+0.=ln-pc

p

(74)

(75)

(76)

(77)

(78)
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So the maxima for M and R are
1/2

M = 31.4 — n'i'M
S

1/2
R =-24.3 — o '~' kmmax

S

(79)

(80)

4GM

0

and, in the extreme case P» p, M —-3M'and

(83)

(84)

where po=2x10" g/cm'. With p =2x10" g/cm'
we find for n= —,

' that M—= 6M and R=—14 km. For
o. =1, one has M—= 31Mo, R —= 24 km.

Note that the disagreement between M here for
n = —,

' and the exact solution found earlier is due to
the fact that the exact solution corresponds to the
case of infinite central density, while here the
maximum mass occurs when p, = p, exp[3(1+n)].

Note also, however, that unlike the general-
relativistic case, ' where M(n) peaks for n =1, in
the bimetric theory M -n '~' so that there does not
appear to be an upper mass limit (independent of
the equation of state) to a neutron star in the bi-
metric theory. This n' ' dependence also arises
for Newtonian stars with P=o'.p and infinite central
densities. Rosen and Hosen' found that the masses
calculated for an equation of state with one param-
eter in the bimetric theory were about 5.6 times
the corresponding maxima in general relativity.
Their equation of state was "soft" at low density
but dP/d p approached 1 as p increased to infinity.
That is, the effective n for their equation of state
was less than 1. Thus they obtained lower masses
than the present results.

In Rosen's theory there are two distinct masses
M and M '. As has been noted, ' M corresponds to
the Newtonian mass and influences orbits of bodies
at large distances from the star, while M' contrib-
utes to the deflection of light rays passing close
to the star. In fact, to first order in GM/x, c'and
GM'/r, c' the angular deflection of a ray incident
from infinite distance with "impact" parameter y,
is, following Weinberg, '

or —,
' the general-relativistic value. In this case,

however, GM/roc' is likely to be of order1, and
thus more terms in the expansion for ~y must be
examined.

c dP
P+ pc''s

(85)

Next we choose a radial increment AF and iterate
the equations for 8, (, M, M', and p. A nFof 10'

meters was used for the calculations. Equations
(22) and (23) in iterated form are

G0=0+-
C2

MZF'

y
—2 (86)

G 1V'aF

Similarly, Eqs. (24) and (25) for M and M'become

M =M+4mr'ate~~" (p+3P/c'),
M'=M'+4wr'~Pe'"'(p- P/e') .

(88)

(89)

The hydrostatic equilibrium equation (27) becomes

'P(p+P/c')MG
r"(dP/d p)

(90)

where we have used the fact that dP/dr =(dP/d p)
x(dp/dh). The last relation needed is the equation
of state

V. NUMERICAL TECHNIQUES AND RESULTS

We now turn to the numerical solution of the neu-
tron-star structure problem for any equation of
state. We first find 8, from Eq. (28):

'y=, (M+M').2G
t'OC

(81) P=P(P). (91)

Now recalling Eq. (9),

4m"e"'(p P) dr, -
for the case P=o'. p we see that

(9)

First the equation of state was selected, then p,
and p, were chosen, and gowas found from (85).
A g, was chosen and the equations were iterated
from F=O outward until g(i) vanished. At that
point, boundary condition (29) was tested

Rg'+/=0. (29)
M'=(1 —a) 4m''e '~pCh. (82) The prime denotes differentiation with respect to

F. By(11) and(23) this is
As n-1(P approaches p), M' shrinks relative to
M. When n =1(the so-called "causality limit" ),
M' vanishes and for "superluminal" equations of
state, "where P& p (n&1), M'can become nega-

,

'tive. Inany case, M&M'so that (81) will always be
smaller than its general- relativisitic counterpart

GM'(R)
Rc' (92)

If this condition were not satisfied to the desired
precision g, would be indexed to a new value and
the equations wou1d be iterated again unti1
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FIG. 1. Results of numerical solutions to neutron-star structure for the three equations of state mentioned in the

text in Rosen's bimetric theory (dashed) and in general relativity (solid). Note that the masses in the bimetric theory
are much larger than in general relativity and that M vs p, peaks at much higher central densities than in general
relativity.

(92) was satisfied. The masses M, M' and the ra-
dius R would then be found from Eqs. (31), (32),
and (33).

Curves of M vs p, were found for 3 equations of
state which have been studied previously in general
relativity. The equations" used were

P =c'(p —2 x10' ),
P =c'(p —4.6 x 10"),
P =

3 c (p- 2.28 x 101 ) .

The resulting curves are shown in Fig. 1. For
comparison the corresponding general- relativistic
curves are also shown.

Several points were also computed using 1-meter
iterations in 7 to test the sensitivity of the results
to step size. The points generally agreed to within
1%. The equation of state used by Rosen' with X

=40 was also used. As a check of the technique the
point corresponding to p, =1.8 x 10'p, (the M vs p,
maximum) was computed. The resulting M, M',
and R all agreed with Rosen's results to within a
few percent.

The maximum mass obtained was 81 Mo. When
computations for I'=2pc' were attempted, the re-

suiting masses were orders of magnitude greater
than that obtained for P = pc' and the quantitiy
exp(2GM/Rc') became on the order of 10'-10'. The
step size was probably too large at that point to
give accurate results.

VI. DISCUSSION

The importance of these results lies in the fact
that they clearly demonstrate that the upper mass
limit of a neutron star is critically dependent on
the theory of gravity used to calculate it.

It is conventionally assumed that if a collapsed
object with a mass greater than a few Mo is detect-
ed it mustbe ablack hole. Since this is the only way
currently to find a black hole, it is now clear that
one must simultaneously know which theory of
gravity is correct.

Current gravitational theories have only been
tested in the weak-field domain. However, all vi-
able theories of gravity are constructed so that
they will agree in this domain. But the upper mass
limit depends critically on the behavior of gravity
in the strong-field limit where there have been no
tests of gravitational theories. The mass deter-
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mined by doing orbital mechanics on a neutron star
in a binary system is M. Therefore in the case of
CYG X-l, whose mass is estimated" at between
3 and 10 Mo, we see that one cannot draw the im-
mediate conclusion that it must be a black hole.

If one could study the deflection of light, say by
a neutron star in a binary system, one should ob-
serve a smaller effect than in generalrelativity
since M ' &M; indeed M ' may even become negative
for sufficiently massive neutron stars. Will4 has
noted that the binary pulsar PSR1913+16 could
emit gravitational dipole radiation at a sufficient
rate to produce a detectable change in the orbital
period. In the absence of either of these observa-
tional tests of the theory the mass limits derived
here must be taken as allowable within the present
experimentally tested laws of physics. On the

other hand, if a collapsed object is ever discovered
whose mass is greater than the mass limit set by
general relativity, and the object is found to be a
neutron star (because it is a pulsar, for example),
one may reverse the above arguments to support
the bimetric theory as more viable than general
relativity.
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