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Space-time structure in a generalization of gravitation theory
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A generalized theory of gravitation, formulated recently in terms of a nonsymmetric field structure, is

derived from a variational principle, and its relation to the Einstein-Maxwell theory is studied in detail. The
physical interpretation of a new universal constant k that occurs in the theory is considered, and reasons are
given to choose the constant to be ~ki = h Glc 'e = L '/e, where L = (hG/c ')'" is the Planck length.

The exact static spherically symmetric solution of the theory is shown to be world-line complete. The
timelike and null (radial and nonradial) physical paths of test particles are deflected away from a sphere S
with a radius r, —L. A discussion is given of the implications of the nonsingular solution of the theory for
large- and small-scale physical phenomena.

I. INTRODUCTION

It has long been thought that all of physics can
be deduced from a purely geometrical theory.
With the advent of Einstein's theory of general rel-
ativity, ' in which the gravitational field is inferred
from the curvature of space-time, the idea of de-
scribing physics as geometry received fresh im-
petus. For various reasons, this program has not
met with any great success due mainly, perhaps,
to a lack of a deeper understanding of the role of
quantum theory in general relativity. The prolif-
eration of new ideas and experimental data asso-
ciated with elementary-particle physics has di-
verted attention away from efforts to geometrize
all of physics.

In spite of the well-founded reasons to suppose
that physics is not geometrical in origin, there is
the persistent feeling that a physics which does
not incorporate the general theory of relativity is
ultimately prevented from reaching a logical, uni-
fied description of nature. Einstein devoted many
years attempting to extend his gravitational theory
to include the electromagnetic field in a consis-
tent, natural field structure. This structure would
constitute a generalization of the gravitational the-
ory based on Riemannian geometry. The starting
point of his theory of gravitation was the recogni-
tion of the unity of gravitation and inertia in the
principle of equivalence. From this principle and
the specific properties exhibited by the behavior
of light in empty space, he deduced that the theory
should be described by a symmetrical metric ten-
sor; the mathematical description of the gravita-
tional field was almost completely determined. '

Any attempt to extend the theory of general rel-
ativity to include, within the geometry, Maxwell's
electromagnetic field, meets with difficulty be-
cause of the many possible approaches to the prob-
lem. The attempt based by Einstein on a, (complex)

nonsymmetric g „ is the mathematically most ele-
gant of all the extensions proposed. '"' The tensor
g„„is decomposed into its symmetric and skew-
symmetric parts according to the equation

&f v
=g (u v)+ gi i v) ~

where

lg
&&~v)

= a ( g~v +&vv) = S~v i

1/
g(uv] ~i~vv g» = » ~

where the s„„and a „are real quantities. The g „
satisfy the condition of Hermitian symmetry g „
=g„„, which is the generalization of the condition
of symmetry of the metric tensor of gravitation.

As emphasized by Einstein, ' the principle of
equivalence gives no clue as to the unequivocal
choice of mathematical equations necessary to
formulate the theory. This would appear to be a
strong objection to any program to unify gravita-
tion and electromagnetism. However, it is neces-
sary, as in all extensions of physical theories, to
formulate a close connection between the new the-
ory and the old laws of physics that have been
proved by experiment to be correct. Any general-
ization of gravitation theory should contain Max-
well's equations and Einstein's equations of gravi-
tation in an unambiguous way through a principle
of correspondence. Such a principle reduces con-
siderably the possible choices of field equations
based on a nonsymmetrical tensor g „.

A principle of this kind was recently proposed. "'
It represents a powerful physical argument which
suggests that, in spite of the objection raised
above, the nonsymmetrical theory is the natural
and correct generalization of Einstein's theory of
gravitation. The theory reduces to the Einstein-
Maxwell field equations in the limit that a funda-
mental constant i'e tends (formally) to zero.

Another objection riased against the nonsymmet-
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II. THE FIELD STRUCTURE, THE VARIATIONAL
PRINCIPLE, AND THE FIELD EQUATIONS

The concept of the infinitesimal parallel dis-
placement of a vector A.~ can be extended to the
nonsymmetric field by

eg

&A =I'„~A dx~,

(2.1)

(2.2)

where I'~ „ is the affine connection decomposed ac-
cording to

uv (vv)+ f.v V3 ' (2.3)

The 1 ~„satisfy the inhomogeneous coordinate
transformation law of an affine connection given by

rical theory'"" is that it is in disagreement with
the principle that only irreducible quantities should
be used in field theories. This principle seems to
have been upheld in past field theories. However,
if the theory is invariant under a aider group of
transformations, then the property of the reduci-
bility of the r~, and R „ is, in part, removed. If
the theory is developed in terms of a complex tet-
rad formalism, "then the scalar density K (Ham-
iltonian or Lagrangian density) can be shown to be
invariant under the local gauge group of transfor-
mations of U(3, 1) which contains U(1) 80(3, 1)."
It has also been shown that the theory is readily
extended to a standard Yang-Mills scheme. " This
feature of the theory could be of fundamental sig-
nificance for our understanding of the interrela-
tionship of gravitation and electromagnetism to
other forces of nature and to quantum theory.

In the following, we shall investigate some of the
implications of the new theory for our understand-
ing of space-time structure, particularly at small
distances. In practice, it is customary nowadays
to study the field equations as a system of partial-
differential equations with gloria/ properties. " We
shall investigate the nature of the singularities
that occur in the exact solutions of the differential
equations. It is found that the exact spherically
symmetric static solution of the field equations
leads to the property of world-line completeness, "
i.e. , no physical timelike or null world lines ean
terminate at the point r= 0, owing to an analytic
boundary surface that occurs at small distances.
The rigorous solution is nonsingulm. The singu-
lar event horizons in the solution are caused by
the choice of coordinates, and can be transformed
away by analytically continuing to a maximally ex-
tended solution.

This interesting result could have far-reaching
implications for our understanding of space-time
structure for both large- and small-scale physi-
cal phenomena.

rx ex' Bxe Bxy e ex' 9 x6
&x ex' ~x' ~~ ~x ~x' ~x' '

P V 6 v v

(2.4)

It follows that the antisymmetric part of 1 ~„ is a
purely imaginary third-rank tensor.

Taking into account (2.1) and (2.2), it follows that

and

A~ = 8 A~+A~l"~
IV v GV (2 5)

(2.6)

The contracted curvature tensor is

The field equations will be derived using Schro-
dinger's" definition of the affine connection and
the Palatini method. " The connection I'~„may be
expressed in terms of another connection TV&, by
the equation

(2.1o)

where

It can be verified immediately that

(2.it)

(2.12)

A "covariant derivative" will be defined in terms
of the R"„„connection as

g
p v g g

llv + gfyv gpg + gv fygf v
g

p vgTfy

(2.13)
in which g~" = v'-g g"v is the fundamental tensor
density.

We shall choose as the integrand for our varia-
tional principle a scalar density K, built out of the
g ", W~„(or out of g~", I'„„, and W~) and their
first and second derivatives. The variational prin-
ciple requires that

(2.14)

where the g~" and 1"~„are to be varied indepen-
dently of one another.

The scalar density R is chosen to be'

have tensor character, just as in the ease of the
Christoffel symbols of general relativity.

The contravariant tensor g~v can be related to
the covariant tensor g, v by the equation

(2.7)

where the order of the suffixes is important.
As in the symmetrical theory, a curvature ten-

sor may be derived by parallel displacement of a
vector along a boundary of an infinitesimal surface
element:
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VV
4m'G

9 l4v(+ h2 4 9 gfvP 3 1kc (2.15)

where R „(W) is the contracted curvature tensor
of the connection W~„. Moreover, h is a (purely
imaginary) universal constant to be specified later.
Equation (2.14) can now be written as

principle. " The scalar density (2.15) is invariant
under the projecNve transformation (2.10) and
leaves the vector W„undetermined. Moreover,
the 64 partial-differential equations (2.23) can be
written in a simpler form in terms of g„v. The
field equations can finally be written in the form

[&'"5R,„(W)+*R„,(W) 59"]d'&=0. (2.16)

The second term in (2.16) immediately gives the
field equations

~eg~v -g~I'~e -g&.i'ev= o
~

g gtPv3 0

+(v v)

~ *~&&V3+8 *&i ~3+8. *&iv 3=0.

(2.29)

(2.30)

(2.31)

(2.32)
*R „(W)=0.

It can be shown that"

&R&&(w) = (5W&&) (5W& ) &+ 2WL p]&w&

(2.17)
Equation (2.32) follows as a consequence of (2.25).

This is the set of field equations of the gener-
alized theory.

If we define the skew tensor density
(2.18) W@t,av] &ovpe gg=2 [Phyl &

(2.33)
By partial integration, it follows that

then Eq. (2.32) can be written in the alternative
form

where
(2.19)

wgfov] 0
V (2.34)

Among the eight equations (2.30) and (2.34), two
identities hold:

vv gpv + 2gpvg7 Qv Ovg~ 2gpggfvJe e 3 e 8 te83 '

(2.20)

Equations (2.16) and (2.19) yield

(s 9Evv])

(s +6IL'vv)) 0

(2.35)

(2.36)

S~v =0 (2.21)

The variation of the second term in (2.15) gives

5(9""'g ) = 5(g'"g )

Q gtJ V +

gpss

Vl Qg

teel
=(Av~& -going gm

g g glpvJ) 5gllP (2.22)

If we now substitute W~„, defined by (2.10), into
(2.20) then, using (2.17), (2.21), and (2.22), we
are led to the field equations

t
gv + go'vpv + gp opv gV vga 0

I" =0,

In the above

(2.23)

(2.24)

(2.25)

4mG*R„„=R„(I')+, 4 I„„k'c (2.26)

From (2.23) by contracting on v and u we get,
using (2.12),

[v el
eg (2.28)

The vector 8' is not determined by the variational

The scalar density (2.15) was considered by
Einstein in 1953."'" However, the scalar density
chosen by him as the basis of his theory was of the
fol m

K= g'"R„„. (2.37)

It did not include terms of the form g"v'g, v„,
etc. , which depend on g, v alone. To quote Ein-
stein": "All such additional terms bring a hetero-
geneity into the system of equations, and can be
disregarded, provided that no strong physical
argumentis found to support them" (our italics).
We feel that strong physical arguments have been
found to support a theory based on the scalar den-
sity (2.15), which includes a quadratic term
g'~"3g,„„3. Indeed, in the next section, we shall
show that such terms are essential to provide a
firm physical interpretation of the nonsymmetri-
cal unified field theory.

III. THE CORRESPONDENCE PRINCIPLE,
THE EINSTEIN- MAXWELL THEORY,

AND THE PHYSICAL INTERPRETATION OF k

Now that we have surveyed the formal aspects
of the theory, we must study in detail the physical
content of the equations. The question which comes
into the foreground in the theory is: How do Ein-
stein's theory of gravitation and Maxwell's equa-
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gr."3= k+" (3.1)

where k=iw and v is a real constant. The metric
of space-time in the generalized theory is deter-
mined, as in the gravitational theory, by

ds =g~pdx cog (3 2)

tions for the electromagnetic field fit into the
scheme~

In earlier work, based on Einstein's nonsym-
metric theory, "the field equations were studied
in the weak-field approximation in which the sys-
tem of equations decomposed into two sets of equa-
tions, one for the, symmetric components of the
field. the other for the antisymmetric components.
The equations for the antisymmetric part were
shown to correspond to a much weaker system of
equations than Mmovell's equations. Moreover,
the equations of motion for a charged particle did
not follow, in a natural way, from the field equa-
tions. "

It would seem more plausible to expect that the
covariant (nonlinear) Einstein-Mmvvell theory
should appear as the underlying appmximation to
the generalized theory.

We shall adopt the following identification:

tion. In the notation of Ref. 14 [the normalization
is different from the one we have adopted in Eq.
(2.15)] and in general units, Borchsenius obtained
the value

2iSG
P= — 3 ~c e

(3.6)

If we write

gu v g(tt, v) ~ tt v& (3.7)

kc4
tt 12gG P &

(3.8)

where W is defined by (2.11). The A„reduces in
the limit k-0 to the electromagnetic potentials in
the Einstein-Maxwell theory. In general, the A,
will be a function of k.

Decomposing I„„,in (2.27), into its symmetric
and antisymmetric parts we get

fpe3 I'. pe3
(v v) ~ (@p)g griyv3+g(vp)g gI ep 3

rap3i+ 2 g(wv) gr. ep3g (3.9)

then the result (3.6) forces us to use the (complex)
Hermitian form for g „.

We shall make the identification

The dimensions of E „and the electromagnetic po-
tentials A~ are, in cgs units,

[E „]=g'~'cm '~'sec ' = statvolt cm ',
[A„]=g' 'cm' 'sec '= statvolt.

The g„„in the theory are physically dimensionless
quantities. Therefore, from purely dimensional
arguments, the dimensions of v are Pc]= [1/Ev„]
= I'/e, where L is a length and e is the charge of
the electron. The characteristic length L which
can be formed from 5=1.05 && 10 "

g cm'sec ',
G = 6.67 x 10 '

g
' cm' sec ', and c = 3 && 10' cm sec

is the Planck length'4

r.pc3 r.pa3
~r. it v3

=
~ grp p3 g grtyv3+g(v p)g g(ov)

r.pfy3+ 2 Avv)gtvv&g +Avv&) .
In the limit k-0, we have

guv=g(j v) ~

4mG BmG
tuv3 k2 4 f. ttv3 k 4

gatv

&

~(pv) Ggv y

4mG

SING

4 ~(gv) 4 gvk c C

(3.10)

(3.11)

L = (hG/c')' ' = 1.62 x 10 "cm. (3.4)

In terms of 8, G, c, and e=4.80&10 ' g' ' cm3~2

sec ', the constant z=L'/e can be expressed as

L' SG
K 3 = 5.44 x 10 "g ' ' cm' ' sece c'e

= 5.44 x 10 " cm(statvolt) '. (3 5)

The unified theory requires for its logical com-
pleteness a fundamental length in physics, which
we have chosen to be given by (3.4). A "classical"
length might on dimensional grounds be eG'~'/c'
= l.38 x 10 "cm, which would yield z = eG/c~
= 3.95 x 10 "g"' 'cm'i sec. But this differs from
(3.4) merely by the factor n '=bc e'/-1 .37

The universal constant can be fixed by using a
gauge-invariant formulation of Dirac's wave equa-

c4 (E E „g(„,)E sE" -).—

8mG
G&v= c

s„(l gEv") = 0, -
8+ „+svE„,+ B„E,„=0,

(3.13)

(3.14)

(3.15)

In the above, G„„is the Ricci tensor, defined in
terms of the Christoffel symbols (~„] (Ref. 25),

G..= s.&,".] - s.(:.) —(:.H:J'(„„](:.],
and 7 „ is Maxwell's stress-energy tensor.

From (3.11) it follows that (2.29) just becomes
.the ordinary connection between the metric g(~„)
of general relativity and P„], while (2.30), (2.31),
and (2.32) give
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where now g= det(g(v, )).
This demonstrates that the field equations of the

generalized theory reduce to those of the Einstein-
Maxwell theory of empty space when h-0. For
h-0, the skew part of (2.25) becomes, by (3.8),

(3.16)

The scalar density (2.15) reduces in the limit
0 to

g g(P V)Q QgVQ4mG (3.17)

which is the scalar density of the Einstein-Max-
well theory. A schematic representation of the
correspondence principle is given in Table I.

The theory is invariant under the ordinary Abelian
gauge transformations of electromagnetism. This
can be shown as follows. Consider the transforma-
tion

(3.18)

The vector W„ is related to the electromagnetic
4-potential Av through E(l. (3.8) and )( is an arbi-
trary scalar field. E(luation (3.18) induces the
transformation on the I" connection

(3.19)

where we have used the Schrodinger affinity (2.10).
It can be easily shown that

R „(W)=R„„(W), (3.20)

so that the scalar density K and the field equations
are invariant under the gauge transformations
(3.18) and (3.19).

This is the correspondence principle of the the-
ory. It shows that the system of field equations
is founded on a (formally) well-established theory,
namely, the Einstein-Maxwell system of equations.
This secure basis for the nonsymmetric theory is
eliminated when we exclude the quadratic term
))(""'g(„,from the scalar density (2.15).

IV. EXACT SOLUTION OF THE FIELD EQUATIONS

In a series of papers, exact static spherically
symmetric solutions of the field equations have
been derived. """'"Frpm these solutions, it is
clear that the physical content of the generalized
theory differs significantly from that of the Ein-
stein-Maxwell theory, although the solutions re-
duce to those of the latter theory when 0 0. This
fact will become clearer from the following.

The g, v corresponding to a static field with
spherical symmetry is written in polar coordi-
nates x'=r, x'=8, x'=p, x'=ct as"

fsin8 0

0 —fsin8 -P sin'8 0

O y

(4.1)

where n, P, y, f, and w are functions of r only (f
and w are purely imaginary functions). We have
from (4.1)

g= —(ay —w')(P'+ f') sin'8. (4.2)

The gv" are well-defined provided (4.2) does not
vanish.

A solution of the system of E(ls. (2.29)-(2.32)
for the (complex) gv„, corresponding to a charged
massive particle at the origin of coordinates, is
given bys

A result that follows from the theory is that the
complete laws of classical electrodynamics —in-
cluding the Lorentz equations of motion for
charged particles fo—llow from the field equations
alone in the first nontrivial approximation, under
the assumption that the field g„„becomes Min-
kpwskjan as g ~. ' Thjs pvercpmes pne pf the
grave objections raised against Einstein's non-
symmetric theory, formulated in terms of the
scalar density (2.37)."

TABLE I. The one-to-one relation between the field equations of the generalized theory and
those of the Einstein-Maxwell theory in the limits —0.

Generalized the ory

+ =Q —g g Rpp —~2 4 g g[pp
4'

Kins tein-Maxwell theory

Q a
~ngpp -gap~pe-gpa~np =0

(~gg[PP ]) —0

gR P

~a Rfpp] + ~p R[~~] +~~ R[pa]

=ong( pv) g(vv)I pa -g( pa) )va

(g g ~@v) 0

87(G
Gyp ——

4 T
C
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2Gm 4m'G change of parameter to s = s(p) will give

2Gm 4gG (4.3)
ds' ~t' ds ds

(5.5)

kQw=, f=0.
y

This solution obeys the boundary condition that
g „-7i„,(q, is the Minkowskian metric) for r-~.
The constants m and Q are the mass and charge
of the particle, respectively. Equations (4.2) and
(4.3) yield the result

(-g)'t ' = x' sin8. (4.4)

.V. EQUATION OF PATHS

The parallel displacement of a complex vector
A.~ is not a unique operation for a given complex
I' „." If we consider the complex conjugate of &A.~

in (2.1) we get

(5.1)

where we have used the property of Hermitian
symmetry I"~„=I"~„. By using (2.1), (2.7), and
(5.1) we obtain

&(A A") = &(g A A")

= (s,g,„-g,„l'„,-g„I' ) A "A"dx', (5.2)

where we note the order of the suffixes in the third
term in parentheses on the right-hand side of
(5.2). The quantity 6(A„A") vanishes by virtue of
(2.29) and the magnitude of the vector A" is con-
served under parallel transfer.

Let us now consider the paths of (neutral) test
particles in the non-Riemannian geometry deter-
mined by the theory. A necessary and sufficient
condition for the vector A" (p) to be parallel to the
curve x~ =x~(P) is"

d A.v dx' dA~ dx'gv, d& +I.v ~m dx ~v dA +z, f ~~ dx
dp ~ dp dp ~ dp

(5.3)

The field E„=co/k = Q/x' is the static electric
field due to the charge Q on the particle.

In the limit k=iz-0 (or large x), the solution
(4.3) reduces to the Reissner-Nordstrom solution"
of the Einstein-Maxwell equations (3.13)-(3.15).

The affine parameter is only fixed to within a lin-
ear transformation with constant coefficients.
Only the symmetric part of I'~ „contributes to
(5.5).

The equations of paths (5.5) are the generaliza-
tion of geodesic paths of Riemannian geometry or,
equivalently, the generalization of straight lines
of Euclidean geometry.

It can be shown that the paths are the same for
two symmetric connections, related by the pro-

jectivee

transformation"

(o~) (v v) v v v u &
(5.6)

where V, is an arbitrary covariant vector. If we
set V„= 38'„, then the I'&„„)and W~& „) obtained
from (2.10) have the same paths in the manifold.

There exists a class of coordinates called nor-
mal coordinates' such that the symmetric connec-
tion 1~„„)vanishes at a point. These coordinates
ensure that the generalized theory satisfies the
principle of equivalence.

Equations (5.5) reduce in the limit k-0 to the
standard equations of geodesics in general rela-
tivity written in terms of the Christoffel symbols

~ 0 2 ~ ~:

4+ —~4=0~ (6.1)

(6.2)

VI. WORLD-LINE COMPLETENESS OF THE
EXACT SOLUTION

We shall study the properties of the exact solu-
tion by investigating the behavior of paths of test
particles in the theory. These test particles have
vanishing mass within a tube enclosing the world
line. The rigorous solution (4.3) will be considered
to be valid for all x. We shall treat the case where
the orbits lie in the equatorial plane, whereby 8
=2m and 8-=d8/dr=0. Here 7 is the proper time
along the path of the particle and ds'= Ed&', where
E is a constant.

Two of the four equations in (5.5) are, for x'= g
and x'= ct,

A path is a curve whose tangents are parallel with
respect to itself. For A~ = dx~/dp, (5.3) demands
that

where we have used (4.3) and the calculated val-
ues'

1
I'(~3) =—

dp' ms dp dp ~
dp ' (5.4)

where K(p) is an arbitrary function of p. A suitable
2 gg' e'

~(xa) — + + ——
~2& x zv 2n

(6.3)
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By means of the relations g, x'x =E. (6.6)

a g„—(x'x') =g,„x'x',
(6 4)

Then from (4.3), (6.1), (6.2), and (6.6) we obtain
the first integrals

1 d

obtain'ed from (2.29) and (5.5), it can be shown that

rt 2 ~r2 r2y 2

r'P=Z,
(6.7)

(6.6)

or

d—(g, x'x ) =0 (6.5)
t=nA. ,

where A is a constant.
From (6.7)-(6.9) and (4.3) it follows that

(6.9)

2Gnz 4mG
(6.10)

fF dr

""0 A. 2 1 — — 1—,E+—,
(6.11)

Here 'Tp and ~, are some initial constant values of proper time and position, respectively.
As r 0, i-n (6.11), the proPer time z eventually becomes either infinite or complex In the. latter case

the physical test particle is deflected away from ~- led.
The velocity r given by (6.10) remains finite as r approaches ~«Q and eventually becomes complex for

r & ~~q.
The coordinate velocity dr/dt is given by

1 dz 1 dhdw
c dt cd~ dt

4~G 2 g2 2 2G~ 4~G 2 g2 j /2

(6.12)

and the coordinate time t for a radial null path is

dh

«J, 2Gm 4«GQ' «'Q') '« '

+
C2~ C4r'

(6.13)

G««G'I' 4«GQ'

)
'«

4c c e
(6.14)

then I/o.'is nonvanishing and by the mean-value
theorem (6.13) yields

= —H(r) In[r+ (r' —«Q)'t'], (6.15)

where

If it is assumed that we are inside the "event hori-
zons" located at x, and x, where

—2

a(r) =
(1 —2Gm/c r+ 4zzGQ'/c~~') (r'+ «Q)'»'

(6.16)

This reveals that t becomes purely imaginary for
r & v'«Q, and physical null paths cann'ot reach r = 0.

We define a "physical" path to be one for which
the proper time 7 remains seal.

These results for the behavior of paths in the
neighborhood of r vzQ show that the rigorous so-
lution is world-line complete for timelike and null

physical paths.
We see that for 0- 0 timelike and null world lines

(geodesics) are complete. " Null radial geodesics
are not prevented from reaching x=0. Thus the
Reissner-Nordstr5m solution" has a geometrical
singularity at r= 0.

In the exact solution of the generalized theory no
physical test particles can hit z= O and, in this
sense, the solution is singularity free. -

The solution (4.3) is of triple null surface form.
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gP
0

a

0
1

a' sin'~ 0

2Gm 4mG

There are null surfaces at r=r„r=r, and r=v'tcQ,
where r, are given by (6.14). The singular event
horizons at r, occur when G'm'& 4vGQ', and they
can be removed by an analytical completion of the
manifold; i.e. , they occur because of a special
choice of coordinates.

The surface of the sphere S defined by r = v'](:Q

acts as a "surface of concealment" for the singu-
larity at r=0. The surface of S is nonsingular and
analytic for the solution g„„and the field equations
(2.29)-(2.32). We can see this by calculating g""
for r = AcQ = a. We find that

"elliptic" form (----). Within S the local gauge
group of transformations is that of U(4), which con-
tains the coordinate transformations of O(4).

VII. IMPLICATIONS OF THE THEORY FOR THE

LARGE- AND SMALL-SCALE PHENOMENA OF THE

UNIVERSE

What are the probable consequences for physics
that follow from a regular solution of a covariant
set of field equations, describing the structure of
space-time'P If the basic constituents of matter
are always electrically charged, as would be the
case for fractionally charged quarks, "then the
theory may not require lnflnlte reIlorIDalization
techniques. Present-day quantum field theory re-
moves by renormalization theory infinite quantities
associated with the mass, charge, and wave func-
tion of a particle, as well as the infinity associated
with the energy density in the vacuum. The total
density of the zero-point energy of, e.g. , the elec-
tromagnetic field, is given by

Moreover, from (4.4) we have

(6.17)
(I/2v') ', k'dk.

~4( P
(7.1)

(-g)'t'=a' sin&. (6.18)

The curvature tensor R~„, and the contracted cur-
vature tensor R„„are also regular at r= Q']('Q. For
example, a calculation yields

4mG
R44= 4 2 I44c Q

4sGQ'
(

2G)s 4()GQ'}
(

s'Q'
}
(6.19)

which vanishes at r=2)']QQ. The tensor E„=
= -(1/2k')I &,„& plays the role of a generalized elec-
tromagnetic stress-energy tensor in the theory.

We observe that
i/2

(-s)' *= [-ds)(g(, „))]'('=s'siss (2—

(6.20)

vanishes at r= AcQ. Therefore the symmetric ten-
sor s, defined to be the inverse of g&»» is sin-.
gular at r= A&Q. The Riemannian subspace of the
theory is singular at r= v'I(:Q.

The space-time signature in the theory undergoes
a change of sign as we pass through the surface of
S. Within S the space is locally an Euclidean E,
for ds' is negative definite. We are unable to attach
a Minkowskian null cone to a point in E4. At the
surface of S the signature of space-time changes
from the normal hyperbolic form (---+) to the

In effect, something radically new happens for
wavelengths of the order of the Planck length, or
for energies

@ ~cutoff (7.3)

The cutoff arises purely from the geometrical laws
governing space-time.

In this picto. re, a neutral particle, such as a
neutron, wiQ be a composite system of frac-
tionally charged quarks. Only the nonsingular
chaxged constituents form the basic entities of field
physics; these are to be described by the rigorous,
regular solutions of the nonlinear field equations.
This physical description of particles could lead to
a logically complete theory of matter —free of in-
finities.

If the ultimate form of matter is indeed charged,
then it follows unavoidably from the present theory
that, at the location of a particle, there is an ab-

This integral formally diverges. Similar diver-
gences occur with other fields and with vacuum
fluctuations. They are removed by renormaliza-
tion. In the unified field theory described here,
space-time "ends" in an analytic fashion at the or-
der of the Planck length X=1.6&& 10 "cm. This
implies that the effective upper limit or "cutoff" in
the formal divergent integrals, such as (7.1), is to
be taken' be of the order of the reciprocal Planck
length

a/z

(7 2)
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solute limit to how small a region of space-time
we can measure.

It would seem from what we have learned that a
deep understanding of space-time structure appears
to be essential before we can hope to make any
fundamental progress in particle physics.

In the universe, the large- and small-scale phen-
omena are inescapably linked together through
"catastrophes" like gravitational collapse and the
"initial" and "final" states of the universe. " If a
star burns out all its nuclear fuel and undergoes
gravitational collapse with a small but finite elec-
trostatic charge Q, then after it implodes through
the event horizon x, it cannot contract to infinite
density according to the predictions of the gener-
alized gravitation theory. The analytic surface S
will repel all the collapsing matter. A thorough

analysis of these problems, within the context of
the present theory, remains to be carried out.

The generalized theory also predicts that, in the
"big-bang" cosmology, "the 3 'K microwave back-
ground is the relic of an initially highly dense state
of the universe not smaller than a sphere with ra-
dius r-Va'Q. If the matter had even the smallest
charge Q, i.e. , inhomogeneity, the theory pro
A,ibits the existence of a singularity at x= 0 at the
origin of time.
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