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The techniques of dimensional analysis and of the theory of tensorial concomitants are employed to study
field equations in gravitational theories which incorporate scalar fields of the Brans-Dicke type. Within the
context of scalar-metric gravitational theories, a uniqueness theorem for the geometric (or gravitational) part
of the field equations is proven and a Lagrangian is determined which is uniquely specified by dimensional
analysis. Within the context of scalar-metric-torsion gravitational theories a uniqueness theorem for field
Lagrangians is presented and the corresponding Euler-Lagrange equations are given. Finally, an example of
a scalar-metric-torsion theory is presented which is similar in many respects to the Brans-Dicke theory and

the Einstein-Cartan theory.

I. INTRODUCTION

In previous papers™? the author has employed
the technique of dimensional analysis to prove
uniqueness-type theorems for the field equations
of metric and metric-torsion gravitational theo-
ries. In the present paper, these theorems will
be extended by the introduction of a scalar field of
the Brans-Dicke type. We shall begin with an ex-
amination of such scalar fields within the context
of conventional scalar-metric theories and con-
clude with a generalization to theories of a scalar-
metric-torsion type.

In the scalar theories we are considering, the
reciprocal of the scalar field ¢ is interpreted as
representing a varying gravitational constant, i.e.,
a function with dimensions of length/mass (in units
with ¢=1) which can be interpreted as representing
a proportionality between mass and length in the
weak-field limit. If K denotes the usual gravita-
tional constant, then one can take the dimension-
less scalar field ¢ =K¢ as the scalar field. Fur-
thermore, by choosing our units of mass so that
K=1, we can and will measure any quantity which
has units involving length, mass, or time in lengih
Units .

With the units chosen in the above manner, the
technique of dimensional analysis is readily de-
veloped. The remaining freedom of a particular
unit of length in terms of which physical measure-
ments are to be made is called the choice of scale
which is denoted by the symbol L. It can be shown
that no generality is lost if we confine our atten-
tion to those charts (U, x) on the spacetime mani-
fold in which the local coordinates x*~ L' (read
“x* has dimensions L to the power 1”) and the me-
tric components g;;,~L° The choice of scale may
be changed without altering ¢=K=1 by multiplying
the scale by a positive real factor (and thereby in-
ducing a transformation on dimensioned quanti-
ties). The usefulness of dimensional analysis ori-
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ginates in the postulate that physical formulas must
be invariant under such scale transformations. In
particular, we have the following axiom for dimen-
sional analysis in relativistic gravitational theo-
ries':

Axiom. If the quantities Q,,Q,,. .. ,Q, have di-
mensions L1 L% ... L%, respectively, and if
they enter into a physical theory in a function of
the form

Q(Ql;"' ’Qn)

which is such that ® ~ L%, then undevr an arbitvary
scale transformation with scale factor X the ve-
lations hip

24D (Qy,...,Q,)=B(N4Q,, ...

holds .

In the function &, some of the quantities @; could
be constants with dimension L%, a #0. However,
in our applications we shall consider as @,’s only
field functions (e.g., g;,;) and their derivatives,
excluding such constants with dimension. One
should note that in the above axiom we have as-
sumed that the functional form of & does not de-
pend upon the choice of scale.

s X*nQ,)

II. SCALAR-METRIC THEORIES

Our main concern here is the field equations of
scalar-metric theories® and our approach to these
equations will be via variational principles. We
assume that the “gravitational part” of the field
equations are derivable from a Lagrangian £ of the
form

L=L(P50,55 50,400 00 4,58153 815,00 " " 3815 ke + o 1)
and that the field equations take the form

At =8yg T (1)
and

B=0, (2)
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where* of the form
AHE%’ (3) B=B(¢;¢,i;---}¢,i1---iﬁ§gu$gij,k;---§gij,k1-uko)‘
i N :
68 Suppose that A*i~L"%, B~ L% and they both satis -
B E—ETP, (4) [y the axiom of dimensional analysis (heve we have

and 7% is the usual energy-momentum tensor for
matter and other nongravitational fields of general
relativity.

The energy-momentum tensor has dimensions of
L-2 provided the conventional interpretation is as-
sumed.! Thus for dimensional consistency in (1)
we require that

AH~L2,

It can be shown that%® A%, =3¢ ,B, fromwhich we
deduce that B~ L= upon noting ¢~ L° (and g,,~ L°).
With the dimensions determined as above, we have
the following:

Theovem I. Let A% be a class-C® tensor density
concomitant of the form
AU =AM 500050

e e 138158 14,850 0 38iiykye e o kB)

and let B be a class-C? scalar density concomitant

NA®(D;h 15050
and

NB(G5h 1500050, 1100045581558 15,05 0+

yige e ig18iin8ij R0

g~ L% and ¢~ L°). If there exists a Lagrangian £
for which A% and B are given by (3) and (4), ve-
spectively, then in a 4-space®

AH=NT (1 =gl ieV — (0 ~1)g 0"

+hr(¢lk£j_gij¢lrlr)_hGij] (5)
and
B=Vg (WR-f'¢;,$'" -~ 2$'",), (6)

wheve f=f(¢) and h=nh(¢) are arbitrary unitless
Junctions, and prime denotes a derivative with re-
spect to ¢. Moreover, a Lagrangian which yields
(5) and (6) as its Eulev-Lagrange expressions is
given by

£=VZ (/0" +hR). ™

Proof. The axiom of dimensional analysis im-
plies that vA>0,

;g”’kl_ .. kB)zAab(¢§)‘¢,i;’ .. ;7\"‘¢'i1~ .o ;u;g“;Rg”,k;, . ;)@g“,kl... k3)>

38is,k e e .ka)=B(¢>;)x¢"; oo ;;\ﬁcp,,l. e i385 Mg i e e XN gy 00 )

Differentiating twice with respect to A in both of the above identities and taking the limits as A - 0* we find

that

ab_\Jyabij abij abijkl abijkimn abijkl
A®P=UPHG 1§ +YPHY L+ VPR g+ 87, 68mn Y g1

and

Y i 7y ikl ikl
B=®{¢ ;¢ ;+® ;;+21* (g, 1+ @ Mgy gt @I G5 s

where ¥ 1 and ®..  have the obvious symmetries and are concomitants of only g;, and ¢(i.e., they are
independent of the partial derivatives of g;, and ¢). Using the replacement theorems of classical tensor
calculus (see Ref. 7, p. 109) we reduce the above two equations to

b abi bi 2,abijrl
A®=¥¢ ‘J¢|i¢|j+‘1’g j¢lij+3‘1'g H Rimis

B=®Y¢ ¢ ;+0¢,,+ 30U R ..

®)
9

The coefficients ¥ and ®. .. in (8) and (9) are easily seen to be tensor density concomitants of g,, and

¢

Following Anderson® one can show that

8A® 3B 9A%  gA”s 8A®® 3B

90,5; 98a15°  O8rs,tu O8ap,tu

=— +
90,y 08u,;

2( 8B )
98av,i5/,4

which, when coupled with (8), (9), and the invariance identities for A*/ and B (viz., 8A4%°/6g;; »;,=0 and

8B /88;(;,my=0; see Ref. 5), imply that

‘I’gb“ - q)gbij’

(10)
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abik _ palagd)i L kigas , 2028
20 90tk = ghlag )i _ Lokiga s
¢
‘I’gbi(jk”:(), \I,g(blijlkl):o,
and
in(jkl)z().

11)

(12)

(13)

From (12), (13), and the invariance identities for tensorial concomitants of g; ; and ¢ we obtain (details of

this and other computations can be found in Ref. 9)
ali=alg g4, Bii=bVg g¥,

and

B =V [g%" - S(g%g +g%9g")], (14)

Wabiiel = Gy (4gabgtighl _ Qgubgitgil _ Qgubgilgik _ gaigbighl _ Qgaighighl _ Qgtkgiighl _ ggalgiighe

+gaigbkgdl+gaigblg.ik+gajgbkgil +gajgb1g ik+gakg bigil +gakgbjgil +galgbigjk+galg bjgik)’

where a, b, ¢, and d are arbitrary functions of
¢.1° From (14) and (11) we see that

Z\I,iabikz(zc/ _%b)gabgik
—(C'—%b)(gaigbkﬁ‘—gak bi). (16)

Substituting from (14), (15), (16), noting (10) into
(8) and (9), we find that

Aab=\[§[%clgab¢li¢|i+%(cl _%b)(gab¢li¢li _2¢Ia¢lb)
+e(g®pli), — ¢'ad) 1+ 8dGD] (17)

and
B=Vg (ap'ip|;+b¢"|; - cR). (18)

From the identities A®,, =3¢ '*B (see Ref. 3 or 5)
and

8B 8B +2< 9B )
a¢,a a(p.a a¢,ab b

(see Ref. 8) one can show that ¢ =84’ and a=3b".
Setting ~= —8d and —f=3b we can write (17) and
(18) in the form (5) and (6), respectively. The Eu-
ler-Lagrange equations of (7) can be evaluated with
the aid of Egs. (3.32), (3.33), (3.34), and (3.35) of
the paper by Horndeski and Lovelock (Ref. 3) (note
that my definition of the Euler-Lagrange operator
is the negative of theirs), and do in fact give (5)
and (6).

Remark. When utilizing the technique of dimen-
sional analysis it is essential that all dimensional
dependences of the concomitants involved be stated
explicitly, for otherwise one ignores such things
as constants with dimension. For example, the
specific functional form assumed for A¥ and B in
theorem I implies that as far as scale and coordi-
nate transformations are concerned A¥/ and B de-
pend only upon g;;, ¢, and their derivatives. For
more on this physically important subject see Ref.
1.

(15)

Related to the results of theorem I is the follow-
ing theorem which can be proved in a similar man-
ner®:

Theovem II. If £ is a class-C® scalar density
concomitant of the form
£=5L(g; Drisee3Pigene 1981538 15,05 0+ » 3814,k 0 o 0 kB),
wheve g,,~ L°, ¢~ L° £~ L and satisfies the axi-
om of dimensional analysis, then in a 4-space

L=Vg [fi(@)g:0" + 1 @)R+f(d) g5,

where f,, f,, and f; arve arbitrary unitless functions
of ¢.

Remarks. (1) The restriction to 4-spaces is
used to give the conventional interpretation of the
energy-momentum tensor T % (see Ref. 1) and
hence cannot be dropped from either of the theo-
rems. Another assumption common to both theo-
rems I and II is the differentiability condition on
the concomitants. With this assumption, terms in-
volving factors such as (¢ ;¢,;2 %)™ are excluded
from the above theorems. This places a restric-
tion on the applications of those theorems to sca-
lar-metric gravitational theories and must be con-
sidered when attempting to motivate the choice of
field equations in such a theory.

(2) The Lagrangian £ given by theorem II can be
written in the form

L=Vg [F,(0) 8" 6., + F )R]
+ [@f3(¢)g”¢,i],1

and hence yields Euler-Lagrange expressions of
the form (5) and (6). This result was to be ex-
pected in view of theorem I and the fact that the
Euler-Lagrange expressions of a Lagrangian which
satisfies the axiom of dimensional analysis will
also satisfy this axiom. As a consequence of this
latter point, we can take any Lagrangian £ which
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yields (5) and (6) as Euler-Lagrange expressions
and satisfies the hypotheses of theorem II and write
£ as

£=£+£’,

where £ is given by (7) and the Euler-Lagrange ex-
pressions [(3) and (4)] of £/ vanish identically (de-
fine £/=£ —£). In this way, theorem II can ef-
fectively be deduced from theorem I.

III. SCALAR-METRIC-TORSION THEORIES

The torsion tensor in a metric-torsion gravita-
tional theory'! is that of a linear connection V which
preserves the metric tensor, i.e.,

vg=0.

From this equation one can deduce that the com-
ponents of the linear connection are given by

r;k ={jk§+ Sjkil'_ Sklj +Szjk’ (19)
where
S, t=3(T,t, - T,H).

The field equations in these theories are usually
assumed to be the Euler-Lagrange equations of a
suitably chosen Lagrangian of the form

£+20,
where

V=01 Q; Zpgui"gij)’

J
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the @ are the matter fields, the bars denote co-
variant differentiation with respect to v, and £ is
a scalar density concomitant of the metric, tor-
sion, and their derivatives.

By including the scalar field ¢ and its derivatives
in £ along with the corresponding Euler-Lagrange
equations we obtain a scalar-metric-torsion theo-
ry. Here we shall consider scalar density La-
grangians and assume that our field equations are
the Euler-Lagrange equations of such a Lagran-
gian. We take the Lagrangian U to be unchanged
and regard the variational derivative

. 560
Fri=ag

i

as the energy-momentum tensor in a manner an-
alogous to its interpretation in general relativity.
Since 7% is usually assumed to have dimensions of
L% we must require Vand hence £ to have these
units in order to preserve dimensional consistency.

Equation (19) implies that the torsion tensor

S;;#~ L™ and hence its derivatives have dimensions

Sis" ~Lo

i] ’Il s Z_y

The ideas in the above discussion lead us to con-
sider the following theorem whose proof is simi-
lar to that of theorems I and II°:

Theovem III. If £ is a class-C® scalar den-
sity concomitant of the scalav field ¢, the metvic
gij» and the torsion S;;* and their devivatives, and
if £~ L™ and satisfies the axiom of dimensional
analysis, then in a 4-space

L=aVg R+ayg gtp 1id1+ (a3\@r—gij¢li),j +(ag SH ), + (aseijklsijk),l

+agVg S,*S, +a Vg S;;:SH* +aVg S 5y

ijR

3 ijmn ijel il
+8105;;"Spmn€ +01,01:S € +a,Vg ¢,5,

kij k ifim
SF 1+ aoS; 7Sy e

wheve az,0=1,...,12 are arbitvary unitless functions of ¢. The Euler-Lagrange expressions of the

Lagrangian £ in (20) are

E - \/ZT' [(ail _a2)¢|l¢|] _(a{l —%ag)g“¢|,¢"+a{(¢'“ —g”¢lr|,-) _ale + ’é:g wcrst Srst + Crst Srsj _ zcmssrzs
Eabjk . €abki . L. . lici i ;
+5“11"\7i—g_ ¢Iasbk1+5“n—‘/§— D150 +2a12(g V9,57 - p1ISHT — ¢S, )jI; (21)
8L €lmrs ]
6—817 = 2@ <Clmk+%au¢>lrgk37§— +§a12¢l[1§:‘ ) " (22)
where
a L
ClmkEasé[ésbm]b+a7slmk+a83k[tm] +E9_ €lmbcsbck+%a10 ( €lm » Skab _ €abc " Sab”gck> , (23)
3 g Vg

and finally
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0L ; i
56 E(a{R —a3p 0" - 2a,0""; +alS,*S, T + a78;52S" R+ 43S, ;,S™ + aiS, S
giimn gidrl i
+@{0S: 5 Stmn Vg +“117§“Si5k|1 - a5 zli>-

The field equations one would obtain from Egs.
(21), (22), (23), and (24) will be quite unwieldy in
general. Hence we consider a somewhat simpli-
fied example in order to determine what qualita-
tive characteristics a scalar-metric-torsion theo-
ry could have. The “most natural” extension of the
Brans-Dicke theory to one involving torsion would
probably start with the Lagrangian'?

£=\/§'¢R(V)+af 0" (25)

—

ctilm

i Imk

(24)

[one could also obtain this Lagrangian from the
Einstein-Cartan Lagrangian Vg R(V) by a “natural
extension”]. If we decompose R(V) into the Ricci
scalar of the metric g;; and some torsion-depen-
dent terms,'® we would obtain the Lagrangian (20)
with a,=¢, a,=a/¢, a,= -4¢, as= -4¢, a,=¢,
ag=-2¢, and a,,= -4. All other terms in (20) are
then az=a;=a,=ay=a,,=a,,=0. Thus we can use
(21), (22), (23), and (24) to obtain the field equa-
tions i

o alid_giigly ligls i glr . o )
Gii _¢ gh% ", +a¢ z¢ _agv o7, +g (48,75t~ S, STt 4 28, 5179 -48,irs i _SlrtS”j

¢ ¢ 2 ¢

+ ZSWIS"”+ 251lrsjlr+$ (g”¢>|75ﬂz _¢Izsjll _¢|]stll):;} th’ (26)

¢Il§m_¢lm61 1 50
_slmk_'_ Sklm _Skml + 26;Sb7nb - zﬁztsblb_'_ B B — ¢\/§ 5szmk , (27)
and
i i
R+a¢|ig5 _2a9’"y; 48, 18,7 +.5,,,SH _ 25, ,S¥ 1 48H, |, = 0. (28)

¢ ¢

In Egs. (26), (27), and (28) we find a fairly com-
plicated coupling between the torsion tensor and the
derivative ¢,;. Of particular significance is the
Sit |, term in Eq. (28). It seems to indicate that
when the gravitational “constant” varies (¢,;#0),
then torsion will propagate “outside” of spinning
matter. This is in sharp contrast with the Ein-
stein-Cartan theory in which torsion enters only
algebraically (see Ref. 11) and hence vanishes out-
side spinning matter. Furthermore, the Einstein
Cartan theory reduces to general relativity out-
side spinning matter, hence we might expect that
the Eqgs. (26), (27), and (28) would imply the Brans-
Dicke theory for such matter. However, this does
not occur here. For if we impose the condition 60/
8S;,;#=0 (i.e., no spin angular momentum) in (27)
we can solve it to obtain

1
Si1k=g(¢ugik-¢wgﬂ)- (29)

Now, 60/8S,,#=0 implies that 8V /6S,;,*=0 and
hence U =V (¥% ¥%,;2,;,), which is the form of the
matter Lagrangian in general relativity and the
Brans-Dicke theory. Thus T in (26) becomes the
usual general-relativistic energy -momentum ten-

r

sor. Substituting from (29) into (26) and (28) we
find that

i 1 ‘s ; 3 b lipld
Gii _a (¢lu —g“¢lrlr)+(a+§)¢¢¢

.. lr .
—%ag”-@ﬂ%— 1 Tii  (30)
¢ ¢
and
lr lr
R+(a+%)<9’—'é§—_2—¢—Lt) -0. (31)
¢ ¢
Taking g;; times Eq. (30), defining T=T%;, and
using Eq. (31) we obtain the following equation for
¢

lr

—2a¢”li+3%¢—=T. (32)

Equations (30), (31), and (32) are quite similar to
those which arise in the usual Brans-Dicke theory.
However, torsion enters nontrivially, affecting Eq.
(32) in particular, which is now a quasilinear sec-
ond-order partial-differential equation for ¢. If
we take a= —w, the Dicke constant, we see that
Egs. (30) and (31) also differ from their counter-
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parts in the Brans-Dicke theory by, essentially,
modifications of the numerical coefficients of terms
in ¢'" and ¢'f;. Whether or not these apparently
minor modifications will lead to any significant dif-
ference from the usual Brans-Dicke theory or from
general relativity remains to be seen. The main
point of (30), (31), and (32) is that torsion plays a
significant role here even in vacuum, which con-
trasts markedly with its role in metric-torsion
theories such as the Einstein-Cartan theory.

So far our discussion has centered upon mathe-
matical generalizations of metric-torsion (or alter-
natively scalar-metric) gravitational theories. The
question then arises as to what physical interpreta-
tion one should give to the apparent coupling be-

tween the torsion and scalar fields which occurs in
the above generalizations. One possible interpre-
tation is based upon the observation that for non-
constant ¢, the derivative ¢,; defines a vector field
on spacetime. Hence the interaction characterized
in vacuum by Eq. (29) could be interpreted as the
reaction of torsion to the spin angular-momentum
of the vector field ¢ ;.
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