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Can the quark-parton model give the correct neutron charge radius&*
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The question posed cannot be answered straightforwardly because no unique quark-parton distribution
functions are available. By using only the data on deep-inelastic electron-nucleon structure functions, we have
obtained an inequality which must be satisfied for an affirmative answer.

I. INTRODUCTION

So far, the quark-parton model has not suc-
ceeded in giving a satisfactory account for the
mean-square charge radius &r„') of the neutron. '
In I it has been shown that in order to yield the
correct (negative) sign for &x„'), the quark-parton
distribution functions would most likely have to
behave somewhat unexpectedly in the region x( 0.3. In this paper we consider in some detail
this type of distribution functions which could give
the correct sign, and we arrive at an inequality
that must be satisfied for the magnitude of &r„') to
be correct as well. This inequality does not need
the explicit form of the distribution functions.

In the next section the basic assumptions em-
ployed are clearly stated, and the expression for
&x„') is given within the framework of the quark-
yarton model. In Sec. III the above-mentioned in-
equality is obtained. An numerical estimation of
the inequality is given in the final section.

II. NEUTRON CHARGE RADIUS IN THE QUARK-PARTON
MODEL

In the quark-parton model the mean-square
charge radius of the neutron is given by"

dx (d(x)g„(x) —d(x)g-, (x)

—g [u(x)g„(x) -u(x)g„-(x)

+ s (x)g, (x) —s (x)g; (x)]),
where the u, u, d, d, s, and s denote the quark-
parton distribution functions inside the proton, and

J d'b b'h, (x, b)g()=&')"= Jdbh, ('., b)

u(x)g„(x) =u, (x)g, (x) +c(x)g, (x),
d (x)gl (x) = d, (x)gd„(x) + c (x)g,'(x)

u (x)g„-(x) = d(x)g„-(x) -=c(x)g,(x),
s(x)g, (x) = s(x)g-, (x) =- c'(x)g, .(x),

where suffix v refers to the valence part and c re-
fers to the core part. We then have the simpler
expression

dx [d„(x)g, (x) —pu, (x)g„„(x)]. (2.2)

Since we restrict ourselves throughout to the val-
ence-sea version only, hereafter we shall drop the
suffix v.

As in I, we assume that

(i) g„(x) and g~(x) are montonically
decreasing functions of x,

(il) g. (x) -g.(x) (2.3)

These assumptions have some experimental sup-
port and (i) is also suggested by certain theoret-
ical models. '

In principle, the quark-parton distribution func-
tions needed in Eq (2.2) f.or the evaluation of &r„')
can be extracted from the directly measurable
deep-inelastic lepton-nucleon structure functions.
In practice, however, the data are rather crude
and are not sufficient for an unique or clear-cut
extraction. Therefore, instead of performing a
somewhat arbitrary parametrization for the quark-
parton distribution functions and calculating &r„'),
we prefer to adopt a more general, less specific
approach to get an inequality instead. This is car-
ried out in the next section.

d'b b'h;(x, b)/i(x) . (2 1) III. AN INEQUALITY INVOLVING ter„2)

In Eq. (2.1) h; (x, b) is the distribution function of
quark-parton of type i in the transverse plane,
with a fraction x of the total longitudinal momen-
tum. In the valence-sea version' of the quark-
parton model, we have

(r„') ) dxq(x)g„(x) . (3.1)

Using Eq. (2.2) (we have dropped the suffix v)
and Eq (2.3), we .get
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0

(b) S(x;, x;„)&0. We deform q(x) such that the
new q(x) is negative in the interval ($, „x,„,),
but again keeping the value of S($, „x„,) un-
changed. Again Eq. (3.2) can be made to hold. The
above procedure can be repeated until finally we
get a reference function q(x) which is either of
type A or type B, as illustrated in Fig. 2. We have
now labeled the smallest zeroes by n, and the
other one (in type B) by p. By our construction, it
is clear that

X ) X
g

«(«)d«= f «(«)d«

q(x) ~i

q (x)g„(x)dx & q (x)g„(x)dx, (3.3)

I I

Xl+2

0

where x), and x, are any of the zeroes (including
x =0 and x = 1) of q(x). [These are of course also
the remaining zeroes of the original q(x).]

Naturally there are still an infinite number of
q(x) having these required properties. We can
further require

FIG. 1. (a) An example of a portion of the quark-par-
ton distribution function q(x). (b) The same portion
after deformation.

q(x) -=d(x) --,'u(x),
and the charge neutrality of the neutron requires

Type A

dxq(x) =0 .

Let us suppose, quite generally, that q (x) have
zeroes at x = x& (j = 1, 2, 3, . . . , N). Experimentally
we know that the largest zero x~& 0.3 and the func-
tion q(x) is negative for x„&x &1. [See Eq. (3.10)
and Fig. 3 below. ] Consider the segment between

x, and x, .„[see Fig. 1(a)J. Let us define
i(x)"

S(x,x') -= q(x)dx .

Two cases can be distinguished.
(a) S(x, , x,„)~ 0. While keeping the value of

the integral S(x;, (;„)unchanged, we deform q(x)
in this interval (x;, g„,) such that it is now non-
negative. Here $;+2 is any point in (x;„,x,.„).
[See illustration in Fig. 1(b).] We denote this de-
formed-function by q(x). Since g„(x) is a mono-
tonically decreasing (positive) function [assump-
tion (i)], the above deformation can be made in
such a way that

(b) Type S

Xp

&~+2
q(x)g„(x)dx &

Xf
q (x)g„(x)dx . (3.2) FIG. 2. Two types of the reference function g(x). xo

= 0.3 is a zero point of the function q ~(x) (see Fig. 3),
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q(x) ~ q"""(x), (3.4) max
q (x)"

where q'"" (x) is defined in Eq. (3.9) below. A lit-
tle reflection will convince one that the constraint
(3.4) can be accommodated without compromising
any of our earlier requirements .[Of course, even
with Eq. . (3.4), there are still an infinite number of
acceptable q(x).]

As mentioned in I, type A is favored by Regge-
pole theory, and it is the actual quark-parton dis-
tribution function employed by many authors. ' It
was the purpose of I to show that a positive value
for the neutron mean-sqaure charge radius would
result from this type of q(x). We now investigate
type 8 in deta, il. (Unlike many others, Van Hove's
model' is in fact of this type. )

In view of the mentioned properties of g„(x)
q (x), and q (x), we have

q (x)g„(x)dx

0

FIG. 3. Schematic sketch of the function q ~(z).

~ g„(0) q (x)dx+g„(p) q (x)dx

= -[g„(0)-g„(p)j q (x)dx . (3.6)

Combining Eqs. (3.1), (3.3), and (3.5) we get

It is seen that q'""'(x) is directly measurable in
deep-inelastic electron-nucleon scattering, where-
as q(x) is not. Figure 3 sketches q"""(x) schema. -
tically.

We now combine Eqs. {3.6) and (3.10) to get

(3.6)
q HIBx ( x)dx ) Q (3.11)

Since in the valence-sea version of the quark-
parton model we have'

F',~(x) = —,' [4u(x) +d(x)]+ ~~9 [c(x) +-', c'(x)j,

F',"(x)=~g[u(x)+4d(x)]+ ~9[c(x)+-,'c'(x)],
(3.7)

q(x) =-d(x) -2u(x)

where F',~(x) and F',"(x) are the usual deep-inelas-
tic structure functions' and are measurable quan-

tities, we can write

For a given Q, there is a maximum value of o. ,
say o. '""(Q), beyond which Eq. (3.11) no longer
holds. It is seen that o. '""(q) is a monotonically
decreasing function of Q (see Fig. 3).

Equation (3.6) with Eqs. (3.8) and (3.7) yield

d(x)d o- 3 [F (x) F',"(x)]dx+2q-.

(3.12)

In view of the quark-parton-model sum rule, the
left-hand side of Eq. (3.12) is smaller than unity,
Thus Eq. (3.12) becomes

= —,', [3E;"(x)—2F', (x)] —[c(x)+-",,c'(x)] . [F (x) —F',"(x)Jdx - 1 —2Q . (3.13)

If we introduce

q
' (x) = —'[3F;"(x)—2F", (x)],

we have

q(x) - q'"'"'(x) .

(3.8)

(3.9)

(3.10)

For a given Q, there is a minimum of +, say
o """(Q), below which Eq. (3.13) no longer holds.
n '"(Q) is a montonically increasing function of Q.

Thus Eqs. (3.11) and (3.13) together require
o'"" (Q) ~ n ~ n"' '(Q) for a given Q. There is a
critical value of Q, say Q„ for which we have
a '"(Q,)=o.~~(Q, )=—n, . Clearly, we have Q ~ Q, .
Hence from Eq. (3.6) we have"

g.(o) -g„(P)=
@

- " = fm'-=[g„(0)-g„(P)],.„.l(~„')
f

0.»
C C

(3.14)
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Data source
[g„(0)-g„(P)1;,

(fm~)

Ref. 12
Ref. 13
Ref. 3
Ref. 14
Ref. 15"

0.12
0.14
0.15, 0.14
0.14
0.16-0.18

0.032
0.030
0.032, 0.029
0.045
0.046-0.048

0.98
0.84
0.78, 0.84
0.84
0.65—0.73

TABLE I. Calculated values of Q„&„and [g„(0)
—g„(P)l;„-

the structure functions I'',~ and I' ',".
Table I summarizes the results for [g„(0)

-g„(P)] . . It is seen that the results are quite
consistent, and it is safe to say [g„(0)-g„(P)] .

a 0.65 fm . %e may mention that, with the explicit
quark-parton distribution functions of Van Hove, '
we get, from Eq. (3.6), g„(0) -g„(P)~ 2.1 fm'.

In view of the fact that many inequalities have
been used in arriving at the final result, Eq. (3.14),
it seems likely that in fact

The first and second values correspond to their x and
x' fits, respectively.

"The range corresponds to the choice 0.69 «& 1 where
& is a parameter in the model.

or

(P ')„„=,= I/g„(0)«(240 MeV/c)', (4.1)

IV. ESTIMATION OF jg„(0) -g„(P)I

Recent deep-inelastic lepton-nucleon scattering
data suggest a violation of Bjorken scaling. ' If we
follow the spirit of the scale-invariant parton mod-
el proposed by Kogut and Susskind, "we need the
data for the structure functions F', (x, Q ) and
E',"(x, Q') in the Q' range where we can "see the
quark partons. " The SLAC-MIT data in the small-
x region, however, correspond to small Q', say
Q'~ 2 (GeV/c)', andthese may not be in the range
we need. Besides, any straightforward fit of the
SLAG-MIT data does not seem to satisfy the quark-
parton-model sum rules. " Thus, in this paper,
as our "data*' for the structure functions, we a,dopt
the fits performed by various authors '" "based
on the quark-Parton models. It should be empha-
sized that we do not use their quark-parton distri-
bution functions, which are further extracted from

where (p~')„„-0 is the mean-square transverse
momentum of the u quark with x =0 in a, proton.
Here it might be added that the data' on the proton
mean-square charge radius demands only g„(0)
&0.47 fm' in our framework. While it is not pos-
sible to determine (P~')„„-,precisely from other
experimental evidence, it appears doubtful that
Eq. (4.1) can be realized. " This, together with
our findings in I, leads us to a pessimistic view
about the successful evaluation of the neutron
mean-square charge radius in the framework of
the valence-sea version of the quark-parton mod-
el.
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