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Scalar form factor in Kt3 decay
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The {3,3)+{3,3) model of chiral-symmetry breaking is used to investigate the leading terms in the expansion

of the scalar Kt, form factor fo(t) in powers of t. The results are compared with those of Dashen and

%einstein and a modification of the work of the latter due to Dashen, Li, Pagels, and %'einstein.

A theorem concerning the expansion of the scalar
K„decay form factor f,(t) in powers of t[=-q'
=-(p» -p )'] was derived by Dashen and Wein-
stein' some time ago. f,(t) is defined by

(m, '-m, ')f,(t) =(m, '-m, ')f, (t) +tf (t), (I)

where f, (t) are the usual form factors describing
Kg 3 decay. Dashen and Weinstein showed that

(m, '-m, ')f,(t) =(m '-m. ')

+ — -=-' t+o(t').» f~
f. f»

This theorem was subsequently modified by Dash-
en, Li, Pagels, and%einstein' in order to take
account of threshold effects. '

The corrected result showed that

where t is. evaluated at the unphysical point / =m„'
+ m~'. The leading term on the right-hand side of
Eq. (3) is of order c inc where the parameter q sets
the scale of chiral-symmetry breaking. This term
was shown' to be independent of the structure of
the chiral-symmetry-breaking term in the Hamil-
tonian. The correction term of order g is model
dependent and was claimed2 to be an order of mag-
nitude less important than the leading term within
the framework of the (3, 3) +(3, 3) model of chiral-
symmetry breaking.

In this note' we adopt this model to find an ex-
pression for the expansion of the scalar K„decay
form factor fo(t) in powers of t. It is found that
there is a not insignificant correction to the result'
expressed in Eq. (3). We begin by defining the
three-point functions r(k2, p2, q'), f;(k2, p2, q2):

(m, '-m, ')f, (t) = — — " +o(~),
f» fw

(3)

(4)

& (k')&, (p')[f,"(k',p', q')(k+p) +f'(k', p' q')(k-p) 1

d xd ye'"'e ' ' o 7' ~- x,o y V&"' o

f»(k', p2, q2) and f;(k2, p', q') may be defined similarly.
On multiplying Eq. (5) by iq„=i(k —p)„, the following relation between the various three-point functions is

obtained:

f,'(k', p', q')(k'-p') +f"(k', p', q') q' =f„m, 't „(q') r(k', p', q') +
' (k'+ m„') — " (p'+ m, ') .
K r

The current-divergence relation'

s, V„'"'(0)=if,m„'y„, (0)

has been used together with the commutation re-
lations derived from the (3, 3) +(3, 3) model of
ehiral-symmetry breaking. z, and z~ are the
wave-function renormalization constants.

It is well known' that if we impose the smooth-
ness assumption that I'(k, p', q') be no more than

a quadratic function of the momenta, together with
the assumption' that f,'(k', p', 0) be a constant
equal to f„"(0,0, 0) (f; for short) over a certain
range of k' and p', then it follows that b„'(q') is
no more than a quadratic function of momentum.
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Likewise if we impose similar constraints on

f»(0, p, q ) and f"„(k 2, 0, q2), then it follows that
6» '(k', ) and 6, '(p') are no more than quadratic
functions of momentum. In addition, we have the
usual results'

f;=(f '+f.'-f. ')/2f»f. ,

f,' = (f '-f.'-f. ')/2f. f. ,

f:=(f»'-f. '+f '»2f»f. .

(8a)

(sb)

(Sc)

Settings'+I '=0, p'+en, 2=0, and q'=0 in Eq.
(6) we find

f;(m» -m„~) =f, I"(m»2, m, 2, 0) . (9a)

Similarly, we may conclude from equations which
are cyclic permutations of Eq. (6) relating f»+(k',

p, q ) and f;(1z2,p, q ) to F(k"",p, q2) that

(9b)

f (m, ' —m»') =f, I'(m»', O, m„'). (9c)

In order to apply these results to the scalar form
factor in K» decay we recall that

&»'I s„v'„'*'(0)IK & =i[f, (q')(~ '-~.') -q'f (q')]
= i (I„'—m, ')f,(q'), (10)

where the on-shell form factors f, (q') are related
to the off-shell form factors f;(lr p2', q') by setting
the pion and kaon on the mass shell in the latter.
%e may also write

(»'~ s„v„""(o)~sc-& =if,~, '(»o~ y, , (0) (Ic-&

=if,m, 'a, (q') F(m»', m, ', q'),

pared with Ref. 1, where appeal to the Ademollo-
Gatto theorem was used to discard the order q'
contribution.

Next we evaluate the derivative of the scalar
form factor at t(=-q') = 0 and the unphysical point
t =m„'+mK' in order to compare our result with
Ref. 2. Differentiating Eg. (12) we find

(m '-m, ')f (i) =f, (, )K

(16)

The on-shell vertex function F(m»', m, 2, m, 2) can
be well approximated by F(m»', 0, m, ') because of
the small pion mass [approximate SU(2) xSU(2)
symmetry]. In this approximation, we may use
Etl. (9c) to rewrite Eq. (16) as

(m, '-m„')f, (i) = —,'f;(m, '-m, '),
(17)

(f 2 f 2' 2) (~ 2 m 2)~ 2

2f»f„(rn„'—i)'

(18)

making use of Eg. (8c). From Eq. (18), the above-
mentioned derivatives are

(19)

(m, '-m, ')f ',(i) ~,

f»' f, '+f.'-
making use of the current divergence relation Eq.
(7). Combining Eqs. (10) and (11) we have

nl 2

(m»'-m, "")f,(q') =f, ,', I (m»', m, ', q') .
+g

The constant term in the expansion yields the re-
sult

m. 'x
(

2 2) (20)

where we have neglected m„on the right-hand side
of Eqs. (19) and (20) in order to be consistent with
the earlier approximation.

From Egs. (19) and (20) we may make the follow-
ing observations:

(a) To order e,' the derivative is the same at
vl + ~K namely

(I»' —m, ')f,(0) =f, (mF»m, ', 0)

= (m»'-m, ')f", ,

(13)

(14)

making use of Eq. (9a). From this we get the
standard relation

2 2 2

f.(o) =f,(o) =

assuming there is a nonsingular behavior of f (q')
at q'=0. The constant term [Eq. (14)] in the ex-
pansion is correct' to order &'. This may be com- (m»'-m, ')f', (i) (, ,=0.23 (19')

(b) There are correction terms of order q2 and

higher which differ at the two points. This means
that the slope of the scalar form factor will not be
uniform in the physical region.

(c) Taking' f»/f, =1.26 and f„'/f, 2=0.09 and'o

rn, = 1.250 MeV, we find numerically
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whereas

(2o')

+ m indicating roughly the extent of the variation
of the slope of the scalar form factor to be ex-
pected in the physical region 0 (t ((m» -m, )2. The
current experimental situation is unsettled' with

(21} X, = -0.009+0.007 (&-,', )

in (presumably) fortuitous numerical agreement
with the slope evaluated at f =0 [Eq. (19')]. Note,
however, that the value [Eg. (20')] we find for the
slope at the unphysical point I;=m, 2+ m~~ is about
40% larger than the modified' Dashen-Weinstein
result [Eq. (21)]. This is at some variance with
the statement in Ref. 2 that model-dependent cor-
rections within the framework of the (3, 3}+(3, 3)
model of chiral-symmetry breaking are an order
of magnitude less important than the leading term

A similar conclusion was reached by Auvil and
Pritchett" using different arguments from this
paper.

The constant term in the expansion, Eq. (14),
differs numerically very little from the Dashen-
Weinstein result. We find'

f» +fr
2f»f.

which is very close to the SU(3) result used by
them.

In terms of the usual slope parameter Xp defined
by

we find Xp=0.019 at t =0 and A.p=0.027 at g =m~'

A0=0.021+0.006 (K~0, ) .
The value of A. p determined from A „,experiments
is in good agreement with theoretical expectations
in contrast to the value of Xp determined from K p3
experiments.

In summary we have used the (3, 3) +(3, 3) model
of chiral-symmetry breaking together with the
usual hard-meson treatment of vertex functions to
investigate the leading terms in the expansion of
the scalar K» decay form factor f,(t) in powers of
go

(m»'-m, ')f,(t) f» +f~ f K

(
2 a)

2f f » w

(f 2 f 2+f 2) (gpss
2 ~ 2)~ 2

2f»f, (m, -f}

The constant term differs from the original Dash-
en-Weinstein' result in order e' (about 1%). How-
ever, the derivative of f,(t) evaluated at the un-
physical point t =m '+ m„' differs from the modi-
fied' Dashen-Weinstein result by about 40/~.
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