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Employing a quantum-chromodynamic framework, we study the existence of quark-antiquark pairs, in

addition to the usual valence quarks, within the rest frame of baryons. The structure of such a quark sea is

discussed and an estimate of its strength is made using the MIT bag model. A significant amount of sea is

found, and its effect on calculated properties of hadrons is 20—30%.

I. INTRODUCTION

In recent years a picture of hadrons as extended
objects composed of confined fermion quarks' has
emerged. At the same time, the most promising
candidate for the theory of quark interaction is the
strong-interaction gauge theory referred to as
quantum chromodynamics (QCD). ' We present an
analysis of one consequence of such a picture, the
presence of quark-antiquark pairs in hadrons.

Our study is motivated not only by the natural de-
sire to understand more deeply hadronic wave
functions, but also because such knowledge might
provide an important clue as to the nature of non-
leptonic processes. For example, a potentially
important contributor to ~&S ~=1 nonleptonic tran-
sitions is the four-quark operator'. d F, yy I', s:,
where I'„I', describe the spin structure and X is
some heavy quark. One method for calculating ma-
trix elements of such an operator between physical
hadron states is to have an explicit model for the

yy content of the hadron. We shall present results
arising from this line of research in a separate
publication.

The quark model may be discussed in various
stages. At the most basic level one is concerned
with the quantum numbers of the quarks, such as
qua, rk identity (flavor), spin, and color. The mod-
el used here contains quarks of four types
(u, d, s, c), with spin —,

' and three colors. Baryons
are, in the first approximation, color-singlet com-
binations of three quarks, in the appropriate spin
and flavor combination. At the next level one con-
structs the space-time structure of the hadronic
wave functions. Experience has taught us that
quarks in the lowest-lying hadrons appear to be
confined to a volume with a characteristic dimen-
sion of 1 fm and to be in S-wave states. The spin
structure of the proton, for example, has the form

H(x) = gg(x)y ' —g(x) A„"(x), (2)

where X" is an SU(3) matrix (A = 1, . . . , 8) in color
space. The spin-dependent interaction of quarks
exchanging gluons splits the mass degeneracy of
the N-&, p-m, A-Z, etc. systems, resulting in a
reasonable mass spectrum.

The presence of the interaction of Eq. (2) neces-

~p), = e "[b'(u, 0, o.)b'(d, 0, P)
1

v'&8

—b~(u, 0, n)b~(d, 0, P)]b~(u, 0, y) ~0),

(1)
where b~( f, m, o.) is a creation operator for a, quark
of flavor f, spin m, and color o. in the lowest-lying
S-wave state. Several models have been developed
which incorporate these features. ' ' While the
models differ as to the precise shape of the wave
function, most appear to be reasonable approxima-
tions to the true hadronic wave function. In par-
ticular, the space-time structure of the ground
state in the MIT bag model is given in Appendix A. '
Various properties of hadrons, such as masses,
magnetic moments, charge radii, and coupling
constants may be calculated and in general are
found to be in agreement with experiment to within
20-30%. In addition, higher-mass hadrons may
be formed by radial and orbital excitation from the
ground states. Again these are found to be in gen-
eral agreement with experiment. These successes
force us to take the quark model of hadron struc-
ture seriously.

More recently there have been attempts"' to go a
step beyond the above by looking at the quark dy-
namics in greater detail, within the framework of
QCD. The quarks interact with spin-one gluons
coupled to the color degree of freedom via the
Hamiltonian density
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sarily has other consequences as well. For ex-
ample, quark-antiquark pairs are produced in ad-
dition to the usual three valence quarks. These
pairs, which we shall call the quark sea, change
the hadron structure and modify the properties of
hadrons. The analysis of the -quark sea follows in
a straightforward way from Eq. (2). It is impor-
tant to study such effects in order to understand the
consequences of the sea and to check whether the
dynamical picture of hadrons is self-consistent.
That s ea quarks do in fact exis t appears to have
been verified in deep-inelastic scattering. We
shall restrict our study of their properties to that
of the hadron rest frame. Much of our work de-
pends only on the interaction Hamiltonian of QCD,
Eq. (2). However, to present a complete ana, lysis
we shall need explicit hadron wave functions. When
necessary, we shall use those of the MIT bag mod-
el.

The outline of the paper is as follows. In Sec. II
we discuss the general framework of the quark sea
and its structure. Section III is devoted to a study
of the amounts of the various components in the
sea. Then we examine the effects of the sea on
earlier quark-model calculations in Sec. IV. Sec-
tion V contains a summary of results and our con-
clusion. We have two appendixes, the first pre-
senting portions of the MIT bag theory that are
needed in the text, and the second listing assorted
cumbersome formulas on the effects of the sea.

II. STRUCTURE OF THE SEA

We study the properties of a three-quark state
propagating under the influence of the quark-gluon

—S

—s
v'

FIG. 1. Quark-sea pairs produced by the action of a
gluon. V is a valence particle which the gluon transforms
into V', producing a sea quark 8 and an antiquark S.

coupling, Eq. (2). For the proton, which we shall
use as an example throughout

I p& = U(0 -")
I p&. ,

where
l P), is the three-quark state Eq. (1) and

U(0, -~) describes the time development in the
presence of the interaction.

U(0, —~) =T exp ig -dt d'x g(x)y'

g(x) A,"(x) . (4)

To second order in g quark pairs may be produced
via the mechanism illustrated in Fig. 1. At this
point, we urge the reader to acquaint himself with
the notation of Fig. 1, where the quarks V', S, and
S are defined. We shall refer repeatedly to these
in the following discussion. There are other ef-
fects to order g 2; however, we are concentrating
here on the quark sea only. The relevant portion
of Eq. (4) is

pA yA
d 'x d ' x'i D (x ', x):g(x)y ' —g(x) P(x ')y„—P(x '):, (5)

where D(x', x) is the gluon propagator. The time integration may be performed to obtain
2 A A

U„,,= — —.- d'xd'x'q(x) y„—g(x')G(x', x) |j(x)y' —p(x),Es+Er+Sv -Ev+
where

G(X', x) = dr D(r, x ', x) (7)

and E~ is the energy of quark k, as labeled in Fig.
1. Equations (3) and (6) are just the first terms of
the expansion of the Lippmann-Schwinger equation

lP) = fg, )+& H
. vlf).

When U„,, acts on the three-quark state
l p), it

produces a five-quark state. Two of the original
three valence quarks in the proto' remain un

changed in their space, spin, and color structure.

The third valence quark is changed by its interac-
tion with the gluon and may be transformed into any
one of a variety of allowable states. Observe that,
given the value of the quark-gluon coupling con-
stant g, the sea operator of Eq. (6) contains no

free parameters. We now examine the structure
of the five-quark state U„„lp), .

The sea quarks, 8 and S, and the final valence
quark V' will be in various energy levels within the
hadron. However, not. all combinations of levels
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are allowed. Since S and 8 have opposite intrinsic
parity, one (or three) of the qua, rks S, S, and V'
must be in a state of odd parity in order to give the
proton the proper overall parity. The lowest-en-
ergy sea state then consists of all quarks but one
in the S-wave ground state and the remaining qua, rk
in the first P-wave state. Higher-energy states
can be constructed from other combinations of
modes, such that the spin and parity of the proton
remain unchanged.

The quark spins must also be constructed prop-
erly. The interaction Eq. (5) is a spin singlet, and
this allows for two types of spin coupling. The ini-
tial 'valence-quark spin ma, y remain unchanged,
with the quark-antiquark pair forming a spin sca-

lar, or the valence spin may change (&&&S = 1) with
the sea quarks also forming a spin vector such that
the overall four-quark operator is a spin singlet.
For obvious reasons we call these cases scalar and
vector coupling. Finally, since the interaction is
mediated by a color gluon, the colors will be re-
arranged by octet coupling. Kith this information
we can write down the spin wave function, analo-
gous to Eq. (1), for the quark-sea contribution. We
shall employ subscripts i, j, k to label the energy
modes of the individual quarks, subject to the con-
straints discussed above, and use the label f for
the flavor of the sea quark-antiquark pair. For the
scala, r case, which we call P„, we have

l 4&;„,.i &
= (-1} "'b';(S, »~, ~)&.",d,'(S,—~, p)b,'(V', n, y)~,",b(V, n, 6)

l p&, (9)

with lp), being given by Eq. (1). The arrow over the destruction operator b(V, n, 5) indicates that it is to be
contracted sequentially on the three creation operators that appear in lp&, :

b(V, n, b)
l
j)&0= e 8'(5~„5„[b„&b(d, A, P)b (u, 0, y) —5„&b (d, N, P)b (u, f, y)]

v' 18
—5 «5,8 [6„&b~(u, 0, o)b (u, 0, y) —6„&b~(u, 4, o)b~(u, 0, y)]

+ 5 y„b~, b„& [b (u, 0, o&)b (d, 0, P) —b (u, 4, o.)b (d, 0, P)]] l
0) .

For the case of vector coupling we have the spin wave function, called PB:

l
&) ~~

&, , ») = (-1) ' ' ~ ' b, (S, m, o )a ', X"„6d,.(S, -m ', p) b "„(V ', n, y) a „'„,X „",b( V, n, 5)
l p&0 .

(10)

'The total wave function of a proton including sea quarks will then have the form

l&&-I j»o+ 2 (A&. , »I4&;, , ,.)&+&&;„,.) l4&;„,»&}. (12)
i, j, k

The A~&;,. » and B~&, , » are constants (of order g') which give the admixture of the various wave functions
for a sea-quark pa. ir of flavor f in the modes labeled i, j, and k. They may be read off of Eq. (6) once we
are given the quark wave functions. The sum is over all four flavors of qua, rk and all allowable modes.

In the fixed-sphere MIT bag model only j = 2 states satisfy the boundary condition, so that there are only
S- and P-wave states. As above, one (or all three) of the quarks S, S, V' must be in a P state. It is con-
venient to classify states into groups defined by their total energy. For example, the three lowest-energy
five-quark states each have energy 12/R, where R is the bag radius (R = 5 GeV '). There are 10 states
with energy approximately 17/R and 21 with E=20/R, etc. In general the nth block will contain n(2n+1)
states, and will have an energy which asymptotically goes as E- (n +F0)/R. Using notation defined in the
first appendix, we find the A and B amplitudes to have the form,

1

A „,„,= ' P u'du
I

u"du'a, (u, u') j&(ku()n&(ku&),
l =0) ly 2 0 &0

(14a)

a, (u, u ') = b(u, u ') = b, (u, u') = 0 .

1 1

8 &, , „)= ' Q u'du u "du'b, (u, u') j,(ku()n, (ku)),
l=0g 1, 2 0 0

where p= —,'(&dz+&d-+&d —e~}, a=&dz+cu~+&d~ —&uv, and o., =g'/4w. The index I labels the angular momen-
tum carried by the gluon. In the following, we exhibit the quantities a„b, for the cases where the S, S, or
V quark occupies a P-wave mode. The notation is defined in Appendix A, and in particular, a P-wave
quark is denoted by means of a tilde. For and S quark occupying a P state, we have

a, (u, u') =[f (&d~ u) f(~~u) —g (~~ u)g(e~ u)] [ f(&dvu') f(&u~u') + g(&d~u')g(&d vu')],
a', (u, u') = [f (&d, u) g((up u) + g((u, u) f((up u)] [ g(&o v, u )f(&d„u ) —f(~v, u )g(~v u )],
b, (u, u') =-', [f (u), u}g((u~u) —g((u, u) f(&d~u)] [ g(&d „,u') f(&dvu')+ f((u„,u') g(&dyu'}],
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The functional form of a, and b, is similar when the S quark is in the P state,

a, (u, u') =[ f(&d~ u)f (ezu) —g(ezu)g(&uzu)] [ f(m~u') f(&d~u')+ g(&u~u')g(e~ j')],
a,'(u, u') =[ f((u, u) g((u ,u)-+g((u~u)f(~gu)][g(~~u') f((u~u') —f((u~u')g(id~u')],

b~(u, u')= —,
' [f(id~ u)g (id~u) —g(id~u) f(u)~u)] [ g(id~u)f((u„u')+ f(~vu')g(idru')],

a,'(u, u') = b,'(u, u ') = b,'(u, u') = 0,
wher'eas for the case of the V' quark in a state of odd parity,

a i~(u, u') = 0,

b, (u, u') = —,
' f(+~u) f(e~ u)g(id~u')g(e~u') ——,

'
g(&a~ u)g(+au) f (e~u') f(&u~u)

—f(~~u) f(u);u) f ((u~u') f(&uyu')+ —,'g(~d, u)g((u-, u)g((u~u')g((u~u'),
t

bi~'(u, u') =-,' [ f(id, u)g(id;u) + g((u, u) f((upu)] [ f(id~ (u')g(ur ~u') —g (id ~u') f(~ ~u')],

b~'(u, u') =—,'g(id, u)g(id-, u)g(id vu')g(id~u') .

Finally, when all of the three quarks are in P states,

(14b)

(14c)

(14d)

a ' ' (u, u') =0,
b (u u~): 3 f(idqu) f(equ)g(idy u~)g((uyu~)+ —,

'
g((@au)g((uqu) f(id' u~) f(wyu~)

+ f((u, u) f((ugu) f(id~u') f((u~u') -9 g((d, u)g((u-, u)g((u~u')g((u~u'),

bi~'~' ~'(u, u') =-—,
'

[ f(&u~u)g((u~u)+g((u~u) f((u~ u)] [ f(id~u')g(id vu') —g(~~u')f(idru')],

b,'~' ~'(u, u') = —.—,'g(id~u)g(id~u)g((u~u')g(~d~u') .

We have evaluated the A and B amplitudes numerically. The results for the first 13 states (the first two

blocks in energy) are listed in Table I.

III. THE PROBABILITY OF THE SEA COMPONENT

We now discuss the overlap of the wave function
Eq. (12) with itself, which we interpret as mea. —

suring the probability of finding the various con-
figurations in the proton. The relative probability
of the sea part compared to the valence part of the
wave function is given by

[s";,' IAl, ~ I"s', ;;.» I'+Bl„,» I'
f, t, j, k

The numbers S&,- j k give the overlap of the various
states.

gB f ( f
i', i, j, (»~ 8, i, i, » I ~ Bs iy i, » )

f, i ~ i, » (~B, iii, »I~A, i, j, »)

These overlaps are not flavor independent. Be-
cause of the Pauli exclusion principle, a sea quark
cannot have the same quantum numbers as a val-
ence quark. This will be relevant only if the sea
quark is either u or d, One particular consequence
of the Pauli principle is that the probabilities of

TABLE I. Quark-sea amplitudes in the bag theory.

v'

1P
1$
1$
2P
1$
1S
2$
2$
1P
fP
1$
fS
1P

State
S

1S
1P
1$
1S
2P
1$
fP
is
2$
1$
2$
jP
fp

1$
1S
1P
1$
1$
2P
1$
1P
1S
2S
fP
2$
1P

A/e,
Q or d

a/e,

9.85 x 10
9.85 x 10

3.53 x 10
3,53x 10 5

7.48x10 3

7.48 x 10

0 ~ ~

f.18xf0 '
1.18x10

f.28 x 1Q 2

1.98 x 10
1.98 x 10
f.73x 10

-5.20 x 10 5

5.20x fp 5

6.35x fp 4

6.35x jp
3.80x fp
3.80x fp 3

2.00x 10 3

2.00x fp
1.33 x 10

A/e,

4.95
4.95

-7.52
-7.52

xfP 4

x 10-4

x 10 3

x 10"

0

xfp-4
xf0 4

7.45
7.45

1.87 x 1 0 '
1.87 x 10

B/e,

7.28x10 ~

3.85 x 10
3.85 x 10
1,55x 10
7.70x 10
7.70 x jp
1.19xfp 3

-1.19 x 10 '
3.28 x 10
3.28 x 10

-1.62x 10 3

1.62 x10
9.88 x 10 4

A/e,

2,45x fp"5

2.45x 10 5

5, f3x 10
—5.13 x 1p

1.97 x fp 3

1,97x fQ 3

-4.75 x 10
4.75 x 10 5

B!e,
-1.13 x 10 '

3.4Q x 1 P

3.40x 10
3.65x f 0 4

1.55 xf0
-1.55 x 10

9.55 x 10
9.55x fQ

9.38x jp
9.38 x 10
2.95 x 10
2.95x fp
3.00x 1 0-4
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TABLE II. The spin overlaps of five-quark states. The notation is such that q =G means
that quark q (as labeled in Fig. 1) is in the ground state and V'=S implies that quark V' is in
the same mode as the sea quark S. The sea antiquark S may be in an arbitrary mode in all
cases. The Kronecker delta 6 " is unity if the sea quark S is a n quark, and zero otherwise.

Description of state

V' =S =G
V'=. G, S & G
V'& G, S=G
V'=S &G
V' & S, V' & G, S & G

SA

~ ~ ~

f f 52+ 6406 "+3206 "
1152+ f 286su+ 646s
1152

SB

4608+ f 7926 "—f 0246 "
4608
3456+ 12806 "—320|5 "
3456 —3846 "-192t5

3456

~ ~ ~

320''" 640' s"
3846su+ f925s

finding a u and a d quark in the sea are not iden-
tical even though the interaction is isospin in-
variant. The calculation of the overlaps is
straightforward but tedious, and we list the form-
ulas for all possible cases in Table II.

W''th our A and B amplitudes in the bag model,
we can determine the probability [Eq. (15)] numer-
ically. A published fit' within the bag model to the
hadron masses has determined the effective coup-
ling constant to be n's=- & as=0.55. Using this we
list in Table III the probability in the first several
modes for the four flavors of quark. It is im-
mediately obvious that the quark sea contributes
to a considerable degree. The largest contribu-
tion occurs when the sea quarks are in the 1$ state
with the V' quark in the 1P state. Indeed, this con-
figuration alone gives almost half the sea probab-
ility among the modes which we have examined.
Observe that the large charmed-quark mass sup-
presses dramatically the charmed-quark content
of the nucleon. Likewise SU(3) symmetry is broken
by the strange- quark mass, resulting in a reduced
ss component.

We are not able to analytically sum over all .

modes to obtain a total probability. However, it is
possible to test whether the sum concierges or
diverges. The analysis presented below shows that
for the bag-model wave functions, the sum is in fact
finite. We do not know whether this result is
unique to the bag model or is more general. Let
us now consider in some detail how the question
of convergence is resolved. In the following, we
shall use the simplified notation P= &~„S=&s,
3=&v&, and thus 0=2(S+8- P) and &=S +8 +P. In
order to spare the reader an overly tedious analy-
sis, we consider the case where the V' quark is
restricted to any fixed mode whereas the S, R

quarks are free to occupy any mode. It turns out
that not only is the sum over all modes convergent
for the squared amplitude, it even converges for
the amplitude itself. As we shall see in Sec. IV,
this behavior is crucial in order to obtain finite
corrections to two-quark operator matrix elements.
Consider a quantity characteristic of the kinds of
integrals [appearing in Eq. (13)]which serve to
define the sea amplitudes A and 8:

TABLE III ~ The probability of finding various sea configurations within the proton in the
bag theory.

State
V' S S

Probabil ity
d s

1P
1$
1$
2P
1$
1S
2$
2$
1P
fP
1$
1$
ip

1$
1P
1S
fs
2P
1$
1P
1$
2$
1$
2$
1P

~ 1P

1$
iS
fp
1$
1$
2P
1$
1P
1$
2$
1P
2$
1p

0.209
0.005
0.005
0.004
3x10 6

5x10 6

0.018
0.027
0.013
0.018
0.005
0.005
0.001

0.138
0.005
0.004
0.003
3xf0 6

2xf.o '
0.018
0.021
0.013
0.012
0.005
0.005
0.002

0.049
2x10 6

2x10 '
0.002
0.001
0.001
0.020
0.020
0.010
0.010
0.003
0.003
0.001

0.0012
0.0001
0.0001
0.0001
3x10 '
3 x10-'
0.0020
0.0020
0.0008
0.0008
0.0001
0.0001
0.0001

Total block I (3 states)
Total block II (10 states)
Total block III (21 states)
Total block IV (36 states)

Total blocks I-IV

0.220
0.091
0.024
0.024

0.360

0.147
0.078
0.025
0.021

0.271

O. 049
0.071
0.024
0.023

0.167

0.0014
0.0060 '

0 ~ 0055
0.0070

0.020
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I= u'du jo(Su)jocu) na(ku) v'dv j,(kv) +j,(ku', v'dv n, (kv) (17)

For convenience, we have taken ~= ~, =0. This does not affect in any way the convergence property
under discussion. Exact integration of Eq. (17) yields

1 2
I= ~,[2j,(S —3) —2j,(S+3)]

1

+ sin g 8+8 Sx g 3S—S +Si g 3S —S +Sr g S+S —S). g 3S+3S
S+S

where Si(x) is the standard sine-integral function.
We must next multiply the quantity / by both the
ratio k/& and also the normalizing factors which
accompany field operators in. the bag model. By
employing the asymptotic expressions S- m'~ and
S-n.n, where m, n label the bag modes, we can
bound the resulting sum over modes by

K m+n (19)
m, n

where K is some constant. The double sum in (19)
is easily seen to converge. The squared ampli-
tudes converge even more rapidly. In like man-
ner, we have studied the convergence of all con-
tributions to Eq. (15) and after varying amounts of
tedious analysis, we have found them to converge.

A conceivable criticism of our numerical results
concerns the possibility that we are overestimating
the contribution when the sea quarks are in the
higher-energy modes. Quantum chromodynamics
is a non-Abelian gauge theory and is asymptotically
free. ' Throughout our calculation we use a rather
large effective coupling constant. determined from
low-energy phenomenology. However, in some of
the modes studied in the fourth block the gluon
carries roughly 3 GeV of energy. In asymptotically
free theories the effective coupling constant de-
creases as the energy scale increases (Ref. 9):

(20)

with A being a constant, We have not taken this
effect into account in our numerical analysis,
sticking to a strictly perturbative framework. Its
inclusion would certainly increase the rate of con-
vergence of our sum over modes, although in
view of its logarithmic nature, it would not have
a drastic effect upon the set of modes studied here.

Finally, it is useful to explore the model depen-
dence of our results within the bag model. Several
bag-model fits have been performed, yielding
somewhat different parameters. " In our evalu-
ation we have used the parameters of Ref. 6, i.e. ,
~„=~,=-0, ~, =0.279 GeV, m, =1.55 GeV, and

R =5 GeV '. The m =0 results are independent of
the bag radius' and bag pressure jp, depending

I

only on z, . When m &0 the only model dependence
enters through the dimensionless quantity mR.
The variation with mg of the numerically large
amplitude for which the p', S,S quarks occupy the
1I', 1S, 1S'modes is given in Fig. 2. We notice that
the rn =0 model has the largest sea amplitude, but,
since all reasonable models proposed so far have
mR ~1, the variation is only 30/z in amplitude.
While this would reduce the probability by a factor
of 2, it appears hard to significantly reduce the
sea probability beyond this in any bag model. We
need the large coupling constant, and hence the
large sea, if we are to use Eq. (2) to provide mass
splittings of the appropriate size.

d xr&&px p x

where Q is the electric-charge matrix. As is well

1.5 x10 2—

1.0x10

Q. 5x1Q

0.5
I

1

mR
1.5

FIG. 2. The variation of the largest sea amplitude
(V' in the 1P state, S and S in the 1S state) with ~.

IV. EFFECT OF THE SEA UPON TWO-QUARK OPERATORS

The probability discussed in the last section is
of limited importance since it is not empirically
observable. Of greater interest is the effect that
the sea has on various observables which can be
calculated within the quark model. We first re-
view these quantities as calculated in the valence-
quark model and then discuss the corrections due
to the sea.

The magnetic-moment operator is defined by
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known, the valence-quark wave functions give a
satisfactory relation between the neutron and pro-
ton magnetic moments p, „/g~ =--', . The analytic
bag-model expression for the proton magnetic
moment is given by

R 4&+2mR —3
6 2~ —2~+Pig (22)

With the parameters of Ref. 6 this yields p =1.01
GeV ', implying a gyromagnetic ratio of gp 2Mpp, p
=1.9. The absolute magnitude of the proton mag-
netic moment is the main failure of the fit of Ref.
6. Other fits yield a more reasonable value, g~
=2.6, compared with the experimental value g~
= 2.79.

The vector and axial-vector coupling constants

gv d X X yo X

g„= (f 'x y(x) y, y, 7,q(x)

and measurable charge radii

(23)

(24)

&»'), = d'xx'q(x) y, qy(x), (25)

&»„= d .'xx')j)(x) y, y, 7,((x) (26)

may be calculated for a proton. The vector cou-
pling constant is of course g» = 1 (and g» = 0 for a
neutron), whereas the bag-model formulas for the
remaining quantities are

2m +4mB& —3mB,
2(d —2(d +P/R

R F
6 (m*-m' R' )(2m* —2m+mR)) '

(28a)

where

F = 4(d'- 4(d'+(d'(8+6mR —4m'R')

+(d(-6 —8mR +4m2R2)

+mR(9 —6mR —6m R ), (28b)

108' G
22 (m*-m' R' )(2td'-2m+mR)) '

=0.48 fm2.

Finally, the 0 term in mN scattering defined in
terms of quark fields as

(y =m„(uu +dd)

is given in the bag model by

(30)

uP((+2mR) +mmR (2mR —1) —2(mR)*
)g = 387~

((2) +mR) (2(d —2(d +mR)

(o) =&o)„,.„„,.„, + g (&~. .T", , , +a(, , T,', , )
,
/'

z~u
/ y=u, ~

&o,.„)„,. (32)

(0)„,„,„„corresponds to the contributions listed

(a)

For the ~n„=0 model g of course is also zero. The
experimental value g =70 MeV was used in Ref. 4
to fix the M, d quark mass, and a value m„=rn„=44
MeV was found.

All the operators just discussed are bilinear in
quark fields. This means that they can connect a
five-quark state and a three-quark state, leading
to a correction term of order ~~. However, it is
not possible for a two-quark operator to destroy
a quark-antiquark sea pair since the operator is a
color singlet and the pair forms a color octet. In-
stead, the operator must act on the antiquark and
a valence quark, as in Fig. 3. This limits the
relevant sea states to those with u or d quarks,
and with the sea quark occupying the 1S state.

Upon inclusion of the pair contributions to the
hadron wave function, the matrix elements will
have the form

where

G =(2)~+2(gR(1+mR) -(2) (4+mR/2+m R )

+ u (3 —mR —2m 'R ' —2m 'R '
)

+mR(--,'+mR +m R )/2. (29b)

Using the parameters of Ref. 6, we obtain numeri-
cal valuesg„=1. 09, &»'), =0.52 fm', and &»'),„

(b)
FIG. 3. Diagrams for the action of a two-quark opera-

tor taken between a three-quark and a five-quark state.
An & indicates the action of a quark-field operator.
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in Eqs. (27)-(31). (O, ,,)„, is the spatial part of
the sea-corrected matrix element, while T,,„ is the
spin and color sum, analogous to S,,, in the last
section. As mentioned above, only the z, d pairs
in the sea contribute in this situation. We reserve
the presentation of the full form of the corrections
for Appendix B because of their length. We have
evaluated the effects numerically and these are
given in Table IV. We see that, despite the large
amount of sea observed in the results of Sec. II,
the effect of the sea on the two quark operators
(except for o) is on the order. of 20-30%%u~. That
o/m„ is changed dramatically by the sea is not
very important phenomenologically because a mod-
est change in the parameter m„will allow us to
regain a reasonable value for g. Our result for
g/m„ implies m„=10 MeV, consistent with zero.
For the other matrix elements the effect of the
sea is reasonable and does not destroy the suc-
cesses of the valence-quark model. One interest-
ing case is that of the neutron's charge radius. In
the valence™quark model this is identically zero
since u and d quarks have the same spatial wave
function. With the sea, however, the Pauli prin-
ciple requires that some states by populated dif-
ferently for u and d quarks. This generates a
charge radius of the appropriate sign, although the
magnitude is still too small (see Table IV). An-
other important feature to be noted is that, al-
though in principle the sea could markedly alter
the result p„/g~ =-—', , in fact this result is changed
by only 1%. Because of the accuracy and impor-
tance of this prediction, this is quite reassuring.
Observe that this is not a chance result, owing to
some lucky combination of the many contributions
in the bag model. Instead, it is mainly due to the
spin structure of the wave functions

~ g„) and
~ P~)

tsee Egs. (9) and (11)] such that most of the con-
tributions in the sum over modes satisfy (p, „),. /
(p~),. =--', for each individual mode i. That some
modes do not satisfy this will cause some deviation
from the original prediction, but these modes are
never important.

As in our discussion of the sea probability den-
sity, we must examine whether a sum over bag
modes causes the sea corrections to the valence-
quark results to diverge. The issue is somewhat
more delicate than in the case of the probability
densities because the correction amplitudes are
not to be squared. Alleviating this is the fact that
only two (V', S) and not all three (S,S, V) guarks
are allowed to occupy arbitrary modes. Thus we
are confronted with a double sum instead of a
triple sum. It suffices to say that employing the
methods discussed in the previous section, we find
all correction terms to be convergent in the bag
model.

V. DISCUSSION AND CONCLUSION

In order to remove unwanted SU(6) mass degen-
eracies, such as between the nucleon and g(1236)
in quark models of hadrons, spin-spin interactions
between constituent quarks can be introduced. Evi-
dently, the most rational way to accomplish this
is perturbatively through the exchange of color
gluons. To the same order g2 in quark-gluon cou-
pling, there inevitably appear quark-antiquark
pairs, which constitute a nonvalence component to
the hadron wave function. We have presented an
analysis of the structure and effect of these pairs.
In doing so, we have attempted to make our dis-
cussion general but have used the MIT bag model
to estimate various numerical quantities associated
with this phenomenon.

The pair contributions not only must exist, but
they enter with no additional free parameters.
Moreover, in the bag model these effects can be
shown to provide a bounded contribution to the
overall probability density. Upon taking the 70
lowest-energy sea components into account, we
find the relative probabilities (see Table III) val-
ence: sea(u): sea(d): sea(s): sea(c):: 1:0.36:0.27:
O. jI. 7: 0.02 for the proton. The importance of the
Pauli exclusion principle and the damping effect
of large quark mass are immediately discern-
ible from these numbers. The sea contributions
from nonstrange pairs can certainly not be con-
sidered insignificant. However, it is also true
that by far the single largest probability is asso-
ciated with the three -quark valence configuration.
Can the remaining infinite sum over allowed modes
have a qualitative effect upon these conclusions?
We think not. Although it is hard to estimate, the
rate of convergence with increasing mode energy
leads us to conjecture that the sea probability in
its entirety is no more than 50%%u0 larger than the
effects which we have been able to explicitly cal-
culate. We have nothing to offer as to the magni-
tude of O(g~) contributions to the hadronic wave
function.

Quark-antiquark pairs in the hadron wave func-
tion generate contributions to matrix elements of
operators associated with various observables.
These O(g') corrections to the valence model are
summarized in Table IV and depicted in Fig. 3.
We have been able to prove that they are finite in
the bag model. Moreover, to the extent that we
h-"ve been able to pursue the numerical analysis
up to a fairly large but finite number of allowed
bag modes, we find the net effect of the corrections
to be appreciably less than the valence-model con-
tribution. All this can and should be viewed as
satisfactory. It is consistent with the standard
feeling that the valence model provides a good first
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TABLE IV. The effects of the sea in the bag model on calculated properties of hadrons.

v'
~p Pn

(GeV ') (GeV ') (fm')
(+em') n

(fm )

1P 1S
is is
2P 1S
fS 1S
2S 1S

1S

1S
1P
is
2P
1P
2S

0.199
0.031
O. 004

10-4

0.105
-0.058

-0.133
-0.010
-0.002

3 x 10-'
—0.070

0.039

0.235
-0.029

0.012
3 x 10+
0.111
0.062

0.14
-0.02

0.01
1.5xfP
ixf0
f.5x fO 4

-0.007

4xfO

0.06
-0.01

0.01
4xf04
0.01
0.01

1,90
0.39
0.10
O. 004
0,41
0.50

Total sea (4 blocks)
Valence
Sea+ valence
Experiment

0.314
1.01
1.32
1.49

-O. 199
-0.67
-0.87
—1.02

0.43
1.09
1.52
1.25

0.12
0.52
0.64
0.66 +0.03

-0.007

-0.007
-0.12 +0.01

0.07
0.48
0.55
0,67 +O. f

3.71
1.44
5.15

57+12 MeV/rn„

approximation to hadron phenomena. Beyond this,
it is hard to gauge the success of the quantitative
bag-model results we have calculated here. The
O(g') corrections considered in this paper modify
the valence-model results in a reasonable manner
for magnetic moments and charge radii, but the
net axial-charge prediction overshoots the experi-
mental value by a serious amount. Of course, it
must be remembered that other O(g') corrections
occur, "and must be included before the bag model
can be judged fairly. Finally, the z term analysis
has forced us to reduce our previous estimate of
the nonstrange-quark mass from 44 MeV down to
a mass near zero. It would be of interest to anal-
yze the p term in competing quark models to see
what bounds one obtains.

It is common practice to interpret the structure
functions of deep inelastic lepton scattering in
terms of quark content of hadrons in the infinite-
momentum frame. ' " Unfortunately, since we deal
with particles at rest, we know of no way to make
a comparison directly between our results and
those of the infinite-momentum frame. The in-
finite-momentum boost is expected to change the
structure of valence and sea quarks, but so far
only qualitative arguments have been put forth. "
At any ra.te, to the extent that in our model the
three valence quarks dominate any other single-
quark configuration, we are consistent with the
fact that structure functions peak at x-= —,'.

As mentioned in the Introduction, one future ap-
plication of our model concerns the role of heavy
quarks in nonleptonic processes. In light of this

proposed line of investigation, it is particularly
relevant that the sea contribution to the hadron
wave function enters with no free parameters.
Thus, the nonleptonic analysis can proceed un-
hindered by ad hoc parameters which would other-
wise be needed to characterize the admixture of
heavy quarks in hadrons. Work on this project is
now under way.

APPENDIX A: THE MIT BAG MODEL

The general framework of the fixed-sphere bag
model has been presented elsewhere and will not
be repeated here. ~' Rather we present and develop
the notation that we will need in the text. A quark
of mass m is contained within a sphere of ra.dius
R and satisfies the Dirac equation

(ig-m) y(x) =0,

with a boundary condition

-ir &0(x) =it(x)

(Al)

(A2)

ate =R. Only j = —,
' solutions are allowed by Eq.

(A2). The 8-wave solution (ii = -1) has the form
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(A3)
I /

y(x) —(4')-1/2 Q t / Xm

fit�

(~ ) iu i/R +i' @-& / Xm d t (~ ) e+i& i/R

modos I g(M t/R) g, t (f ( Y/R)

Here, y is a Pauli spinor for spin rn and we use o, to label other quantum numbers. The energy is E =~/
R, and

( )=-i') ( )=-"(: =:) '~'~ (A4)
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where p =(u2-m'R2)'/2/R is the momentum and N is a normalization factor such that fd'xgt(x) p(x) = l.
Also, kt (d ) is a creation operator for a quark (antiquark) in a given bag mode and obeys the anticommu-
tation relations

(bt(m, n), k(m', n')) = Jdt(m, n), d(m', n')] =6 „,, 6„„.. (A5)

P-wave solutions (y =+1) have the form

( ) (4 )-1/2 Q g~ n Xm ~ht(m )
-i(at/s 1f (N1 /R) )(~ tg )+ d vm, cy e

f(«/R)x j -g(+1. /R)g ~lt

with

f (~~/R) =Xj,(p~),
- ~+mR

g((u1/R) = -N . j,(p1) .
QP

—Pl+

(A6)

(A7)

G(x, x') =-(x,V„)G(x,x') ~, „.
The solution, using standard techniques, is

G(x, x') =-k Q[j,(k2, )n, (ik 1)

(A10)

with

y,j,(kr)-j, (k1") V, (~) 1;+„(v')],

(A11)

n, (kR) +kRn,'(kR)

j (kR) +kRj,'(kR)

A numerical study of Eq. (A12) quickly reveals that

The boundary condition (A2) becomes

~( 2 m2R2)1/2
tan[(&u'-m R')'/'] =-—

M +K&/R —K

which, given mR, determines the allowable ~. A

second, nonlinear, boundary condition is not rele-
vant for us here. Fits have been performed to de-
termine the various bag parameters, the most
elaborate being Ref. 6 which yields m„=m„=0,
m, = 0.279 GeV, m, = 1.55 GeV, R = 5 GeV ', and

~,' =-,'+, =0.55. These are the numbers that are
used in the text.

The gluon propagator defined in Eq. (7) obeys

(V„'+k2) G(x, x') =-5'(x -x')

plus a boundary condition on the surface of the bag

in some modes y, is extremely large. For ex-
ample, in the notation of Fig. 1, if ~~ = 3, n~ = 4,
n~, =8, +v 1 and I(,'s=~s v, =+1, I(,'~ =-1, we find

y, =-1.26x10'. In the bag model, the bag surface
acts as a source and sink of gluons. With a fixed-
sphere model, the gluons resonate at particular
frequencies, giving this behavior. Clearly this is
an unphysical characteristic of the fixed-sphere
geometry. We remove this behavior by using y&

=0. This corresponds to equal amounts of in-
coming and outgoing waves, as is reasonable for
confined gluons. Qther prescriptions would change
the details of our results somewhat, but not the
general conclusions.

APPENDIX B: ANALYTIC EXPRESSIONS FOR CORRECTION
TERMS

We list here the analytic form of the order z,
corrections to the static properties of nucleons,
as discussed in Sec. IV. In all cases the 8 quark
is in the 1S state (which we will label G), and we
sum over the modes of the V' and 8 quarks. The
situation where the V' quark is (is not) in the 1S
state will be labeled V' =G (V' g G), and we include
a subscript on the A or B amplitudes to indicate
which quark is in a P-wave state.

The sea correction to the proton's magnetic
moment p, ~" is

1

u~"= ~ g &~ R u'«[f(~-, u)g(~, u) g(~ ,u)f(~—„u)]-
s, v'

+ 9 B~R u'du [f (cuzu) g (m~, u) g(&u2u)f (~„,u)]-

1

+ 2 Q (&-;-&2)R u' du[f((u-, u) g(~ 1, u)-g(~; )uf(~~, u)];
0

VI~G



QUARK SEA AND QUANTUM CHROMODYNAMICS 3431

for the neutron's magnetic moment

——,", P B-,R

1
Z(„"'=——';, Q By.R u'du[f ((dzu)g(&u u) -g(&u-u) f (&u, ,u)]

s, v'

u'du [f((o~u)g((uy, u) g—((d,u) -f ((uy, u)]

(B -A ——)R64
27 S S u du [f ((dgu) g((dy iz() g ((dgu) f ((a)y gu)] .

The axial-vector coupling-constant correction is
1

gg"= 9 Q Byu u'du[f ((dyru) f((u~u) + ', g((dy,—u) g((d~u)]
s, v

1

+ 9 Q Bu u du [f((dyuu) f (())gu) +a g ((dyru)g((e)gu)]
0

v'=o

+ —", P ( -e )a-f, u'du]f(tu, u)f(w ,u)+, la(tu„-, u)g(u-, u)];
s

v«G'

The various charge-radii corrections are

(y 2)-'=-32R' g B,
s, v'

—32R Q Bg
S

vt-g

u du [f ((uy, u)f ((()~u) -g((a)y u)g((e) ~u)]

u du [f ((dy, u)f ((dqu) -g((dyiu)g(())~g)]

-3R32 2 (»-, +A-, ) u du [f((dy, u)f ((a)~u) -g((a)y.u)g((d~u)], (B4)

(y 2) eea 32R 2 u'du [f ((o uy) f ((u-,u) -g(~„u)g((u-, u)],

(y 2) aea

s, v''
u du [f((dy~u)f ((, d)+u'sg((dyiu) g-(~~~)1

1

+ —,R' g Bz u du [f((0yuu) f ((Ugu) +ag(&y~u)g(&gu)]
0

v'=c
1

+ —,R' Q (B~ -A~) u du [f((dy. u)f ((()~~) +-,' g((dy u) g((dzu)] .
S 0

v''~t"

Finally, for the o term

(B6)

=96 QB, ,

s, v'

—128 Q B~
S

v'=a

u du[f ((d .u)f ((()gu) +g((()y u)g((dgu)]

I
u du [f((dy iu) f ((u~~) +g ((dy uu) g((dgu)]

, -32 g (3B-, +A-, ) u du [f((oy u)f ((()-,u) +g((()y,u)g((()-,u)] ~

There is no change to order ~, in the vector-coupling constant gv, as must be the case since gv is just the
total charge of the particle.
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