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The J* = 3/2" baryon-resonance mass spectrum, including the charmed states, and the resonance widths are
calculated using a broken-SU(4)-symmetric one-baryon-exchange model of the baryon—pseudoscalar-meson
forces. The dispersion-theoretic multichannel N/D matrix method is employed to construct the scattering
amplitude for each state. The parameters of the theory are a mixing parameter analogous to the SU(3) F to D
ratio, the mass of the exchanged baryon, a subtraction-point energy in the dispersion integrals, and the 1/2*
baryon and pseudoscalar-meson masses including those with nonzero values of charm. The positions and
widths are determined for three different sets of predicted masses for those charmed particles.

L. INTRODUCTION

S-matrix theories of strong-interaction physics,
which employed dispersion relations, hadronic
“particle democracy,” and bootstrap mechanisms
while denying the validity of field theory in the
realm of the strong interactions, were vigorously
pursued in the late 1950’s and early 1960’s; how-
ever, the proliferation of hadrons, together with
the requirement that all known particles which
can participate in a particular bootstrap operation
be included as input “forces” in the formalism,
quickly carried the calculations to the point of un-
manageability, while the results they yielded were
insufficiently gratifying to justify themselves.!
Furthermore, current analysis of data from deep-
inelastic lepton scattering experiments lends little
credence to the “elementary” nature of the ob-
served hadrons.??

The dispersion theories now have been all but
abandoned, to be superseded by the constituent
view of hadrons both because of esthetic reasons
and because of current interpretations of the evi-
dence. It further appears that the concept of
charm and the consequent significance of SU(4) in
hadron spectroscopy has become entrenched in
high-energy physics, although Han-Nambu-type
models with broken color symmetry in lieu of
charm are not completely untenable.*

The most attractive picture of hadrons which
emerges, then, is of particles constructed from
the more primal quarks, which come in at least
four flavors and exactly three colors along with
their other physical characteristics and which are
cemented together with colored gluons. Four-
color models have also been introduced with lepton
number being the fourth color.®

On the other hand, the moderate success of the
SU(3) bootstrap models in predicting parts of the
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hadronic mass spectrum in the correct channels
and with the correct quantum numbers in the pre-
charm era, together with their substantial physical
content and incorporation of correct overall fea-
tures such as the analyticity, unitarity, and cross-
ing-symmetric structure of the S-matrix, sug-
gests that the approach must have at least a valid-
ity on the phenomenological level. In fact, if in-
deed quarks are confined, there may be no incon-
sistencies between the quark theories and the boot-
strap theory, particularly in the low-energy re-
gion, since the latter theory deals only with ob-
servable particles. Hence, in spite of the attrac-
tiveness of the quark model on the fundamental
theoretical level, there is ample impetus for re-
examining the bootstrap idea in the context of ap-
proximate-SU(4)-symmetric strong interactions.

The extension from SU(3) to SU(4) is, of course,
not expected to alter significantly the severely
limited range of applicability encountered in the
earlier models, and most of the criticisms of them
within their range of validity persist. They are
meaningful only when applied to low- and some-
times medium-energy baryons whose strong decay
is to several two-body channels only, since at
higher energies many-body channels become sig-
nificant. It is impossible to include all particle
exchanges which could participate in the bootstrap
process. They are inconsistent with heavy-free-
quark theories, whether or not such theories in-
clude quark channels, because of the possibility of
heavy-quark—-heavy-diquark systems interacting to
form a light bound state. Finally, the widths of the
resonances usually turn cut to be quantitatively in-
correct.

Thus, accepting the fact that the bootstrap ap-
proach is inadequate for yielding a complete under-
standing of low-energy strong-interaction phenom-
ena, we proceed with the hope that, as in the past,
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it will be useful in the determination of the low-
energy baryon spectrum, or at least as a test of
the consistency of strong-interaction theories with
approximate SU(4) symmetry.

The objective in what follows is to obtain the J%
=3+ baryon-rescnance positions and widths using a
model, the basis of which is the broken-SU(3)-
symmetry model of Martin and Wali.® Actually we
employ a simplified version of this model similar
to that of Wali and Warnock.” It is imperative that
we use a simple model because of the large number
of two-particle channels which are introduced by
the addition of charm. The resulting numerical
analysis is rather prodigious even in the simple
model.

The model intuits that the low-lying baryon res-
onances are due only to one-baryon exchanges in
pseudoscalar-meson-baryon scattering and em-
ploys an N/D representation of the partial-wave
multichannel scattering amplitudes. We assume
that the nondegeneracy of the pseudoscalar-meson
and baryon multiplets, i.e., the symmetry break-
ing, directly affects only the centrifugal barrier.
Only two-particle channels are considered.

One difficulty of our calculation which is distinct
from the similar calculations done during the reign
of SU(3) symmetry is that some results depend
strongly on the masses of those charmed pseudo-
scalar mesons and J¥ =5+ baryons which have not
yet been seen. All of the octet meson and baryon
masses were known during the time when many of
the SU(3) bootstrap calculations were done. In
fact, the decuplet (charm-zero resonances) masses
and widths were also completely known soon after
the SU(3) classification scheme was proposed, so
the parameters of the theory could have been ad-
justed to give the correct results. More minister-
ially, since several schemes which predict the
properties of the charmed baryon and pseudoscalar
mesons have been proposed,®® the possibility
arises that our calculation could be exploited to
select which scheme is most viable in the context
of broken-symmetry bootstrap theories by com-
paring the various decuplet-state positions and
widths obtained to their experimental values.

Unfortunately our a priovi expectations are that
in all cases the decuplet states will not differ ap-
preciably from the results obtained in SU(3) mod-
els, since the new channels made possible by the
new internal degree of freedom involve high-mass
charm-anticharm couplings wherein, assuming
short-range interactions are not significant, the
high-threshold theorem becomes applicable. For
example, in the octet model reasonable results
for the Z* position, width, and partial decay widths
into the Z7 and A7 channels are obtained when the
Z7 and ZK channels are ignored.*°

II. OUTLINE OF THE MODEL

The general features of the theory to be em-
ployed here—the kinematic structure of spin-3-
baryon-spin-0-meson scattering, partial-wave
analysis, analyticity, unitarity, crossing sym-
metry, and the ND ™! matrix formalism—have been
developed extensively in great detail in the litera-
ture in the context of SU(2) and SU(3) symmetry?;
hence in what follows we merely give a brief out-
line of the theoretical ideas, providing details only
where it is necessary to introduce new considera-
tions.

We construct an ND ™! matrix to represent the
J =% partial-wave 7 matrix which exhibits the cor-
rect threshold behavior and from which all of the
kinematic singularities have been removed. The
latter requirement demands that we work in the
center-of-mass energy, i.e., the complex w plane,
rather than in the square of the center-of-mass
energy.’ The N matrix, which comprises all of
the physical or dynamical input, is assumed to be
analytic on the right half-plane and incorporates
the left-hand cut, (~wg,, —), where w, is the
threshold energy in the center-of-mass frame.
Since we are regarding single-baryon exchange as
the primary force responsible for generating the
resonances, we define the N matrix to be the Born
approximation for one-baryon exchange assuming
exact SU(4) symmetry:

N(w) = h(w)N,, (2.1)

where N, is the symmetric matrix determined by
the isospin factors, the SU(3) isoscalar factors,
and the Yukawa-type meson-baryon coupling con-
stants, which, in turn, depend on the pion-nucleon
coupling constant and a mixing parameter. The
dimensionality of N for a particular channel is just
the number of coupled two-particle states in that
channel. These two-particle states are given ex-
plicitly in Table I. %(w) is the usual energy-depen-
dent factor for the J=% channel:

I(w) = R%){E—i]w—[Al+(w"1w)31]
* E:w ['A2+(w+M)Bz]E . (2.2)
where ‘
B’zﬁg_;Q’<1+§%> g @.3)

y=2(M?+m?) - M2 - w?,
E+M=[(wtM)?-m?]/2w .
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TABLE I. Coupled two-particle states for each channel.

Quantum numbers

C I Y Coupled two-particle states
0 3 1 Nr,ZK,C,D
1 0 Ar,=v,NK,2n,5K,=n,,AD,CF~,SD
3 -1 En,AR,=R,En,En,,AF~,SF~,TD
0 -2 EK,TF~
1 1 1 ND,IF*, Cyr,AK,Cm,Cm,SK, Cn,, XD
3 0 AD,=D,EF*, Ar,C)R, An,Sw,C,K,Sn, TK,An,, Sn.,XF~, XD
0 -1 ED,AK,SK,Tn,Tn,,X,F~
2 3 1 CyD,AF*,C,D,SF*, X, Xn,XK,Xn,
0 0 AD,SD, TF* XK, X ,X {0,
3 0 1 XD, X F*

@, is the Legendre function of the second kind,;
M,, M, and m are the masses of the exchanged
baryon, the incoming baryon, and the incoming
meson, respectively; E is the baryon energy; and
g is the center-of-mass momentum.

The D matrix incorporates the right-hand cut,
(wg,), and is assumed to be analytic on the left
half-plane. A once-subtracted dispersion relation
is written for D in terms of the N matrix

_ W= p(w’)N(w')dw’
D(w)=1-2= fp(w'-a)(w'-w)' 2.4)

P denotes the branch cuts and @, the subtraction
point, is smaller than the lowest threshold for the
entire problem. The p matrix is given by

Pij=0:4:* (W)0(w = w) (2.5)

where ¢; and wo, are, respectively, the i-channel
momentum and threshold energy. Here symmetry
breaking is introduced for the first time by evalu-
ating p at the physical masses.

The problem of locating the positions of the res-
onances and bound states amounts to simply deter-
mining the positions of the poles of the kinematic-
ally reduced T matrix given by

A=ND™!
B W= , p(w)h(w’) -1
= h(w)N, {1 - L dw o -0) (@ ~) NO]
= (W) [N, =T (w)] 7, (2.6)
where
W= Plw’ ) (w’) ,
I(w)= - f @ =)@ ) dw’ . 2.7

The calculations are greatly simplified by trans-
forming to the representation inwhich N, is diag~
onal. Each two-particle state, specified by iso-
spin, hypercharge, and charm quantum numbers,
can be expressed as a linear combination of ir-
reducible representations of SU(4) through the
SU(4) Clebsch-Gordan coefficients®®:

(BM); =U;9;({R, 1}, Y, C), 4,j=1,2,...,n
(2.8)

corresponding to an n~-channel case. I, Y, and C
denote isospin, hypercharge, and charm, respec-
tively, while R and u label the SU(4) and SU(3)
CSU(4) representations, respectively. The U;;
form a unitary matrix. Thus, for a set of n cou-
pled two-particle channels, the elements in the
matrix of amplitudes which constitute N, can be
expressed as a linear combination of pure-SU(4)-
symmetric amplitudes. Then the matrix can be
diagonalized by the unitary matrix U. The eigen-
values of N, are the appropriate crossed-channel
SU(4)-invariant amplitudes, F;, corresponding to
one-baryon exchange in the direct channel. These
amplitudes, which depend only on the overall cou-
pling constant and the mixing parameter, have
been calculated in a previous work.” It is not
necessary, then, to calculate the full Born matrix
using the Yukawa couplings; but for the purposes
of later discussion we give the full N, matrix for
the eight-channel case corresponding to Z* in
Table II. In this and all other decuplet states the
submatrix corresponding to the uncharmed chan-
nels reduces to the SU(3) matrices given in Ref. 6.
In Table III we list the diagonalized N, matrices,
N, for each channel:
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TABLE III. Diagonalized N, matrices, . The F(X), where X refers to the relevant SU(4)
irreducible representation, are tabulated in Ref. 13.

Quantum numbers

c I Y s
0 3 1 [F(140), F(140), F (20')] ,
1 0 [F(140), F (140),F(140),F(€6),F(GG),F@G),F(ZO’),F(201)F(202)]
3 -1 [F(140), F(140), F(140), F(80), F(36), F(20), F(20,), F(20,)]
0 -2 [F(140),F(20")]
1 1 1 [F(140), F(140), F(140), F(60) , F(60), F(36), F(20") , F(20,) , F(20,)]
3 0 [F(140), F(140), F (140), F(140), F(80) , F(60) , F (36), F(36),
F(20"),F(20;), F(204)F(20,)F(20,), F(Z)]
0 -1 [F(140), F(140), F(80), F(20"), F(20y), F(20,)]
2 % 1 [F(14O),F(140),F(140),F('6(_)),F({—’;G),F(20')F(201)F(202)]
0 0 [F(140), F(140), F(60), F(20'), F(20,), F(20,)]
3 0 1 [F(140), F(20")]
N;; = (UTNOU)“- =8;;F;. (2.9) ments may be neglected in a rough first approxi-

The amplitude reduces to
UTAU = h(w)[UTN," U =UT T (w)U] ™2
= h(w) [ = U (w)U] 7= h(w) D™ H(w) .
(2.10)

The positions of the bound states and resonances
are now defined to be the zeros of det® on the ap-
propriate sheets in the complex w plane. The lo-
cations of the zeros of det® are the same as those
of the determinant of the untransformed matrix.

In the exact-SU(4)-symmetry limit the diagonal
p matrix reduces to a constant times the unit ma-
trix; that is,

p;=p;=p for alli,j , (2.11)
where we have defined

Pi=pP;; - (2.12)
“Then U'pU is also diagonal,

W pU); =00 . (2.13)

If the symmetry breaking is gradually introduced,
we may hope that the off-diagonal elements of
UTpU remain small, because

(UTPU)ij :Zk: U:kUhjpkE; ay(i,5)Ps (2.14)

where the coefficients, a,, add up to O for the off-
diagonal case, i#j, and to I for ¢=j. The numeri-
cal results of Wali and Warnock for the SU(3) mod-
el support the conclusion that the nondiagonal ele-

mation. To treat them as ignorable perturbations
greatly simplifies the problem, for then the de-
terminant factors into a product of the diagonal
terms, each of which corresponds to an irredicible
representation of SU(4).

However, in spite of the fact that corrections to
the diagonal approximation appear as products of
off-diagonal elements, it is certainly possible,
particularly in the SU(4) scheme, where the mass
degeneracy is much more badly broken than in the
SU(3) scheme, that off-diagonal elements will have
at least a significant quantitative effect on our re-
sults. Thus it is necessary to evaluate numerically
all of the matrix elements and compare them over
the energy ranges of interest before arriving at
any conclusions regarding their relative signific-
ance.

The calculations are also simplified by utilizing
the obvious fact that the ® matrix is symmetric,
as it should be to accommodate time-reversal in-
variance.

The widths of the resonances, assuming they are
narrow, are estimated by employing a linear ap-
proximation for Re detD(w +i€) near the resonance
position, wg: )

Re det®(w +i€) = (w — wk)b% (Re detD(w + ie)]

w=wR

+0((w = wg)?). (2.15)

Then, letting % denote the derivative in Eq. (2.15),
detD e k(w ~ wg) +i Im detD(wy, +i€) (2.16)
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and

I'/2=Im[detD(w +i€)]/k. (2.17)

III. INPUT MASSES AND PARAMETERS

The * baryon and pseudoscalar-meson mass
spectra have been predicted in group-theoretical
and quark-model calculations providing several
sets of possible input masses for our calculation.
The predictions which are the most theoretically
satisfying are those of the quark model in the cal-
culation of De Rujula, Georgi, and Glashow. Their
model uses a specific quark-quark interaction and
symmetry breaking, the general forms of which
they are constrained to use in order to satisfy the
underlying renormalizable color gauge theory.

To incorporate asymptotic freedom and infrared
slavery they use the lattice theory as a guide,**
i.e., they assume that the principal binding energy
of the hadrons is due to the long-range interaction
responsible for infrared slavery and that the spin-
spin and spin-orbit energies are exponentially sup-
pressed. Asymptotic freedom suggests that the
effective short-range forces are determined by
one-gluon exchange, and a Fermi-Breit interaction
is used.

The hadrons appear in supermultiplets of SU(8),
® SU(8); ® O(3) and symmetry breaking is due
strictly to differences in quark masses. Without
charm [SU(6),® SU(6); ® O(3)] the relatively small
mass differences within supermultiplets permit a
perturbative approach where the expectation value
of the perturbation term in the Hamiltonian is pa-
rametrized to fit the observed particle masses.
New mass relations as well as the usual ones
emerge from the theory and are experimentally
satisfied, lending further credence to the theory.

Charmonium spectroscopy yields for the charmed
quark an approximate mass which is much higher
than that of the other quarks, so that SU(4) sym-
metry is much more badly broken than SU(3) sym-
metry and there is a significant uncertainty in the
charmed-quark mass. Thus, when charm is added
to the model it suffers to some extent from the
same malady as the calculation based on the Gell-
Mann-Okubo type formula done by Okubo, Mathur,
and Borchardt.® In both cases the mass splitting
between members of a multiplet due to the electro-
magnetic interaction and to strangeness are ex-
pected to be much more reliable than the absolute
mass of the charmed hadrons.

We calculate the 3* baryon mass spectrum using
three sets of input masses for the charmed pseudo-
scalar mesons and 3" baryons—those given by
De Rijula, Georgi, and Glashow (DGG) and those
given by Okubo, Mathur, and Borchardt (OMB).
The latter includes two sets of masses for the bar-

TABLE IV. Masses of the charmed pseudoscalar
mesons in GeV. In this and other tables, the quark con-
tent of the leading particle of its isospin multiplet is
given in parentheses. DGG and OMB denote, respective-
ly, the masses given in Refs. 8 and 9.

Pseudoscalar
mesons DGG OMB  Experimental
D(cN) 1.830-1.860 2.171 1.870
F(cA) 1.975 2,222
Nc(q9) 2.755

yons depending on whether the Gell-Mann—Okubo
formulas are interpreted as being linear (OMB;)
or quadratic (OMBy) in the masses. The numeri-
cal values for each set is given in Tables IV and V.
The notation corresponds to that of Ref. 12 but,
since the names of the particles have not been
standardized, we give the quark content of the
leading term in each isospin multiplet.

It is important to note the qualitative similar-
ities in, as well as the quantitative differences be-
tween, the several schemes. In particular each
scheme, of course, exhibits approximately equal
spacings between states differing in strangeness
by one unit and between states differing in charm
by one unit. In both the DGG and OMB; schemes,
the strangeness spacings are about 170 MeV, which
coincides with the observed octet and decuplet
spacings, but in the OMBg case, the spacings are
about 60 MeV. The charm spacings are of the or-
der of 1 GeV in DGG and OMB and 4 GeV in
OMB; .

The parameters of our theory are the mass of the
exchanged baryon, a mixing parameter, the pion-
nucleon coupling constant, and a subtraction ener-
gy. As in the Wali and Warnock calculation we
take 10.5m, as the mass of the exchanged baryon.
It is chosen to be higher than the masses of the
octet states in order to move the real-axis branch
points to the left of the lowest threshold of the

TABLE V. Masses of the charmed { baryons in GeV.
Subscripts @ and L denote quadratic and linear formula,
respectively.

Baryon DGG OMBg OMB,
C,C®c) 2.360 3.479 6.202
S®xc) 2.510 3.542 6.416
T(\Ac) 2.680 3.600 6.581
A@2rc) 2.420 2.976 4.814
Co®Nc) 2.200 2.898 4.597
X(Pce) 3.550 4.313 8.790
Xs(hce) 3.730 4.375 9.044
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problem, thus transforming the symmetric N ma-
trix into one which has the same analytic behavior
as the Born matrix evaluated at the broken-sym-
metry masses throughout.

The mixing parameter, «, arises because there
are two ways to couple the antibaryon-baryon com-
bination to the pseudoscalar mesons to get an SU(4) .
singlet. In the case of SU(3) we distinguish the two
by writing an F-type (antisymmetric) and a D-type
(symmetric) coupling in the Langrangian with their
relative strengths defined by «, i.e., a is the
strength of the symmetric coupling and (1 - @) is
the strength of the antisymmetric coupling. In the
case of SU(4) the baryons are not represented by
the self-adjoint representation, and we are not
able to maintain the antisymmetric and symmetric
identification of the couplings in the same way.'®
The direct product of the baryon representation
and the pseudoscalar-meson representation, 20
® 15, gives a 20, and a 20, along with the other ir-
reducible representations (IR’s). Here we define
the mixing parameter, a, so that £« measures
the strength of the 20, couplings and (1 -£q) is

_the strength of the 20, couplings.’® In Ref. 13 we
calculated the value of @ which ensures the boot-
strap relationship between the IR’s of SU(4) which
represent the 3* and * baryons, the 20 and 20’
representation, respectively. We exﬁéct the same
value of o, @ =~0.675, to give the bootstrap rela-
tionship in the appropriate channels here, and we
fix the mixing parameter at that value.

The dispersion relations for the D matrix ele-
ments are once-subtracted to ensure convergence
of the integrals. The value of the subtraction-point
energy is taken to be five times the pion mass
throughout. Changes in this parameter simply
shift I (w), defined by Eq. (2.7) vertically.®

Finally, the pion-nucleon coupling constant is
fixed at the experimental value.

The degenerate mass of the baryon and of the
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pseudoscalar meson used in the calculation of the
Born matrix might also be regarded as param-
eters, and, indeed, the calculations are sensitive
to values of these quantities. In the octet model
the choices were’’

My+Ms _ 3My+My
2 4

M=

and

3m,>+m,>
me= n T

7y (3.1)

e,
or alternatively, in order to facilitate parametriz-
ation of the mass breaking,’

M=M, and m=m,. (3.2)

In either case the baryon and pseudoscalar-meson
masses lie in the neighborhood of the average
masses of the octets.

We again choose Egs. (3.1) to define our degen-
erate masses even though they can no longer be
regarded as average masses of the new SU(4) mul-
tiplets. As before, the choice is convenient for in-
vestigating the behavior of the amplitudes when the
symmetry breaking is gradually increased from
the degenerate to the physical values, where the
amount of breaking for a particular state depends
on the isospin, strangeness, and charm quantum
numbers as well as on some symmetry-breaking
parameter.

IV. RESULTS AND CONCLUSIONS

As expected, there appear poles at well-defined
energies in the ND ™! matrices for each channel de-
fined by isospin, strangeness, and charm. The
numerical values for the resonance positions and
widths are given in Tables VI and VII, respective-
ly. The determinants of the © matrices for the C
=0 decuplet states, the C=1 sextuplet states, the

TABLE VI. %* baryon masses in GeV. I, I,, and I3 correspond to our calculations using
the input masses of DGG, OMB,, and OMB;, respectively. EXP denotes the observed value.

Baryon DGG OMB, OMB, I I, I EXP
AECP) oo oo vee 1.205 1.215 1.230 1.233
T*EPPN) se see ce 1.334 1.385 1.310 1.385
Ex(PAN) cee 1.430 1.480 1.440 1.530
Q" (AAN) oee see aee 1.476 1.485 1.500 1.672
C¥®®c) 2.420 3.215 4.261 2.500 2.200 2.781 2.5
S*(®Pxc) 2.560 3.277 4.414 2.800 2.400 2.900 (XX
T*(\rc) 2.720 3.342 4.562 3.000 2.460 2.950 .
X*®cc) 3.610 4.377 7.291 4.230 3.380 3.630

X¥(cc) 3.770 4.422 7.444 4.420 4.350 3.990 X
Cy(cce) 4.810 5.289 10.320 5.680 5.970 5.780
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TABLE VII. Baronic widths in MeV. 5 indicates that x10{n+3)
the resonance position is below the threshold.
Baryon DGG’ OMBj, OMB;}, EXP Q
w
O 6
A 71 74 82 110 o ¢
T* 30 81 25 42 +4 z
ol 4 15 4 9.1+5 z 4
Q” b b b stable =
x
cf 0.0 b b e =
s b b b & ENERGY (GeV)
* b “ee e
T b b 1 ‘ 3‘90
X* 3.3 b b e 200 2.50 N
X¥ 34.5 b b e 7 s
C, 89.4 b b o -2 -
cr
-4
C =2 triplet states, and the C =3 singlet state are
plotted with arbitrary units along the ordinate in -6l
Figs. 1-4, respectively, for OMB, input masses.
The behavior is similar for the other input
masses. 7 in all of the figures denotes the dimen-
sionality of .
Numerically, for each case the calculated posi-
tions of the decuplet states are within a few per- FIG. 2. The positions of the C=1 (I3) sextuplet state
cent of the observed values, with the exception of resonances.
the £~ which exhibits an error of 10-12%. The
positions of the nonzero-charm states are qualita-
tively very reasonable. The SU(4) mass formulas
given in Ref. 9.
x107(n+3)
x[0~(n+3)
]
. S
u 6+
© gl -
- z
Z z s
Z 4 3
: £
w = zL
2 a
w ENERGY (GeV)
4.00
1.50 ENERGY (GeV) L L h
i 1 3.00 3.50 C \
1.00 2.00 X3
A -2l
-2 Q.
-4}
-4+
E'
_6 - .
-6 . X
b3

FIG. 1. The positions of the C=0 (I3) decuplet state
resonances as determined by the zeros of detD as FIG. 3. The positions of the C=2 (I3) triplet state
functions of energy. resonances.
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x10~(n+3)

DETERMINANT OF 8

1 L
5.00 6.00 7.00
ENERGY (GeV)

FIG. 4. The position of the C=3 (I;) singlet state
resonance.

Cr—A=S*—Z*=T*_mE* 4.1)

X*—A=X*-3*, (4.2)

TH_A=EX-Thk=Q" ~E*, (4.3)

Cs—A=395, ._ (4.4)
where

y=20.7, . (4.5)

6=(Q"-A)/3 (4.6)

are very well satisfied for each case, with the ex-
ception of the decuplet equal-spacing rule of Eq.
(4.3), which is rather badly violated.

Virtually the same masses are obtained from
each of the alternative definitions of the resonance
position:

Re[detD(w)] =0,
det[ReD(w)]=0, 4.7)
"Re[d,y (w)] =0,

where d,, (w) is the eigenvalue of the D matrix
corresponding to the 20’ irreducible representation
of SU(4) in the exact-symmetry limit.

The widths for the charm-zero decuplet states
are, as usual in bootstrap models, not very ac-
curate, although they are of the correct order of
magnitude.

Interestingly, the positions of all of the nonzero-

charm resonances appear below the thresholds for
the reactions with OMB, and OMB,, input masses.
With the DGG masses only the C*, X*, X¥, and
the C, appear above threshold, but they occur very
close to the threshold with correspondingly small
phase space for decay. Hence all of the charmed
states appear as bound states or very narrow-
width resonances; that is all are nearly stable
particles.

We have heretofore assumed that the resonant
states unambiguously comprise the 20’-plet of
SU(4); however, the reciprocal bootstrap mecha-
nism in the case of exact SU(4) symmetry yields
attraction in both the 140 channel and the 20’ chan-
nel. The magnitude of the attractive force in the
former, however, is only about 25% of that in the
latter channel, thus we expect the physical reso-
nances to be primarily identifiable with the 20’ IR
of SU(4) while exhibiting a small mixture of the
140 IR. The tensor representation of the 140 has
the identical symmetry structure as the 27 IR of
SU(3), which exhibits the largest mixing with the
decuplet in broken-SU(3) models.

The mixing problem for broken SU(4) is compli-
cated by the multiple occurrence of amplitudes
corresponding to the various IR’s and by SU(3)
symmetry breaking which gives rise to mixing be-
tween the SU(3) C SU(4) states. For example, when
the N, matrix for =*, given in Table II is trans-
formed to the unitary representation defined in Eq.
(2.9), F(140) appears three times with the same
strength corresponding to states

YR, n};1,Y,C)=9({140, u};3, -1,0),

where the SU(3) label, i, takes on values 27, 10,
and 8. As shown in Table III multiple occurrence
of F(140) exists whenever the dimensionality of the
JU matrix exceeds two. Then, when the J{;; matrix
elements together with the mass differences are
introduced into the dispersion equations for the
D;; matrix elements, mixing occurs between the
20’ and each of the 140 amplitudes. Furthermore,
since the zero-charm SU(3) content of 140 consists
of a 27, a 10, and an 8, and the zero- -charm SU(3)
content of 20’ consists of a 10, mixing may occur
at the SU(3) level. Similar circumstances prevall
for the charmed cases. The 140 contains singly
charmed IR’s 24, 15, 6, and 3 and doubly charmed
IR’s 15, 6, and 3 whlle the 20" contains a singly
charmed € 6 and a doubly charmed 3.

In the umtary representation, the off-diagonal
elements of the transition-amplitude matrix,
UTAU, at the resonance position provide a mea-
sure of the degree of symmetry breaking that
emerges as a consequence of the input of nonde-
generate masses in the D matrix, thatis, the rel-
ative magnitudes of the off-diagonal elements cor-
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respond to the degree of mixing of the SU(4) IR’s
in the resonant state.

Numerically, the squared absolute value of the
diagonal element (UTAU),, 20’ 18 consistently larg-
er by at least an order of magnitude than the other
elements, while the largest off-diagonal elements
are consistently the (U TAU)NO,ZO: elements com-
mensurate with an expectation from exact-sym-
metry considerations.

Also not unexpected is the fact that the discrep-
ancies in the calculated decuplet masses discussed
earlier are all manifested in a lowering of the val-
ues compared to those obtained in SU(3)-symmet-
ric calculations. The parameters of the theory
have nearly the same values as those of Ref. 7,
and from quantum mechanics we know that simply
introducing new channels, i.e., expanding the vec-
tor space of particle states, cannot raise the reso-
nance position, but may lower it.

Furthermore, the new decuplet masses obtained
corresponding to the different sets of input masses
are all affected similarly, and the calculation is
insufficiently sensitive to the charmed-particle
masses to provide a means of selecting the correct
ones. )

The violation of the equal-spacing rule for the
decuplet is most significant in the @~ - =* mass
difference, which can be attributed to the rather
high error in the 2~ mass. In broken SU(3) sym-
metry the Q7 is produced in a single-channel re-
action as a bound state of Z and K. The charm
hypothesis introduces another two-particle state
with the quantum numbers of the £ thereby doubl-
ing the number of channels and necessitating a
change to the multichannel formalism. The masses
T and F~ as well as the other input parameters
might be expected to have a disproportionate effect
on the position of the resonance compared to the
effects on other decuplet states.

There is no doubt that, through manipulation of

the parameters of the theory, the numerical devi-
ations from the observed decuplet masses may be
removed. For example, it may be more reason~
able to use a higher exchange mass and to use a
different subtraction point for each dispersion in-
tegral. However, the goal here is not to reproduce
accurately the decuplet masses or to make accur-
ate predictions of the charmed-baryon resonances.
To carry out such a program with our model at
this time is unwarranted, since most of the masses
of the charmed 3 * baryons are not yet known ex-
perimentally.

Our objective has been simply to determine
whether or not dispersion theory and the bootstrap
mechanism along with the simple dynamics of one-
baryon exchange give meaningful and consistent re-
sults when charm is introduced. As was mentioned
in the Introduction, we do not expect any formalism
which regards the hadrons as elementary to lead
to a fundamental theory. However, the ideas em-
bodied in the original Chew-Low® dispersion theo-
ry for the P,, resonance in n*p scattering, in the
bootstrap approach of Chew and Frautschi,'® and in
the reciprocal bootstrap mechanism of Chew® and
Cutkosky?! and expanded upon in the SU(3) model of
Martin and Wali® continue to yield, at least qual-
itatively, the correct observed features of low-
energy baryon-pseudoscalar-meson scattering.
Well-defined resonances do appear in the correct
channels with the correct quantum numbers. Such
consistency must somehow be accounted for in any
complete theory of hadron spectroscopy and
strong-interaction physics.
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