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Meson spectrum in the quark model with a phenomenological potential*
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The masses of mesons are calculated under the assumption that a meson is a bound state of a quark-
antiquark pair interacting via a phenomenological potential. The form of the potential, which contains a
Coulomb-type term, a linear confining term, plus spin-orbit, tensor, spin-spin, and other terms, is suggested
by gauge field theory, but the magnitudes of the terms are determined by a phenomenological fit to the data.
Predictions are given for the masses of as yet unseen mesons.

I. INTRODUCTION

Recently, a number of papers have appeared in
which meson masses are calculated under the as-
sumption that mesons are bound states of quark-
antiquark pairs. A sample of such calculations is
given in Hefs. 1-9. At 1east two features distin-
guish this recent work from the older literature
on the subject. " First, the new work benefits
from additional experimental information, includ-
ing information about the P family of mesons. ""
Second, in recent work the interaction between a
quark and an antiquark is often taken to vary as
1/r at small distances" and as r at large
distances. ""' Some of the recent treatments,
however, use other interactions, such as a har-
monic-oscillator potential, "or a 1/r potential
with an infinite boundary. "

The primary motivation for taking a 1/r plus
linear potential between quarks has come primar-
ily from non-Abelian gauge field theory. In par-
ticular De Rdjula, Qeorgi, and Qlashow' have ar-
gued at length that such an interaction naturally
arises in a theory in which the forces are media-
ted by an octet of massless vector bosons (color
gluons}. We refer the reader to the paper of De
Rdjula, Georgi, and Qlashow' for details and addi-
tional references.

The first of these new calculations of the meson
spectrum were made within the framework of the
nonrelativistic Schrodinger™equation model, but
subsequent calculations have incorporated some
relativistic effects in a variety of ways. The Di-
rac equation, "the Klein-Gordon" equation, the
Bethe-Salpeter equation, "and other equations"
have been used, and the potential between quarks
has been inserted either as the fourth component
of a four-vector' or as a true scalar. "' " The
wide variety of wave equations that have been used
to treat this problem only serves to point out the
fact that at present we do not have a generally ac-
cepted theory of how to treat the relativistic two-

body problem.
Unfortunately, if a given potential is used in dif-

ferent wave equations, different mass spectra re-
sult. This fact has been explicitly demonstrated
by Goldman and Yankielowicz, "who calcu'ated
the charmonium spectrum by using the potentials
of Harrington et al. ' and Eichten et al. ' in a re-
duced-mass Dirac equation. Goldman and Yank-
ielowicz obtained energy-level spacings which dif-
fered by as much as 40% from those found by
Eichten et al. and Harrington et al. using the non-
relativistic Schrodinger equation. The differences
are likely to be even greater in the case of light
quarks, whose motion is more inherently rela-
tivistic.

In view of the fact that the calculated energy
levels are so strongly dependent on the form of
the equation used, and the fact that no one equa-
tion can be demonstrated to be the correct one,
we have adopted a phenomenological approach to
the problem. We continue to be guided by gauge
theory as to the kinds of terms that can appear in
a potential between quarks. However, we regard
the details of the potential as phenomenological.
In particular, our potential contains a number of
free parameters which we adjust to obtain quali-
tative agreement with the observed meson mass
spectrum.

This paper is basically a generalization of our
former work on bound states of strange quarks
and their antiquarks' to include ordinary quarks
and charmed quarks (charmonium) as well. As in
our previous work, we keep the same kinds of
terms in the potential that are present in positron-
ium, "as these terms are likely to arise from the
exchange of massless vector g luons. Specifically,
we include a 1/x term in the potential plus spin-
spin and spin-orbit terms, a tensor term, "and
terms which go like the spin or orbital angular
momentum squared. These terms all result from
the nonrelativistic reduction of the Breit equa-
tion. " Lastly, we include a linear term in the po-
tential to confine the quarks. " "
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In our calculation we omit the nondiagonal part
of the tensor force, because if we were to include
it, we would have to solve simultaneous differ-
ential equations, and the calculations would be-
come too long. This approximation is a good one
only if the tensor interaction is small. To anti-
cipate our results, it turns out that in some cases
the tensor force is small, but in others it is not.
We shall discuss the effects of the tensor force
again after we give our results.

For the wave equation, we take the ordinary
Schrodinger equation, but use relativistic kine-
matics. We mean by this that our procedure is to
find the eigenvalue of the SchrMinger equation
which corresponds to the square of the relative
momentum. We then use the relativistic connec-
tion between energy and momentum to obtain the
meson mass. In the equal-mass case, this pro-
cedure is equivalent to solving a Klein-Gordon
equation with a potential inserted as a true scalar.

We have not included all the terms that arise in
the reduction of the Breit equation. We have omit-
ted a term which goes like V4 and another term
which goes like (1/r)V'+V'(1/r). If we had in-
cluded these terms, our wave equation would not
be of a Schrodinger-type. We partly justify omit-
ting these terms by our use of relativistic kine-
matics. The V' term, for example, arises from
an expansion of the momentum term in the Breit
equation. To include it in the wave equation at
the same time that we use relativistic kinematics
would amount to double-counting. We need to keep
the other terms that arise in the reduction of the
Breit equation because they give rise to spin- and
angular-momentum-dependent terms in the poten-
tial. We take care of possible double-counting in
this case by multiplying the magnitudes of these
terms by phenomenological parameters.

Our reason for using relativistic kinematics is
that the momenta of the bound quark-antiquark
pairs are not small compared to their masses.
Everi in the case of charmonium, where the quark
masses are large, we have determined that the
use of relativistic kinematics makes a substantial
difference in the spectrum. Indeed, we have veri-
fied by explicit calculation that if we use relativistic
kinematics withthepotential of Harrington et al. ,

' we
obtain a meson spectrum closer to that found by Gold-
man and Yankielowic z" (who used the Dirac equation)
than that found by the original authors. Thus, our use
of relativistic kinematics with the Schrodinger
equation enables us to include a major effect of
relativity while at the same time keeping a tract-
able wave equation; Again, we stress that if we
were to use a different wave equation the param--
eters of our potential would undoubtedly have to be
changed somewhat for us to obtain a comparable

fit to the observed meson spectrum.
Our procedure is to solve the Schrddinger equa-

tion numerically with the assumed form of the in-
teraction. In addition to our omitting the nondia-
gonal part of the tensor force, we make one other
approximation in obtaining this solution. We omit
all 5-function or contact terms in the interaction
from the potential in obtaining the numerical solu-
tion, and later evaluate the contribution from the
contact terms in perturbation theory. Our reason
for so doing is that ig some cases the 5-function
interaction is attractive, and there is no accept-
able s-wave exact solution to the Schrodinger
equation in this case. (The 5-function interaction
arises as a result of the reduction of the Breit
equation, which does not have this singularity. )
Despite our approximations, our work contains the
most detailed numerical calculations of which we
are aware. In no other calculation of the meson
spectrum, to our knowledge, is the Schrodinger
equation solved numerically with spin-orbit,
quadratic orbital angular momentum, and tensor
terms in the potential, in addition to 1/r and linear
terms.

In Sec. II we give the details of the interaction
and the method for obtaining the meson &masses.
In Sec. III we present our results and discuss
them.

II. DETAILS OF THE CALCULATION

As discussed in the Introduction, our prescrip-
tion is to solve the bound-state Schrodinger equa-
tion

-V'(+2pUg= k'g,

where p, is the reduced mass of the quark and antiquark,
U is the potential, and k' is an eigenvalue correspond-
ing to the square of the momentum of the bound quark
or antiquark. The potential U contains, in addi-
tion to 1/r and linear terms, a spin-orbit term
proportional to L ~ S, where L is the orbital angu-
lar momentum and S is'the total spin of the
quarks, a quadratic orbital angular momentum
term proportional to I', and a tensor term pro-
portional to Syp which is the usual tensor opera-
tor. In the case of positronium, these last three
terms go like 1/r' or like (1/r)dV/dr, where V is
the Coulomb potential. In our case, the potential
analogous to the Coulomb potential is V, given by

V, = n, /r +Pr, -
where n, is the square of the strong coupling con-
stant and P is a parameter which measures the
strength of the confining term. If we let the func-
tions multiplying the L. S, I.', and 8» terms go
like (1/r)(d V/dr), these terms will contain a 1/r'
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singularity at the origin. As is well known, there
are no acceptable bound-state solutions with such
a singular (attractive) potential. We therefore in-
troduce a cutoff parameter a into the potential by

~aking the replacement

(3)

If a-0, the expression on the right-hand side of
(3) becomes (1/r)dU, /«. We also introduce three
parameters yl~, yl„and yr describing the strength
of the L ~ S, L', and S» terms. We thus write for
U

U=- o, /r+p r+( 8g' r) '[n, /(r'+a'}+p]

x(3y L S+y L + —'y S, ). (4)

As we have previously remarked, when solving
the Schrodinger equation with this potential, we
include only the diagonal elements of S». We have
introduced the quantity (8p') ' into our expression
for U to help us interpret the parameters yL» yl, ,
and y~. For positronium, n, becomes the usual fine-
structure constant, y», yi, andy~are allunity, and
a= p=0. Inour case, welety~, yi, andy» aswell
as u, and P depend on isospin and on the kind of
quarks vrnich are interacting.

There is in addition a contact term U, in the in-
teraction. As in our previous work, we write it
as

U, = Zmn, (2 p,) '5(r)(1+S'+-',o, ~ o,),
where A, is a parameter. The form of Eq. (5) is
chosen as an aid to interpreting the parameter A.,
since A. =1 fox' positronium.

We solve the Schrodinger equation with the po-
tential U to obtain the eigenvalue k„«' in a par-
ticular state, which depends on the orbital angular
momentum L, the total angular momentum J; and
the quantum number n, which numbers the levels
of given L, J, and parity P in order of increasing
mass. We then evaluate the expectation value of
the contact term U, in perturbation theory, using
the wave function g„z ~ of this state. Then the new
momentum-squared eigenvalue K„iJ' is given by

&niz = &nz, z +2u&knczl Uc I il'ni~&. (~)

The expectation value of U, in Eq. (6) vanishes

TABLE I. Effective quark masses in MeV according to
some recent papers. Most of the authors made no at-
tempt to distinguish between the mass of the u and d
'quarks.

B2g Reference

336
260
163
275
336

338
260
163
275
336?

540
475
286
400
540

1500
2000
1228
1400
1660

%u
Kang
Gunion

Cheng"
De Rujula e

~Reference 23.
"Reference 8
'Reference 4.

Reference 17.
'Reference 5.

unless L =0.
From K„iJ we determine the mass of the meson

M|11J as

M i~ =(m, ' +If„i~')'i' + ( n~, '+K„i~')'i',

where m, and m, are the masses of the bound quark
and antiquark.

The Schrddinger equation, the potential U, and
M«all contain expressions for the quark masses.

We regard these masses as effective masses of
constituent quarks which are parameters of the
model, and will be somewhat different in other
models. However, in most calculations using a
constituent-quark picture, the effective masses
turn out to be similar; they are a few hundred
MeV for the ordinary u and d quarks, about half a
GeV for the strange s quark, and about 1.5 GeV
for the charmed c quark. We give in Table I some
values of effective quark masses used in previous
papers. """'"In the present work, to avoid
having still further adjustable parameters we use
the masses found by Cheng and James. " Our re-
sults would not be qualitatively different if we had
used some other quark masses from Table I.

We have solved the Schrodinger equation numeri-
cally and have found a set of parameters which
gives a good qualitative fit to the data. These
parameters are given in Table II. We defer a dis-

TABLE II. Values of the parameters appearing in the potential of Eqs. (4) and (5) ~

{fm-')
a

(fm)

I=O
I=2

I=O
I=O

uu, dd

Qup 64
SQ, SCIL

SQ p SCL

SS

3.00
2.73
2.73

1.37
0.98

3.93
4.55
4.96

2.44
5.78

0.183
0.032
0.124

0.856
0.353

0.343
0.285
0.096

0.953
2.074

0.06
0.88

—0.08

0.14
1.69

0,412
0.412
0.412

0.437
0.437

. 0.0246
0.0167
0.0225

0.0360
0.212
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cussion of the values of these parameters to the
next section.

III. RESULTS AND DISCUSSION

e present in Tables ID through VII our fits to
the observed meson spectra and our predictions
of as yet undiscovered mesons. %'e give in the
tables only a small number of predicted mesons
out of the infinite number that exist for our po-
tential, and that would exist for other infinite
confining potentials. The experimental masses
listed in these tables are taken from the 1976 edi-
tion of the Review of Particle Properties of the
Particle Data Group, ' except for some new re-
sults on charmonium states reported by Gold-
haber. '4

Most of the calculations of meson masses, other
than those involving charmed quarks, were com-
pleted before the 1976 edition of the Review of
Particle Properties became available and so are
based on fits to the masses given in the 1974 edi-
tion.~ For the most part, the differences between
the older values of the masses and the more re-
cent values are small. However, the mass of the
e meson is given as less than 700 MeV in the 1974
tables and as 1200 MeV in the 1976 tables. In our
calculation we used the earlier smaller value in
our fit to the data, and some of our parameters in
the second row of Table II might change consider-
ably if we redid the fit with the newer value. We

TABLE III. Comparison of experimental values of the
masses of the isospin I=1 mesons (from the Particle
Data Group, Ref. 12) with the calculated masses. Also
given are predicted values of the mesons of some mesons
which have not been observed.

TABLE IV. Comparison of experimental values of the
masses of I= 0 mesons (from the Particle Data Group,
Ref. 12) with the values calculated assuming that the
mesons are bound states .of ordinary-quark-antiquark
pairs. Also given are predicted values of the masses of
some mesons which have not been observed.

~pC 2 S+ig8 J'

Experimental Calculated
mass (MeV) mass (MeV)

f
predicted
predicted
predicted
predicted
predicted
predicted
predicted
predicted
predicted
predicted
C0

0 '
0++

1
2++

0 '
1+ ~

0++

3
2~+

2++

2+

1
4++

Sp

Pp
1Si.
1 3P
2 'Sp

1 iP
2 Pp
2 Si

Pi
1 D
1 3g
f
2 P
2 P,

3$

1 3~

549
f200
783
1271 ~ 5

1667+10
2020 + 30

548
600
782

1311
1321
1324
1328
1379
1433
1509
1598
1602
1617
1625
1673
1806

believe that if the reported mass of the ~ can
change by more than 500 MeV in two years, the
last word has not yet been said on this subject.
One possibility is that the observed ~ at 1200 MeV
should be identified with a radially excited P,
state, which in Table IV is calculated to be at
1328 MeV. The state at 600 MeV would then cor-
respond to the lowest state with J =0+'. There
is evidence" that the I= 0 mm phase shift passes
through 90 near 800 MeV, and this might reflect
the existence of a 0'" state near that energy.

We shall now discuss some general features of

Experimental Calculated
g "+L~ mass (MeV) mass (MeV)

p
6

Ai
predicted
B
p
A2
predicted
predicte 3
A.3
predicted
predicted
predicted

pl

0

0+%

1+

0
1

++

f++

2'
0+%

1+a

2

0
1++

2'
3~+

ia+

1 Sp
1 S
1 Pp
1 Pi
2 $p
1 'Pi
2 Si
1 PR
2 Pp'

2 Pi

3 Sp
2 Pi
2 P

3 3Si

1228+ f0
1250
1310+5

""1640

1690+20
-1600

138
770
977

1170
f214
1254
1318
1327
1395
1493
1531
1532
f545
1592
1595
1598

Evidence for the p'(1250) is not compelling, and this
meson has been omitted from the main meson table of the
Particle Data Group, Ref. 12.

Name gP 2 S+ii
Exper".'mental Calculated
mass (MeU) mass (MeV)

K

Qi
Q2

predicted

predicted
predicted
predicted
I.
predicted
predicted

0

0+

1+
+

0
2+

1
2

2
0'

1 i$

1 3$

Pp
1'P,
1 iP
2 iSo

1 P
2 Si
1 3D

1 3D

1 'D2

2 P
2 P

496
894
1250+100
1300
1400

1421 + 3

f765+10

496
895

1246
1279
1377
1443
1445
1529
1559
1617
1657
1666
1683

TABLE V. Comparison of experimental values of the
masses of I=-z strange mesons (from the Particle Data
Group, Ref. 12) with the calculated values. Also given
are predicted values of the masses of some mesons which
have not been observed.
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TABLE VI. Comparison of experimental values of the
masses of I=-0 mesons (from Ref. 12) with values calcu-
lated assuming the mesons are bound states of strange
quarks and their antiquarks. Also given are predicted
values of some mesons which have not been observed.

TABLE VII. Comparison of experimental values of the
masses of heavy mesons (from Refs. 12 and 24) with val-
ues calculated assuming the mesons are states of char-
monium. Also given are predicted values of some mesons
which have not been observed.

Experimental Calculated
J n 'I z mass (MeV) mass (MeV) Name

Experimental Calculated
n Lz mass (MeV) mass (MeV)

D

predicted
predicted
predicted
f1
predicted
predicted
predicted
pl edlcted
predicted

p~+

0++

0"'
0++

2++

1++

2

2 '

pm +

1'S,
1 3P

1 S
1 P(
2'S,
2 Pp
1 D
2 $

P~
3p

1 D2

2 1P

3 Sp

958
-993+ 5

1020
1286 +10
1416+ 10

15f6+ 3

958
993

1020
1291
1416
1426
f434
1442
1516
1571
1593
1648
1654
1660

X

z/|I
X

X

X

X

predicted
predicted
predicted
predicted

0 '
1"
0++

p~+

p++

1
++

++

p~ +

1 1S

1 3S

Pp
2 'Sp

1 3P
3p&

2 BS

1 D
2 Pp
2 Pt
23P
3 Sp
3 S(
4 S(

-2750
3098+ 3
3415 + 10
3455 ~ 10
3500 + 10
3550 + 10
3684 +4
3950 +20

-4100
4414 +7

2794
3089
3421
3580
3584
3587
3705
3882
3882
3989
3990
4004
4094
4396

the meson mass spectrum we have calculated.
Despite the rather large number of adjustable
parameters in our model, we were not able to ob-
tain quantitative agreement with experiment for
all meson masses. The largest qualitative dis-
crepancy is that the calculated high-mass levels
for ordinary quark-antiquark pairs tend to be low-
er in energy than the experimental masses. The
principal reason for this is the combination. of a
linear conf ining potential and relativistic kine-
matics. Relativistic wave equations, such as the
Dirac equation and the Klein-Gordon equation,
have this same qualitative feature. We have veri-
fied this fact explicitly for the Klein-Gordon equa-
tion, and Goldman and Yankielowicz" have veri-
fied it for the Dirac equation, in both cases for
scalar potentials and quarks of equal masses.

We would not; want to argue that this result im-
plies that the use of relativistic kinematics is not
good. Another alternative, within the general
framework of our model, is to say that a linear
confining potential is not quite correct. In fact,
to obtain better agreement with experiment, it
appears that we would need a confining potential
which rises somewhat more steeply with distance
than a linear potential,

It is a further feature of our calculation that
there are many predicted mesons with masses be-
low 2 QeV which have not been observed. Allow-
ing for the qualitative feature that our model gives
masses which tend to be too low, we would guess
that a considerable number of mesons ought to ex-
ist below 2 GeV with the quantum numbers given
in our tables but with somewhat higher masses.
If these mesons should turn out not to exist at all,

our model would be in deep trouble, as would
other models with absolutely confined quarks.

There is a particular feature of our calculated
I=1 spectrum in Table III which is worth pointing
out. This is that the first radial excitation of the

p meson is calculated to be at 1318 MeV, rather
than at the position of the p', which expe riment-
ally is at 1600 MeV. But our calculated second
radial excitation of the p is at 1598 MeV, very
close to the p'. We identify the 1318-MeV level
with a p' state at 1250 MeV, but, unfortunately,
the present experimental evidence for the exis-
tence of this p' state is not compelling. The spec-
trum found by Gunion and Willey' is also of this
character.

The same qualitative feature occurs in the l =0
spectrum of Table IV. We have to identify the
known u' meson of mass 1667 MeV as the second
radial excitation of the ~, rather than the first.
Our predicted first radial excitation is at 1379
MeV, and there is as yet no experimental evidence
in favor of such a state. We encounter a similar
situation with respect to the h meson. In Table IV
we have identified the h with the lowest 'F, bound
state of a quark and antiquark. The calculated
value of this state lies 200 MeV below the experi-
mental value of the h, but the first radial excita-
tion of the 'F4 state lies fairly close to the h, mass.
Thus, an alternative interpretation to Table IV is
that there is an 'F4 state near 1800 MeV which has
not yet been seen experimentally, and the h is a
radial excitation of that unobserved state. It is
clear from these considerations that considerably
more experimental work in meson spectroscopy
needs to be done in order to provide a, good test



MESON SPECTRUM IN THE QUARK MODEL %ITH A. . .

of our phenomenological potential.
We next discuss the parameters of our model.

It can be seen from Table II that the dimension-
less parameters o„w hichmultiply the 1/r term
in the potential, range from about 1 for charmon-
ium to 3 for the I=1 mesons. According to the
idea of asymptotic freedom, "n, should decrease
as the quark mass increases, in qualitative agree-
ment with. the variation of e, which we have found.
But our values of n, are considerably larger than
those expected, especially for charmonium.
Eichten et al. ,

' for example, give n, = 0.3 for char-
monium. Barbierietal. ' give o., =0.27 for cc, o.,
= 0.36forss, andn, =0.42foruuanddd, using ourno-
tationthat o., is the coefficient of the 1/ster'm inthe
potential. (Barbieri el al. define o, slightly dif-
ferently from us. What we call o., they call 4o.,/3. }

There is a qualitative reason why we obtain
large values of n, . With a Coulomb potential, as
is well known, there is a degeneracy between
levels of differing I. (neglecting spin-orbit effects,
etc. ). Thus, for example, the 1D, 2P, and 3S
levels are degenerate. For the linear potential,
however, the 1D lies lower than the 2I', which
lies lower than the 3S level. The experimental
level spacing, it turns out, corresponds to a situa-
tion which, for low-lying levels, is intermediate
between the Coulomb and linear cases, and thus
requires a substantial amount of Coulomb poten-
tial in the interaction. In particular, in the case
of charmonium, the relatively large value of n,
comes in part from our identification of the
g(3950) as the 1'D, state of charmonium. The
mass of this state is only slightly below the mass
the $(4100), which we interpreted as a 3S, radial
excitation of the g(3095) and g(3685). With another
interpretation of this state, we might be able to
use a considerably lower value of o, We should
point out that at the time previous calculations of
the charmonium spectrum were carried out, the
g(4100) was not resolved from the g(3950), and

so this problem did not arise. In other words,
the known g spectrum is now richer than it was,
and leads to more restrictions on the potential,
if all the observed states are interpreted as states
of charmonium. Other interpretations are of
course possible, for example, that still other
heavy quarks exist, but we shall not consider such
poss ibilities further.

Turning f rom n, to the parameter P, which mea-
sures the strength of the confining potential, we
see from Table II that g is comparable in magni-
tude in all isospin states and for all kinds of
quarks. However, when we assumed that a single
constant -would suffice for P, we got considerably
poorer agreement with the data. Thus, with our
particular form of the interaction, we only ap-

proximately obtain the result suggested by De
Rujula et al. ' that the confining interaction is the
same for all quarks.

The parameter y~ measures the strength of the
spin-orbit interaction. The splitting between
states of a given I. and different J is governed both

by this interaction and by the tensor interaction.
For the moment, 1.et us consider the effect of the
L ~ S interaction alone. In perturbation theory,
for L =1, the splitting between the J = 2 and J=1
levels is twice as great as between the J =1 and

J=0 levels. We obtain essentially the perturba-
tion result when yr~. is small, but, as can be seen
from Table II, in the case of ss, y~ is near unity.
In this case the observed level splitting varies
considerably f rom the perturbation-theo ry result,
and our calculation, to our knomledge, is the only
one which is able to account for this fact.

We next consider the parameter y~ which gov-
erns the strength of the tensor interaction. Recall
that we made the approximation that the nondiagon-
al part of the tensor force could be neglected.
This approximation is a good one if y~ is small.
We see from Table II that a Posteriori our approx-
imation is good in three cases but not good in two
cases. In the cases where the approximation is
poor, there will be appreciable shifting of the en-
ergy levels arising from the nondiagonal terms.
Despite this defect in our calculation, we have
treated the tensor term at least as well as pre-
vious workers, who have used perturbation theory
on the diagonal elements of S» as mell as neglect-
ing the off-diagonal elements.

As we have already remarked, the parameter a
is a. cutoff to enable us to obtain acceptable bound-
state solutions to the Schrodinger equation. We
varied this parameter only in two cases, and kept
it fixed in the other cases, as can be seen from
Table II. The cutoff a is between 0.4 and 0.5 fm,
a value which is similar (by coincidence?) to the
radius of the repulsive core in the nucleon-nu-
cleon interaction.

The last parameter we discuss is A, , which mea-
sures the strength of the contact interaction.
From Table II we see that A. is small in all cases,
even in the case of the I=1 mesons, where it is
responsible for the large splitting between the m

and p mesons. Thus, a small value of X does not
necessarily mean that our perturbation-theory
treatment is good, but only that the splitting is
smaller than would be expected for n, ~1 using
a positronium analogy. An alternative way to pro-
ceed, not using perturbation theory, would be to
smear out the 5 function in the interaction and use
the smeared-out potential in the Schrddinger
equation. We have not done this because it would
require assuming a particular form for the inter-
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action as well as introducing at least one other
parameter into the calculation.

Because our values of n, are considerably higher
than values which are rather commonly accepted,
we have investigated the consequences of con-
straining 6, to be small. In particular, we have
required a, to be below unity for all quark-anti-
quark interactions and around 0.4 for charmon-
ium. We find that in order to obtain average level
spacings which are approximately in agreement
with experiment, the parameter P multiplying the
linear confining potential must be rather large
(P=4-6 fm '). With a large value of P and a small
value of n„ the ground-state levels are generally
too high. We cari rectify this deficiency by adding
another parameter to the potential. A particularly
simple way to do this is to replace the linear term
Pr by P(r —r, ) Th.e need for the parameter r, is
in effect an admission that we can obtain approxi-
mately correct level spacings, but cannot obtain
the absolute values of the levels. A similar prob-
lem was encountered by Eichten et al. ' in calcula-
ting the charmonium spectrum. These authors
fit only the mass difference between the g'(3664)
and $(3098), but not the individual masses.

With n, very small for charmonium, the 1'D,
state would normally lie considerably below the
3'S, state in energy. In this picture, therefore,
we probably should not interpret the observed
peak at 3950 MeV as the 1'D, state of charmon-
ium, But this is not a real difficulty, because at
present there is no generally accepted inter-
pretation for this peak. If the peak at 3950 MeV
is not the 1'D, state in question, then the 1'D,
state should exist below this energy. As yet, there
is no evidence for the existence of such a state.

Turning to the mesons composed of uncharmed-
quark-antiquark pairs, and using the parameter
r„we obtain spectra which differ in some details
from the spectra given in Tables III-VI. The de-
tails depend in part on whether or not we regard
the evidence for the p'(1250) as compelling. If

we omit the p'(1250) and regard the p'(1600) as the
first radially excited state of the p, the level
spacing is of course considerably increased. This
affects our calculated higher-energy levels as
well, as they are also shifted to higher energy. A
solution of the same general character in the I=0
state would not include the predicted &u(1379) state
of Table IV, and a number of other levels would
be raised considerably in energy.

In conclusion, with no constraints on the values
of the parameters of our model, we have been
able to obtain good qualitative agreement with the
observed meson mass spectrum. We have also
predicted the existence of a number of mesons
which have not been seen. The details of our
parameters and the predicted levels depended on
our particular guesses about the quantum num-
bers of some states. With other choices for the
quantum numbers of these states, we would have
obtained somewhat different parameters, and the
predicted levels would have shifted somewhat in
energy. For phenomenological work, it is there-
fore very important that further experimental ef-
fort be made to pin down the quantum numbers of
the observed mesons.

We found that use of relativistic kinematics and

a linear confining potential tended to reduce the
level spacing of the higher-lying levels below that
observed by experiment. We conjecture that this
same result will be true for a wide class of rela-
tivistic wave equations. We found that the pheno-
menological constant n„which governs the
strength of the 1/r potential, varies between about
1 and 3 for our best fits. These are values which
are larger than obtained previously. However, if
n, is constrained to be small, we are still able to
obtain qualitatively good fits to the data by intro-
ducing another parameter, r, . Finally, we found

that spin-orbit interactions, L' interactions, ten-
sor interactions, and spin-spin interactions all
appeared to be needed in our fit to the observed
low-lying meson states.
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