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We propose a sum rule connecting radiative decay modes of q" (the charmed partner of q and q', and
presumably the 2y resonance at 2.8 GeU). The sum rule should allow a determination of the percentage of
charmed quarks in the co and P mesons. If the percentage of charmed quarks in the q and q' is large enough,
the percentage of charmed quarks in the (r) and (j) can also be determined by study of the decay modes Q~((s)
or $) + (q or q'); this possibility is discussed. A phenomenological analysis suggests that the familiar octuplet-
singlet pseudoscalar mixing angle Op for q and q' varies from —8' at the q energy to approximately —38'
at the q' energy. The latter angle yields predictions I (q' ~ all) = 0.11 MeV and
I {A,~q'7r) /I (J,~all) =—0.12%, both predictions are smaller than those obtained from either the quadratic
or linear mass formula values for Op. Finally, a relation I (Q ~qy) /I (f~q'y) = (phase-space
factors) X I (Q'~qy)/I"(Q'~q'y) is shown to follow from the assumption that the cc content of Q and
Q'(3684) is negligible compared to the cc content of q and q'.

In this note we propose a sum rule to measure
the amplitudes (cc I cu) and (cc I(t)) which give the
cc content of the (d and (t). Our notation is

)rc) ) )

&rs(()

(&s I() &

(ss (rc) (cc (rc) ) ~

Sr)

1 (cc I @)» Iss)

(sslr)& ) (Icc&

I» =(I ~~&+ l«&)H~ . (2)

Because of the smallness of decays which violate
the Qkubo-Zweig-Iizuka rule, the mixing matrix
(1) is an infinitesimal orthogonal transformation,
and the off-diagonal elements therefore form an
antisymmetric matrix, provided they are all
evaluated at the same energy. However, the ele-
ments (QQ IX) are believed to depend significantly
on the energies of resonant states X; therefore,
we cannot use, say, (cc I (j)) = —(ss I g) to infer the
cc content of P from measurements on g but rath-
er tnust measure (cc I Q) directly. Although they are
not equal, (cc I Q) and -(ss Itj)) are analytic con-
tinuations of each other, and a measurement
of (cc I(j)) would yield information on the energy
dependence of -(ssj &))), a subject currently of con-
siderable theoretical interest. ' '

%'e now consider possible ways to measure the
quantities ((u or/ jcc). Usually a selection rule
forbids a reaction where these amplitudes would
otherwise be expected to make the major contri-
bution. [E.g., &(() -(&u or P)+y and &))(3095) or
t))'(3684)-(j&+)j"(2.8) are forbidden by charge-con-
jugation invariance or energy-momentum conser-
vation, respectively. '] Sometimes a decay mech-

anism involving the (cc I(d or Q) is swamped by a
competing mechanism expected to be much more
probable. (E.g. , in P-&uq decay, the mechanism
where the initial g turns into noncharmed quarks
is expected to be much more probable than the
mechanism where both final particles turn into
charmed quarks. ']

We therefore consider the decays ti" (2.8)-&o or
(I) +y; here the term in each matrix element pro-
portional to (cc j(d or P) stands a reasonable chance
of equaling or bettering its competition. The
"competition" in this case comes from terms pro-
portional to mixing amplitudes (n.c.

I
q") for the

charmed member of the gq'g" system, where
(n c Iden. o.tes a noncharmed QQ state (Nj or (ssj.
From the absence of a yQ&t) or yp'p' signal in g
decay, Kugler has concluded (n. c. I )j") ~ 10 '
(Ref. 8). Because the tj" width is poorly known at
present, we cannot pinpoint these amplitudes more
closely than this from the data; however, theo-
retical calculations agree in favoring (n. c.

I
q")

amplitudes an order of magnitude smaller than the
Kugler limit' '; and we shall estimate (n.c. I rI")
~order 10 '. As for the amplitudes (cc I&d or (I)),
on theoretical grounds we expect these to be lar-
ger than their analytic continuations —(n. c. I &j));

both gluon annihilation and S-matrix arguments
predict that the (QQ IX) should decrease as the
energy of X increases. Since the (n. c. Ig) are or
der 10 ' (from elementary comparisons of two-
body decay rates of &j) to the corresponding decay
rates for noncharmed mesons), and there is a
large change in energy between &o or (j) and tl), one
reasonably expects (cc I&() or (j)) =order 10 '. (The
(cc I(d or Q) cannot be much larger than this,
since then g-(t)q, etc. , rates would become too
large; also, the Gell-Mann-Okubo mass-splitting
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formula would be affected by the cc content of the
&u and Q. ) Thus it is reasonable that (n. c. [q")
~(cc ~(d or p&, implying that the (cc ) u& or p& mech-
anism will hold its own in q"-qy and q' y decays.

We now consider the following sum rule, which
should disenta, gle the two mechanisms even if
(n. c. [q" &

=(cc ( (d or y& '.

(3)

where

r = (cc (&u&/(cc i (j(& . (4)

I'(X) denotes the rate for q"-yX divided by (pho-
ton three-momentum}, ' and the ratio of qua, rk
masses m„/m, is a standard quark "Bohr-magne-
ton" correction, which is known from fits to the
magnetic moments of baryons. " " The I'(p} on
the right involves only (N

~

q" ), so that if (N
~

q" )
«(cc ~&o or P&, then I'(u& or P)» I'(p) and no sum
rule is needed: r is just [I'((d)/I'(Q)]'I'. Qf

course, if we are out of luck and (N~q"&»(cc ~(d or
g&, then Eq. (3) with the plus sign becomes an
identity for all x. For orientation, Rosenzweig's
predicted value for r is 4.5/2. 5 =1.8.'

In deriving Eq. (3) we have assumed for sim-
plicity that q" mixing angles obey SU(3) symmetry,
i.e., u, d, and s quarks are mixed into the g" wa, ve
function in equal numbers:

the other. [For that matter, there is no contra-
diction between Eq. (6) and the violation of SU(3)
symmetry represented by the observed fact that
&s ( &

==
& N I @& =—o ]

Because the (QQ~X& are now recognized as en-
ergy dependent, it becomes more difficult than
previously to predict a rate using only mixing-
angle arguments. [E.g. , Eq. (3) becomes a method
of measuring r rather than a rate prediction. ]
Though more difficult, prediction is not impos-
sible: we present an example of a rate prediction
which should hold whatever the energy dependence
of the (Qg ( X&:

Harari has argued convincingly that each g rate on
the right-hand side should be proportional to the
percentage of cc in the q and g', and largely inde-
pendent of the (much smaller) percentage of non-
charmed quarks in the P.' Since the g' is expected
to have even less noncharmed quark content than
the g, his arguments should work even better for
the g'; and Eq. (7) then follows.

From Eq. (7) and Feldman's compilation of
branching ratios for g decays we can compute the
percentage of cc in the g and q'":

(

(cc
~ q) ' I'((j(-qy) (0.10+0.02)/3. 37 GeV'

(cc i
q') ' I'(g-q'y) (0.24+0.06)/2. 74 GeV3

v"2 (ss i q") =(N
( q') . (5)

=0.34 +0.07 . (6)

[This assumption is convenient but not essential:
The v 2 in Eq. (3) would be replaced by (N~ q"&/

(ss
~
q") if Eq. (5) were not correct. ] The evidence

for the analogous relation in g decays,

is mixed: the absence of a KK (j(-decay mode
suggests Eq. (6) and SU(3) symmetry are good for
g decays, while the observed I'((- pv)/I'(g-K*K)
ratio suggests the opposite. " " On intuitive
grounds the symmetries (5) and (6) are very ap-
pealing. lf one sets up a simple model in which
the unperturbed Hamiltonian is a diagonal matrix
of small mass-splitting corrections acting upon
the ideal states, while the off-diagonal perturba-
tion is an even smaller "cylinder" correction, ap-
proximately SU(4)-symmetric, then the mass-
splitting which breaks the SU(3) symmetry of the
(n. c.

~ P& or (n. c.
~

q" ) is m, -m„, , so that equating
the two sides of (5) and (6) is like equating m, -m,
=—m,, -m„, i.e. , like neglecting (m, -m,„) com-
pared to m, . Thus there need be no contradiction
between assuming Eqs. (5) and (6) on the one hand,
and keeping Bohr-magneton corrections m„/m, on

= —', I'(pv, all) . (9)

ln contrast, a prediction such as I'((L(q'}I'(Qq'}
= I'(u&q)I"((j(q) would hold only if the (n.c.

~ q or q')
were energy-independent.

One caveat about sum rules (9): In deriving
them, we assumed that the amplitude for both fi-
nal particles to turn into charmed quarks was
negligible compared to the amplitude for the in-
itial g to turn into noncharmed quarks, i.e. ,

Harari's original estimate of this ratio, based on
older data, was —,'.'

For completeness we list some additional rate
sum rules which, like Eq. (7), should be inde-
pendent of any energy dependence of the mixing
amplitudes, These sum rules are probably con-
tained (at leastimplicitly) in everybody's table of
quark-model-amplitude predictions, but it is
worth emphasizing here that they should hold in-
dependently of detailed dynamical assumptions
about energy dependence. I et I'(XF} denote the
rate for (j(-XL', and measure r& =(N~ P&/(ss/P)
using I'(K*K, aLL)/I'(pw, all) = —,'(1+42/r&}'. Then
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&n.c. ($&»[&cc((d or p&&cc(n or n'&[. (10)
I

The situation where this does riot hold is discussed
in the Appendix.

1 =
I &»I n& I

'+
I & ss ( n&l

'
1=—l«f n'&['+[&ss(n'&['.

(A3a)

(A3b)

If we assume Eq. (10), then the matrix elements
(A2) simplify considerably, and Eqs. (9) follow
immediately from Eqs. (A2) and (A3). However,
if the &cc (n or n') turn out to be as la.rge as 10 ',
then Eq. (10) is probably incorrect. How can we
disentangle Eqs. (A2), and perhaps obtain a value
for r, when Eq. (10) does not hold'? The key
seems to lie in finding reliable values for the am-
plitudes &n. c. ( n or n'). If one knew these, then
one could check the following sum rules which fol-
low readily from Eqs. (A2)":

r(~n')" —r(pv, »I)"I&A (n'& I/~3
r(y n')'" —r(pw, »I)'~'[& ss

( n'&r(, [/v'6

r(~n)" - r(p~, »I)"lp (n&l/~3
«(t'n)'" —r(»»I)'"I &ssl n&r(, IH&
2

(A4)

APPENDIX: CALCULATION OF Q ~ V+ m DECAYS

Since the parameters on the right-hand side of
Eq. (10) are poorly determined at present, "it is
of interest to calculate matrix elements for
g-V(l )+w(0 ) decays without assuming Eq. (10).
We shall see that, if assumption (10) breaks down,
we lose sum rules (9) but gain new sum rules as
well as new ways to measure the cc content of e,

n, and n'. From the quark-model matrix ele-
ment

M(q-Vv) = G Tr[q(V~+((V)]

it is straightforward to calculate

M(g-p+m ) =M2&iV(y&, (A2a)

M(g-K~I( ) =&&(g&/v"2 +&ss(g&, (A2b)

M(y ~n)=~~«lv'&(Nln&+2&ccl~&&«(n&,
(A2c)

M(4 4n) =-2&ss I 0& &ss In&+2&«I 0& &cc ln),

(A2d)

M(4-~n') =~2 8'l0& &?? In'&+2&cc l~& &cc I n'&,

(A2e)

M(q y n') = 2&ps I y&&ss (
n'

& + 2&cc
I y& &cc

(A2f)
up to a common factor of G which we suppress.
Since the &cc(n or n & are infinitesimal, we also
have

Alternatively, one could solve Eqs. (A2) for the
ratio &cc(n)/(cc/n ), which is known from Eq.
(1.6):

[&cc(n&
'

[&cc(n') '

r(n-2y)/3 r(w'-2y) = cos'[8~(n) + 5],
r(n'-2y)/3r(m -2y) = sin'[8 (n')+5],

r(w," nm')/r(-x, ' z's7') =-2(l „/P, )'[yr(n&[',

(AVa)

(A7b)

(AVc)

r(W", -n'~')/r(A;-nv') = (P„./p „)'[&X(n'&/&lV ( n) (',

(AVd)

where 5 = arctan 2M2 = 70.5'. Equation (A7a) plus
the Particle Data Group tables" yields 8r(n)
= (-7 a2); in reasonable agreement with the quad-
ratic-mass-formula value of -11 . Similarly, Eq.
(AVc) yields 8~(n) = (-12.5 +4.3)". Averaging the
values obtained from Eqs. (AVa) and (A7c), we
get

8,(n) =(-6 ~2)'. (A6)

Values for 8~(n') cannot be extracted from Eqs.
(AVb) and (AVd) at present, because the necessary
g' rates are not yet known. However, from the
data of Bloodworth et al. on the cross sections for
s'p-(n or n')~, "

'

2.10+0.41 (A},
l&&ln&/&??I l &I

=
2.36+0.40 (B). (A9)

r(~n)" —r(pv, »I}"I&lvln&[/ 3
r(~n')'" —r(p~, »I}'"I&A ln'&I/~3

r(pn)' ' —I (p7(, all)'~' r~&ss(n&[/u 6
r(yn')'" —r(pv, all)' ' r(,&ss( n'&[/~6

(A5)

The question therefore becomes: how can one
obtain the &n.c. (n or n'&? In a pinch we could es-
timate these from the value 6(~ =——11' for the usual
octuplet-singlet pseudoscalar mixing angle, since
the (n.c. (n or n') are simply related to 8~:

&N(n) =sin[8, —8 (n)],

&ss ( n& = —cos [8, —8„(n)],

&iV(n') =cos[8, —8 (n')],

(ss( n'& = sin[8, —8~(n')].

8, is the "ideal" mixing angle; tan8z=v'I/2, 8I
=—35.3'; and presumably -11 is some average of
8|,(n) and 8|,(n'). However, there is a. inore direct
approach to the (n.c. (n or n') via the quark-model
predictions, " "



RADIATIVE q''(2. 8) DECAY AND THE CHARMED-QUARK. . .

1(r( 2))= 2.3 keV (A10a)

[Result (A) is obtained by comparing the q and r('

cross sections at the same c.m. total energy; re-
sult (B) is obtained by comparing them at the same
c.m. kinetic energy. ] Equation (A9) plus Eqs.
(A8) and (A6) yield a g~(q') of (-35.6+4 )(method
A) or (-37.8+4)' (method B). This approach al-
ready determines e~(rl ') and therefore (n. c.

~
r)')

quite well, and the situation can only improve as
the decays q'-2y and A, -q'w become better mea-
sured. We note that, with ()~(q}=-8' and 6p(q')
—= 36.7; Eqs. (A7b) and (A7d) predict

[therefore 1'(q"-all}= 0.11 MeV],

r(A, -i)'s)/r(A, -all) = 0.12%. (A10b)

The current upper limits are I"(i)'-all) & 1 MeV,
and & 1/c for the A, branching ratio. "

From Eqs. (A6)-(A10) we conclude that the
parameters (n. c.

~ r) or r)') are reasonably well
known at present. From this we further conclude
that a breakdown of approximation (10) would not
be a disaster; one would still have sum rules
(A4) and (A5) to test; in fact, from them one could
gain much additional information about the quanti-
ties (cc

~
~) /(cc

~ Q) and (cc
~
q) /(cc

~

q').
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