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It is shown that the covariant-harmonic-oscillator wave function exhibits the peculiarities of the Feynman
parton picture in the infinite-momentum frame.

In our previous publications, "we discussed both
the conceptual and phenomenological aspects of
the covariant-harmonic-oscillator formalism.
Based on the Lorentz-invariant differential equa-
tion proposed by Yukawa in connection with Born's
reciprocity hypothesis, ' our starting point was a
technical innovation over the work of Feynman
et al. ' Our solutions to the same oscillator equa-
tion satisfy all the requirements of nonrelativistic
quantum mechanics in a given Lorentz frame, and
satisfy the requirement of Lorentz-contracted
probability interpretation for different Lorentz
frames. We contend that our oscillator model is
the first formalism since the invention of quantum
mechanics in which the wave functions carry a
covariant probability interpretation. '

The real strength of our oscillator model lies in
the fact that one and the same wave function can
provide the languages for both slow and fast had-
rons. Our formalism can be applied to the quark-
model calculations in the low-, intermediate-, and
high-energy regions. "' However, one of the
most challenging questions in high-energy physics
has been how to explain Feynman's parton" pic-
ture in terms of a formalism which can also de-
scribe the static properties of the hadron.

Another approach to this problem has been to
explain Bjorken scaling in terms of the light-cone
commu:ators and the initial hadron in its rest
frame. ' Here, one promising line of reasoning
has been that the hadron is a composite particle
and that its distribution function eliminates all the

singularities which cause deviations from Bjorken
scaling. " Our oscillator model does not contra-
dict this physical picture.

Perhaps the most puzzling and irritating ques-
tions in Feynman's parton picture' have been the
following problems:

(a) The picture is valid only in the infinite-mo-
mentum frame.

(b) Partons behave as free independent particles.
(c) While the hadron moves fast, there are wee

partons.
(d) The longitudinal parton momenta are light-

like.
(e) The number of partons seems much larger

than the number of quarks inside the hadron.
The purpose of this paper is to provide qualita-

tive answers to all of the above questions. Our
starting point is the system of two bound quarks
in the rest frame which can be described by a
covariant-harmonic -osc illator wave function. We
shall then boost this covariant bound system to an
infinite-momentum frame and show that the pecu-
liarities of the covariant oscillator coincide ex-
actly with the parton properties mentioned above.

Following Feynman et al. ' we call these two
quarks a and b. In the harmonic-oscillator for-
malism, "' the quark momenta P, and P, are not
on the mass shell, but the total hadronic momen-
tum

P =Pa +Pt

is on the mass shell. It is convenient to use the
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four-momentum difference

(2)

(&.'&(q '& =-',

(( '&&q, '& =l .
(9)

We can also assign space-time coordinates to
these quarks. Let us denote their coordinates by

x, andxb, and introduce the relative coordinate

1
x = — —(x, -x.) .

242

The transverse variables play only trivial roles
in the harmonic-oscillator formalism and also in

the parton picture. For this reason, we shall
omit the transverse part of the wave function in the
following discussion.

If the hadron moves along the z axis with veloc-
ity P, the ground-state wave function for this two-
quark system can be written as'"

Let us go back to the wave functions of Eqs. (4)
and (5). If P =0, the wave functions correspond to
those in the rest frame. As the momentum of the
hadron becomes large,

(I0)

where M is the mass of the hadron. As P, -~,
the width of the $ (and q ) distribution becomes
vanishingly small. Consequently,

=0 and q =0.
This means that both ( and q are lightlike vectors,
and

(, =v2z = &2t,
q, = &2q, = &2q, .

(12)

where

(4)

1 1
$, = ~(t+z), $ = ~(t —z) .

(5)

This momentum wave function takes the form

where

(8)

m is the "spring constant" of the oscillator system.
We can construct the momentum wave function by
taking the Fourier transform of the above expres-
sion,

In the infinite-momentum limit, the effective
spring constant associated with the (, motion be-
comes vanishingly small. The motion along the $,
axis therefore becomes like that of a free lightlike
par ticle.

The behavior of the q distribution and that of
the q, distribution are illustrated in Fig. 1. The
width of the q, distribution becomes large when

Po becomes large. This may appear as a violation
of the uncertainty relation, but it is not. q, and $,
are not conjugate variables. The precise uncer-
tainty relation was derived in Ref. 11 and is stated
in Eq. (9} of the present paper.

We can now associate the above-mentioned
pecularity with the puzzling features of Feynman's
parton picture. Let us first observe that the ha-
dronic four-momentum P becomes lightlike in the
infinite-momentum limit, and consider the four-

1 1
q, =

~2 (q. + q.), q =
~2 (q, —q. ) .

According to Eq. (5}, we have

8 . 8
q =-i—, q =i—.

8z ' ' 8t
'

Because of the above asymmetry in sign,

8 8
(8)

This means that q, is conjugate to $, and q is
conjugate to $, . In terms of these variables, the
above P-dependent wave functions generate the fol-
lowing P-independent (Lorentz-invariant) mini-
mum-uncertainty product. "

FIG. 1. Momentum wave functions in the rest frame
and;. n a large-momentum frame. In the rest frame
where P =0, the q+ and q distributions take the same
form. When the hadron moves fast and p —1, the q
distribution becomes narrower while the q+ distribu-
tion becomes wide spread. This wide-spread q+ dis-
tribution corresponds to the parton distribution.
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momentum of the constituent quark

Since the four-vector q is lightlike, and we are
considering here only longitudinal momenta, P, is
also 1ightlike.

Considering the width of the Gaussian function
for the q, distribution, which is also the v 2 q,
distribution, we can say that the momentum of the
constituent quark mostly lies in the interval de-
fined by the following limits:

(1 /

)
The quantity (W~/21lf) is of the same order of
magnitude as —,'. For this reason, the lightlike
four -momentum p, can be written as

(14)

(15)

with n ranging approximately from zero to one.
This wide-spread distribution and division of the
four-momentum are exactly like those of the par-
ton model.

Let us go back to the (, distribution, which is
also the &2m distribution. We noted above that the
motion along this axis should be almost free. Then
the momentum has to be sharply defined, and the
momentum cannot have a wide-spread distribution.
Therefore the momentum distribution we noted in
Eqs. (14) and (15) should be regarded as a distri-
bution of free particles which are lightlike. This
is exactly what we have in the original form of
Feynman's parton model, as well as being charac-
teristic of the quantum-mechanical picture of
blackbody radiation. In both cases, the number of
lightlike particles is not conserved.

Finally, let us consider the time interval during
which the above-mentioned partons behave as free

particles. According to Eq. (12), the $, axis is
also the v 2f axis. Therefore, the time duration is
of the order of (P,/M/~). This interval increases
as I', becomes large. If this interval is much
larger than the characteristic time of electro-
magnetic interaction, then the partons of the pres-
ent paper will indeed behave as Feynman's partons.

We have shown above qualitatively how the co-
variant oscillator produces Feynman's parton pic-
ture in the infinite-momentum limit. The next
question then is how we can use this formalism to
carry out the parton-model calculations.

In order to answer this question, we note first
of all that the above two-body formalism can be
easily generalized to the three-quark nucleon sys-
tem. ' In performing the parton-model calcula-
tions, we have to square the wave function to get
the probability-density function. The Gaussian
form remains Gaussian during the squaring pro-
cess. The Lorentz-contraction property of the
Gaussian probability distribution is identical to
that of the wave function except for the factor of 2
in the exponent. In fact, the width quoted in Eq.
(14) is derived from the width of the probability
func tion.

As was noted earlier in this paper, the proba-
bility function exhibits a 5 function in the (q, —q, )
variable in the infinite-momentum limit. We can
now eliminate the qo dependence by integrating
over this variable. The resulting function be-
comes the parton distribution function in the three-
dimensional space.

The immediate calculations we can do using the
above-mentioned procedure have already been
carried out by Le Yaouanc et al." Starting from
the three-dimensional parton distribution function
which we could obtain by following the procedure
outlined above, Le Yaouanc et a/. indeed carried
out a comprehensive phenomenological analysis of
all interesting physical quantities in the inelastic
electron-nucleon scattering.
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