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Sum rules for inclusive decays of charmed hadrons
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Inclusive nonleptonic and semileptonic weak decays of the type c~ h + anything and c) h + I+ + anything
are considered, where c is a charmed hadron and h is an ordinary hadron belonging to the 3*,lnd 8
representation of SU(3), respectively. The SU(3) relations for the inclusive decay rates are presented. These
would provide tests of the isospin and SU(3) transformation properties of the weak charm-changing current
and AC = hS nonleptonic interaction Hamiltonian in the Glashow-Iliopoulos-M;li'lni scheme. We also point
out that it may be possible to check these relations in the near future.

I. INTRODUCTION c(3*)—l
' + anything (1a)

Among the various theoretical attempts to under-
stand the systematics of the new particles''
P(3. 1) and l(3.7), a particularly popular scheme'
is one in which the extremely narrow width of
these particles is understood in terms of a new

quantum number, C, called charm. In this scheme
the symmetry group SU(4), which contains the
usual SU(3) symmetry, underlies the strong inter-
actions. A direct test of the underlying SU(4)
would be to study relations between strong-inter-
action quantities such as masses'" and coupling
constants. ' However, the low-lying charmed had-
rons with C = 1 are expected to be stable with re-
spect to strong interaction and will manifest them-
selves through their weak-interaction decays.

The recent discovery' of a neutral and a charged
boson of mass around 1.87 GeV heralds the dis-
covery of the lowest charmed mesons D' and D'
with C =1 belonging to the 3* representation of
SU(3) If (D', D ) form an isodoublet and since
D'-K n' while O'-K n'n', then their decays
violate parity assuming that they are pseudoscal-
ars, i.e. , J = 0 . Though one has to await experi-
mental confirmation of the J of the D' and D', it
is very striking that their observed decays obey
the selection rules of the elegant weak interaction
proposed by Glashow, Iliopoulos, and Maiani, " re-
ferred to as the GIM scheme for short. Many
authors" have explored the consequences of the
GIM scheme for the two- and three-body nonlep-
tonic and simple semileptonic decays of the low-
lying charmed mesons and baryons. However,
since the mass of the charmed hadrons is large,
one expects many multibody decay modes and,
moreover, that an exclusive decay channel will
have a branching ratio of only a few percent. Con-
sequently, it is important to have tests for the
GIM scheme for the inclusive decays of the
charmed hadrons.

In the present paper we consider the following
incl. usive semileptonic and nonleptonic decays:

—l +lt (8)+ anything (1b)

c(3*)—9 (8) + anything, (2)

where c(3") represents the charmed mesons or
baryons with C =1 belonging to the 3' representa-
tion of SU(3 I, l '= e' or p, ', and h (8) stands for an

ordinary meson or baryon octet. We give rela-
tions for the above inclusive decay processes
which will provide tests of the isospin and SU(3)
properties of the AC = AS weak current and the
4C = AS nonleptonic interaction Hamiltonian in

the GIM scheme.
In Sec. II we briefly discuss the I-spin, V-spin,

and U-spin transformation properties of the weak
interaction in the GIM scheme. These transfor-
mation properties are exploited and the relations
so obtained for the processes (1) and (2) above
are presented in Secs. III and IV, respectively.
In Sec. V we briefly indicate the extension of our
results to the case when h(8) is replaced by a
nonet 8. (9) with arbitrary mixing. The final sec-
tion is devoted to discussion and possible experi-
mental verification of our results.

II. THE WEAK INTERACTION IN GIM SCHEME

The hadronic weak current in the GIM scheme'
is given by (suppressing space-time properties)

J~ = cos 6 J,'+ sin 6 J,'+ cos 8J', —sin 8 J', ,

where 6 is the Cabibbo angle and the indices in-
dicate the transformation properties under SU(4).
The charm-changing currents J', and J,' satisfy
the selection rules bC =~S and 4C =1, AS=0, re-
spectively, where S refers to strangeness.

The current J„will effect the semileptonic tran-
sitions and the leading contribution to the decay
of charmed hadrons will come from J', since the
angle I9 is small. The current J', transforms as
a triplet under SU(3) and under its SU(2') subgroups
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Hcs=& +&+ (4a)

I, U, and V spins it behaves as a singlet (I= 0), doub-
let (U= 2, U, = 2), and doublet (V= 2, V, = 2), re-
spectively. It is these transformation properties
which we exploit in order to present relations
among various inclusive semileptoriic decays in
Sec. III below.

The leading nonleptonic decays of charmed had-
rons are those which obey the AC = AS selection
rule. The current & current Hamiltonian for
these is

R2„= V J d'xe' 21'22 *(c(P)!J„(x)Jq(0)!c(P}).

(7)

Here P„P„and P refer respectively to the four-
momentum of the detected charged lepton /', the
accompariying neutrino, and the decaying charmed
particle c. V is the normalization volume and J
is the leading charm-carrying hadronic current,
viz. , O', . Since the current J is an isosinglet one
immediately has the relation

where R(D'-I') =R(D'-I') . (8)

H, = ~ cos'8['jJ,', J',}+ (J'„J,'}]+H. c.G
(4b)

III. INCLUSIVE SEMILEPTONIC DECAYS

We now consider relations for the inclusive de-
cays given in (Ia) and (1b). For definiteness, we
take the c(3*) to be the charmed pseudoscalars
(D', D', F') and!2(8) to be the usual pseudoscalar
octet, though as pointed out earlier, the rel. ations
obtained will be valid for any charmed hadron 3~
with C =1 and any usual hadron octet. The inclu-
sive decay rate for the process (la) is given by

d'I'
+ G' cos' & O'P,

P10y3 —R(c l }—,
2 }, L„„R„„

2o

where

It is easy to see that the part H transforms as
(6@6*}under SU(3) and as the self-conjugate 20-
dimensional representation of SU(4) and is denoted
by 20". On the other hand, H, transforms as the
(15 @15*)representation of SU(3), which is con-
tained in the 84-piet of SII(4). Furthermore, H,
and H individually satisfy the selection rules
l«I=I, !~f3!=I, I~III=I, I~U31=1, while under
V spin H, and II transform like V= 1, V, = 0, and
V=O objects, respectively. It is these transfor-
mation properties which me exploit in order to ob-
tain the SU(3) relations for the inclusive nonlepton-
ic decays given in (2} above. As it turns out, the
full Hcs does not lead to any relations. However,
since the generalization of the arguments based
on short-distance operator-product expansion,
which attempt to give an understanding of the
!AI!=2 for the usual nonleptonic interaction, sug-
gests" that the SU(4) representation 20" (i.e. , H )

is enhanced relative to 84 (i.e. , H, }, for H en-
hancement one can obtain simple SU(3) relations
which are given in Sec. IV below.

To use the U-spin property of J we note that R„„
is the norm of a vector which transforms like
!@(c))=J !c)under U spin. Since J is a U-spin
doublet with U, = ——,

' one has !ltd(D')) =!tP(1, -1)),
while ~2!$(E'))=!@(1,0})+!1P(0,0)), where
!ltd(a, a3)) is a vector with U=a and U, =a3. Since
the two vectors with U=1 and U=O will. not inter-
fere and their norms will be positive, one arrives
at the inequality

2R(E'-I')~R(D'-I'}. (9)

where

S,„=~„V ~ 'xd'y d'~ e "'""' '"~"2' ' 6} xo) 8 yo)

&& (c (P}IIJ.(0), j„'(y) ]!.i,(x+ &), J'„(~)!Ic (P) &.

(11)

Here q is the four-momentum and j„is the source
function of the detected hadron h, while P, P„and
P, have the same meaning as in (7) above. The
factor N„ in (11}is —,

' (or m„) if the detected hadron
is a boson (or fermion). Let S(c-!2) be obtained
from (10) after integrating over the charged lepton
momentum. We note the relations

qs( -h)= t q P's( -I'h)
0'o " 0'o Pio

6 P~= (h), 'R(c-I')
Plo

By integrating over the lepton momentum one can
convert (8) and (9) into relations for the total semi-
leptonic decay rates I', (D') for D', etc.

We now consider the inclusive decays of the
type (1b), the transition rate for which is given
by

P, 3qorj I' (, )
G' o '8 d'P2

n 3P, d3q (22 )' P„
(10)

L2rt P111P2tt Pltt P2lt t (Plt1 1P2) = (!1),I', (c), (12)

~ jI ij X ~ P j.X P2a (6) where (h), is the average multiplicity of the hadron
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h in the semileptonic decay of the charmed hadron
c and 1,(c) is its total semileptonic decay rate.
For compactness we give the relations for S(c —h},
though they are clearly valid for S(c -I'h). Since
the weak current J is an isosinglet one has the re-
lations

Use of the U-spin and V-spin properties of the
current leads to one equality and a number of in-
equalities. The more interesting ones are

68(E' - rr') + 6S(D' -v' }~38(F'-K') &8(D" -K'),

8(O' —~') =8(O'- v ), S(D' —~ ) =S(D'- w'),

(13a)

(14a)

6S(F'-K I +68(D'-K )~38(F'-v' )~ S(D -& ),

8(F'-v'} =8(F'-~ ) =S(F' -v'),
(13d)

(13e)

S(F'-K') =S(F'-K ), S(F'-K ) =S(E'-K ),
(13f)

38(D'-v')o 8(D'-v ), (13g)

2S(D'-K )~S(D'-K ), 28(D'-K+}~S(D'-K ).
(13h)

2S(D'- a' ) =2S(DQ- v ) =S(D'- v')+S(D"- v ),
(13b)

S(D'-K ) =S(D -K ), S(D'-K ) =S(D -K ),
(13c)

S(D'-K') =S(D'-K'), S(D'-K') =S(D'-K'),

6S(F'-K )+6S(D -K } ~38(F'-r') ~8(D-w'),

(14c)

68(F'-v ) +68(D'-n )& 38( E"- K') ~8( O'- K),

(14d)

2S(D -K')o8(D' -n'), 2$(D' -w ) 8~(D'-K'),

(14e)

2$(D -K )~8(D -v ), 2S(D -v'}&S(D -K'),
(14f)

3S(D'-K )oS(D'-K"), 3$(D'-K }~8(D'-K }.
(14g)

The other relations are

j28(c-K') +2S(c —K ) —38(c-g) —8(c-v')j= 0,
D-r Do F

S(D -K )+8(D -K ) ~ (~3IS(D -q)j +(S(D -v )j

(15)

(16)

IS(c-K')+8(c-K-)j —,
' g (~SIS(c-q)j'~' [8+(c ~0)j'~'j'.

c=E~,D p+ L}0
(17)

In writing (15) we have used the isospin relations (13). From the V-spin inequalities (16) and (17} two U-

spin inequalities can be obtained by the replacements O' —O', K' —K', and K —K'. The relations (15),
(16), and (17) may not be very useful as the observation of 8(c-q) and 8(c-w') will be difficult. The other
relations using (12') can be converted into terms of the average multiplicities and total semileptonic rates
and may be amenable to verification. The inequalities in (14) can be used to put a limit on the I', 's if one
knows a particular gc); e.g. , (14a) gives 3(K')++I', (F')~(K')~, I', (D').

IV. INCLUSIVE NONLEPTONIC DECAYS

For the inclusive nonleptonic decay of the type c(P) —A(q) +anything, the transition rate for the bC = M
decays is given by

O'I'
q, , =N(c-h)—

1'xd'yd'ze" " ' 'i8(x, ) 8(J,)(c(P) jjHc&(0), j„(y)jIj„(x+z),Hc~(z)jjc(P)). (18)

The full Hc~ given in (4) does not lead to any relations; however, as pointed out earlier, one expects the
enhancement of H, which means sextet dominance at the SU(3) level. The hypothesis of sextet dominance,
i.e. , Hc& H leads to simple SU(3) r——elations from V-spin considerations since H is a V-spin singlet.
One obtains



N(D -n') =N(D'-K'), N(D'-n ) =N(D'-K'),

N(D'-K') =N(D'-K ) ~-, [~3[N(D'-r))]' '+ [N(D'-n")]' ']',
2N(D'-K') = 2N(F' -rr') o N(F" -K') =N(D'-n'),

2N(D'- n ) = 2N(E' -K') & N (E' -n ) = N(D'- K'),
3N(F'-K') =3N(D -K )&N(F'-K ) =N(D'-K'),

N(F'-r})+N(E'-n') =N(D'-r}) +N(D'-n'),

N(D'-K') +N(D'-K ) ~ ,' [~3[-N(D'-r))]' '+ [N(D'-n')]' ']'.

(19a)

(19b)

(19c)

(19d)

(19e)

(19f)

(19g)

These relations can be converted in terms of the
mean multiplicity N, (h} of the hadron h in the non-
leptonic decay of c by noting that

N (c - h) =N, (h )r„(c),
go

(20)

where I'NL(c} is the width of c for nonleptonic tran-
sitions. To make fruitful use of our results, one
has to await experimental. data which we hope will
be available in the near future.

V. MODIFICATIONS DUE TO A NONET WITH ARBITRARY
MIXING

The results presented so far for the semilepton-
ic and nonleptonic decays are valid when the de-
tected hadron is an octet. We extend our results
to the inclusive processes c(3')-l'+h(9)+anything
and c(3*)-h(9)+anything, so as to include the
case of the usual vector nonet V(9). We present
the results for a pseudoscalar nonet with arbi-
trary mixing angle n. The physical states are

g= cosn g, —sinn g, ,

sinn qs+cosn q

where r}, is the SU(3) singlet which mixes with r)„
the eighth component of the octet. It is clear this
mixing will only affect the relations involving p
given earlier. For the semileptonic case one has
the additional. relation

s(D' -q') = s(D'- q'),

while for the nonleptonic case, the relation (19f)
is simply modified to

N(F' -r})+N(F' -rr') +N(F' -r}'}

=N(D r}) +N(D n ) +N(D 'q') .

These two relations can be translated to the case
when h(9) is the vector nonet by the replacements
n'-p', q-Q, r}' co as they are independent of the
mixing angle. The modification of the other rela-
tions can be obtained by the replacement, e.g. , of
S(c -r}) by S(c -coen r}+sino. r)') and by making the
resulting relation into an inequality involving

S(c-r}) and S(c-r)'). We do not give them expiic-
itly as they do not seem very useful.

VI. DISCUSSION

The SU(3) relations in the foregoing sections
have been given for the hC = hS semileptonic and

nonleptonic inclusive decays of a charmed pseudo-
scalar 3" into an octet (or a nonet with arbitrary
mixing) of pseudoscalars. It is important to note
that our results are also valid for the inclusive
decay of any charmed hadron 3* (meson or bary-
on), where the detected octet (or nonet) can have
any J~. Even though the inclusive decay relations
involve only matrix elements, the SU(3'} relations
(from V and U spin) need to be used with caution
since the total energy available in a decay is fixed
and not large so that l.arge phase-space suppres-
sion effects c an arise owing to the mass differ-
ences of the particles in the final state. These
SU(3)-breaking effects can be important depend-
ing on the relation and the particular decay pro-
cess, so that all the relations may not be useful.
We briefly discuss this point below for various
processes.

(i) P(3*)-P(8) +anything. The integrated form
of the inequality in (19b) gives N(D'-K )
=N(D' -K'). However, to satisfy the decay
selection rules the K' must be accompanied by
at least a K'K' pair while the E needs a n'n'
pair. Since the D' mass is 1.8V GeV it is clear,
from the phase-space suppression for the K'K'
compared to &'n' in each exclusive rate in the
sum for the inclusive rate, that one would direct-
ly expect N(D'-K )&N(D'-K'). For the same
reason one would expect N(D'-n')&N(D'-K') and
N(D'-n )&N(D'-K'). This illustrates the caveat
empto~ mentioned above. However, all the results
are not so seriously affected; for example, the
second equality in (19c) leads to N(E'-K')
=N(D'-n'), which may hold reasonably well
since the F' is expected to be about 200 MeV
heavier than D' and this @rill circumvent the
phase-space suppression of the kaon present in
F'-P+ ' compared to the pion in D'- m'+
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(ii) B(3~)-B(8) ox P(8) +anyOsing. Denote the
numbers of B(3*)by (A', A', C', ) following Gaillard
et al. ' The relations in (19) can be easily tran-
slated for these processes, and one finds that the
SU(3)-breaking effects due to mass differences in
general turn out to be smaller. For example, one
expects (19a) to hold better, though one expects
NtA'-:. )&N(A'-P). The relations for A' and

C,' may work reasonably well, e.g. N(A'-K'
(or ='))=N(A'-m+(or Z')):, b«N(A'-Z'))
)N(C; —:-')since the A' is expected to be heavier
than C, by about 200 MeV.

(iii) Semi lePtonic modes. For the purpose of
discussion here, we may leave out all isospin
relations, which should all hold well. The other
relations are all inequalities and the validity of
each would depend upon the arrangement of the
masses and the quantum numbers. The inequality
in (9) would, we feel, be a useful constraint on

the semileptonic decay rate of I ' vis-a-vis that
of O'. Since F' should be more massive than D"',
we expect that the inequality (14a), and each of the
second inequalities in (14a)-(14f) and (14g), should
be satisfied quite weli. The inequalities in (14)
should also hold reasonably well for S(B(3*)-B(8))
and S(&(3*)- P(8)) because of the compensating
effects of the various masses.

Thus in spite of the symmetry-breaking effects, .

the inclusive sum rules given earlier may be use-
ful depending upon the particular decay processes
and it may be worthwhile to test them.

Obtaining experimental information on the inclu-
sive decays of the charmed hadrons may be in gen-
eral difficult, particularly for the nonleptonic de-
cays. In the case of process (1b) the detection of
l'h, particularly if h is a K meson, may be enough
to decide that the decaying particle was a charmed
hadron. Such signals for charmed particles are
already being studied in the search for charmed

hadrons in e~e annihilation and other processes.
One may also obtain information on the inclusive
decays of the charmed hadron c, if its mass is
known, by producing c and c nearly at rest inPP
or ee annihilation and identifying the c by an ex-
clusive decay mode. At present, one has to await
experimental data to check our relations which
provide some simple tests of the isospin and SU(3)
structure of the weak 4C =AS current and nonlep-
tonic interaction in the GIM scheme.

Note added. Apart from the relations obtainable
for the average multiplicities from the relations
in the text, there exist exact relations for the aver-
age multiplicities which are a consequence of the
conservation of an additive quantum number, Q,
in an inclusive process. " The result is simply

where the sum is over the hadrons h in the final
state which carry Q =Q„, while Q,„ is the value of
Q for the incoming state. This may be applied to
an inclusive decay, Q,„being determined by the
decaying particle as well as by the wreak-interac-
tion spurion. We illustrate the result for the de-
cays of c =D', D', and F' for which baryon-anti-
baryon decays may be ignored. The two indepen-
dent sum rules corresponding to Q = f, and Y for
4C = M semileptonic decays are

(~'&. -(~ &. +-'I(&'&. -(&'&.+(&'&.-% &.]=(f,)'. ,

where (I,)' = —,', ——,', and 0 and Y' =-1, -1, and 0
for c =D', D', and I' respectively. For bC= M
nonleptonic decays, (I,);„=-, , —,, and 1 while Y',„
remains unchanged. These exact relations togeth-
er with those in the text may be of use in analyz-
ing inclusive days.
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