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A relativistic theory of the inclusive scattering of nuclei is given. The theory is applicable to meson production
reactions as well as to the yields of light nuclei. A characterization of the relativistic nuclear wave function is

given and its connection to the standard wave function is explicitly shown. Counting rules are derived that
allow one to simply characterize the behavior of the reaction cross sections in terms of the short-range
behavior of the nucleon-nucleon force. Good agreement with experiment is achieved if the force is assumed to
be due to the exchange of vector mesons with monopole form factors at each vertex. The predictions are

successfully compared to several reactions.

I. INTRODUCTION

Becent experiments' ' using very-high- energy
heavy-ion beams have created considerable theo-
retical interest. ' " A relativistic, yet simple,

.theory for these reactions would be extremely use-
ful. In this paper we shall develop a convenient
theory for this type of reaction, make predictions
based on various models of the nucleon-nucleon
force, and compare with the experimental data.

Our discussion will be based on a generalization
of the relativistic hard-collision models of com-
posite hadrons. " In the application of the picture
to interactions of nuclei, the constituents ("par
tons") are nucleons, whose characteristics are
well known. One suspects that this type of model
must work with sufficiently general wave functions
and interactions, and the main question is one of
relative simplicity. In a restricted sense, this
application can serve as a test ease for the ideas
and interpretations presently used in the hadron-
quark models of strong interactions. However,
in its own right, it ean be used to extend the theo-
ry of the scattering of composite systems to the
relativistic domain, and to extract important pro-
perties of the nuclear force.

We shall for the most part concentrate on the
kinematic regime that explores the short-distance
behavior of the nuclear wave functions. This is
only a small fraction of the total reaction cross
section, but perhaps it is the most interesting
part because it is unexplored. One can easily ex-
tend the range of applicability of our predictions
by making a more complicated ansatz for the nu-
clear wave functions to match on to the nonrela-
tivistic regime, where it is best known, but thi. s
will not be done here. This extension deserves
further study.

The effects of shadowing and rescattering will
also be neglected in our treatment. Hence the
treatment given here should be most applicable to

light nuclei. A careful study of this phenomenon
in the present case could be very interesting in
trying to understand the anomalous nuclear effects
observed in large-transverse-momentum events. "

The recent availability of excellent data on heavy-
ion reactions at high energies, ' ' which necessi-
tates a relativistic description of the process, mo-
tivated the present investigation. We hope to show
that this type of data explores new aspects of the
nuclear wave function which have a very simple
interpretation in terms of the basic interactions
between nucleons in the nucleus. The large-q'
behavior of the nuclear electromagnetic form fac-
tor explores a similar regime. "

This paper is organized as follows. In Sec. II
the model is presented, using convenient paramet-
rizations for the momenta and defining tPe distri-
bution functions of nucleons in the nucleus G(x, kr).
As we will see, these distribution functions are
explicitly measured in the experiments we are con-
sidering. Section III discusses in detail the non-
relativistic limit of these functions, which gives
us useful information about their behavior and
parametrization. In order to incorporate charact-
eristics that are essentially relativistic, we de-
velop in Sec. IV convenient "counting rules" for
different theories of the nucleon-nucleon inter-
action that can be used to characterize our pre-
dictions. We then get a form for G that has the
correct nonrelativistic limit, and at the same time
expresses in a simple way the basic short-range
interaction between the constituents. In order to
have simple predictions that can easily be com-
pared with experiments, a high-energy approxi-
mation is developed in Sec. V. In this limit we
get several results that are stated in Secs. VI
and VII for m and P production. A more accurate
kinematic treatment is given and the abgve simple
results are shown to have a rather wide validity.
Quasielastic scattering is also discussed in some

' detail. Explicit comparison with experiment is
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made for several cases. A discussion of the re-
sults is presented in Sec. VIII, emphasizing the
generality and simplicity of our approach.

II. HARD-SCATTERING MODEL

In a general inclusive reaction involving nuclei,
the detected particles with momenta (either long-
itudinal or transverse) substantially different from
the initial beam or target are assumed to arise
from a direct internal interaction of constituents.
These constituents may be nucleons or composite
states that are virtually present in the nucleus,
such as deuterons, alpha particles, etc. The
fundamental diagram to be considered here for the
process A+B- C+X is given in Fig. 1. Shadowing
and rescattering have obviously been neglected.
Here M, is the amplitude for the basic process
a+b —C+d, where the incident states a and b are
off-shell. The simplest type of basic process is
quasielastic scattering, N+N-N+N, where N mean
means either a proton or neutron (we shall not
differentiate between them in our notation or treat-
ment), and perhaps the next simplest is N+N- m

+X.
Our procedure will be to take M, from experi-

ment, where it is given only on-shell, and to make
an extrapolation according to a prescription to be
given later (this extrapolation has very little effect
on our predictions). Another more fundamental

way to proceed would be to go one step further
and predict M, in terms of the interactions of the
constituents of the hadrons. This will not be done
because it is a more difficult task. However, it
is interesting to point out that all our fitted be-
haviors of the various M, 's are consistent with the
behavior expected in constituent models. Finally,
the effects of spin will be neglected here. Its in-
clusion mould allow interesting polarization effects
and the spin structure of the short-range nuclear
force to be studied.

For the analysis of the diagram of Fig. 1, it is
convenient to parametrize the different momenta

using "infinite-momentum frame" variables as

A= P+, TP, —
A2 A2

1 1

B2 B2
B = P2+, T, -P2+

A2 B2
vs =P, + +P, +

1 2

This rather cumbersome set of variables will
greatly simplify our latter discussion. Also me

define the other momenta that are on-shell as

@2+0 '
Q- 1-xP1+ 41 P -kT

n2+k '
+ (1 —x)P,

P2 f 2

8 —((1—y)P, +
~

~,-f,—yP,

Note that with these parametrizations, the phase-
space integrals are of the form

2 ~1 —x)

The off-shell momenta are calculated by momen-
tum conservation:

02+ u,' 02+ u,2

P+) 2 P+)
@2+ T ~P2+

(4)

where a particle's name and four-momentum are
denoted by the same symbol except for the off-shell
particles a and b. A and B have been defined in a
general set of frames along the interaction axis.
A specific frame in this set is selected by relat-
ing P, and P, . For example, the center-of-mass
frame is defined by the conditions

A2 B'
4P

where

x(l —x)A' —x o.' —k r'
(1 —x)

y(& - y)&' yP' f,'--
1 —y

Note that with these parametrizations,

FIG. 1. The basic hard-scattering-model diagram
with the notation used in the text.

Qo+ 03

A, +A, '
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which is the usual light-cone variable.
Using the Feynman rules, it is a simple matter

to evaluate the diagram of Fig. 1. After squaring
the integrating over a final-state phase space of
d and n and P (which can have a mass spectrum
and does not need to be a definite state —this only
generalizes the definition of the G function defined
below), the inclusive cross section

dv
cd.C

-&c

2- 1
E~~~r') =

2(2,)

x
d'kryo*(x,

kr)((x, kr —(1 —x)Qr).(1 —x

Let us now turn to a more detailed discussion of
the probability functions and their interpretation.

III. THE NONRELATIVISTIC LIMIT

achieves the form

x ~(s', s, x, y)

da'
&& Ec, (a+ b -C+ d; s', t', u')

where

&(s', P2, P)
xy&(s, A.', 8')

In order to have a clear understanding of the G

functions, and how they are expected to behave, it
is instructive to make a nonrelativistic approxima-
tion. This should also allow us to explore the way
in which masses enter into the analysis. The G

function must be very closely related to the square
of the nonrelativistic wave function but the peculiar
variables x and k~ do not seem to be closely related
to the familiar k of Schrodinger theory. Their in-
terpretation is quite simple, however.

Consider the factor of (k' —a') that occurs in (
and define

and where the x and y integrals run only from 0 to
1. The variables s', t', u' are those that describe
the internal basic process and are defined in terms
of a, b, and C. The G functions will be defined
below. The ratio x of the ~ factors is the ratio of
the corresponding phase-space factors in the cross
sections and flux factors. Also,

X'(x, y, z) —= x'+y'+ z' —2(xy+ye +zx).

M-'(x) = (1 x)(a' —u') —t~,'
= (1 —x)a'+ xn' —x(1 —x)A'.

This function minimizes at x =x„where

A.2+ a' —n2
'0 2g2 r

and this suggests writing

(10)

One finds that throughout the range of variables
we are interested in, x= 1.

A precise definition of the variables will be
made later, but the interpretation of the various
factors in Ecl. (6) is clear. The factor G, &„(x,kr)
is the probability of finding a constituent of type
a in nucleus A with fractional "momentum" x and
transverse momenta k~. A similar interpretation
holds for G, (& ~ The basic cross-section factor
that actually produces the detected particle C also
has a clear probabilistic meaning.

The probability functions are defined as

1 x 2r) -
2(2,). (1 ) I

«x kr) I

x x + 0A'

One then finds

(1 —x)(a' —k') =—ac+8, (12)

where it has been assumed that the binding ener-
gies per nucleon e of the states A and a are the
same. In this case one finds x, - a/A, i.e., each
nucleon carries the same fraction of the total
momentum of the nucleus at the peak of the wave
function. 'The G function becomes, in this limit
of small k„

where (I} is the bound-state Bethe-Salpeter wave
function with one leg (n) on-shell. It is related
to the vertex function (t) by

where

(ae + k')'

-x (1 —x )(t} .

q(x, kr) = The Schrodinger equation in momentum space
is of the form

One can also derive an equation for the electro-
magnetic form factor of the state A in terms of

g and the result (for the body form factor) is

4„(ic)= (ac +i'')-'J u'0 }'(iY-p}4„(p)

-= (ac+ k') 'y„„(k),
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so that the vertex function Q„„expresses more or
less directly the behavior of the potential V. The
falloff of Q is related to the softness (or hardness)
of the potential. As a simple example, consider
a general Hulthen model of the nuclear wave func-
tion:

=(ac+k') '(ae +k')"

A relativistic version of this wave function can be
achieved by writing

N(x) 1
(Iz' —a') (k ' —a ')"" ' ' (13)

G =—C(x,)(ae+k') '(ae, +k')' ~,

where [absorbing constants into N(x)]

C(x) =x(l —x)'N'(x),

M, '(x) =I'(x)+ 5',

and

a&, = a&+ 6'.

(15)

For the familiar Hulthen deuteron case, one usual-
ly chooses g = 3 and e, - 36&. Thus ~' - 35a&, and
the second factor is much flatter in k ' than the
first.

The form factor for this type of wave function
is easily seen to fall as

F'(~r') -(V,') ' '

for large q~'. Thus the falloff of the form factor
and the behavior of G for large L~' are closely
related and also we see that the behavior of G for
x-1 is also closely related to the form-factor
falloff. This latter relation is the Drell- Yan-
West relation. "

For general x, the relativistic G function can
then be written as

wliere N(x) is slowly varying for x near 1 and de-
fining

M, '(x) = (1-x)(a,'- 0,') —u,'
= (1 —x)a, '+ xo.,' —x(1 —x)A', (14)

with a,' =—a'+ ~', n, ' —= n'+ 6'. Proceeding as before,
one finds for small k~ and k,

while its large-kr' behavior if (kr')
In this paper, the behavior of G for x» xp will

be especially important. Note that this is new in-
formation not directly contained in the nonrelativ-
istic wave function. We shall also discuss quasi-
elastic scattering which explores the G function
for x-x, as well. Let us now turn to a discussion
of the calculation of the power g in selected theo-
ries of the nucleon-nucleon interaction.

IV. COUNTING RULES

In this section, the choice of appropriate wave
functions will be discussed. This is not a trivial
matter since one would like to have wave functions
that reduce to familiar forms in the nonrelativistic
limit but yet reflect the correct relativistic behav-
ior (for large kr and for x-1) arising from a spe-
cific theory of the nucleon-nucleon interaction.
Once the wave function is given, our main contact
with experimental data is through the structure
functions G(x, kr) . .A helpful tool for expressing
thepredictions of specific theories is in terms of
"counting rules. " These allow one to character-
ize the asymptotic behavior of G in terms of the
number of constituents and the basic interactions
of the theory.

The procedure here is to extract the leading
behavior from the lowest-order diagram in per-
turbation theory. For "soft" theories, one can
show that the higher orders either are small com-
pared to the leading term or have the same be-
havior. 'Consider the wave-function (or structure-
function) diagram given in Fig. 2, where k is the
momentum of particle a and is defined by Eq. (4).
We shall assume scalar particles for simplicity.
Note that A now also means the atomic number of
'particle A.

Mode/ A. For a renormalizable interaction be-
tween the constituents, such as &P~, (vector ex-
change also is in this category) the falloff of the
vertex function arises solely from the constituent
propagators. One finds

where the masses in k, [see Eq. (14)] depend on

G(x, kr) =N'(x)x(1 —x)'

x [M2(x)+ u,2]-'[M,'(x) ~ a,']'-~. (1V)

For x-xo, the denominator factors are rapidly
varying and as has been discussed, this reduces
to a familiar nonrelativistic Hulthen form. For
x»x„ the numerator factors control the behavior
of G, and

G(x, k F)
- (1 —x)'

) n=A-I

FIG. 2. The wave-function diagram used to compute
the probability functions.
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detailed properties of the force. The wave func-
tion is

(y2 a2)-1(/ 2 a 2)1-n

Comparison with Eg. (13) immediately tells us
that

(18)

g =2A —3. (19)

This is the usual dimensional- counting prediction
for the structure function" where one counts nu-
cleons (assumed to be structureless point par-
ticle s) .

Mode/ B. For a superrenormalizable theory,
such as $2X (scalar exchange), the vertex function
behaves as

(/2
2 a 2)1-n(I2 2 a 2)-n (20)

where the additional factor arises from the falloff
of the gluon propagators. The masses in k,' are
to be chosen appropriately. The prediction for g
is

g=GA —7. (23)

This is the same result as found in a &Q' theory
with a dipole form factor at each four-point ver-
tex, and also is exactly the same result one would
get by counting quarks. While one might expect
that the quark degrees of freedom become rele-
vant at ultra high energies where they can be ex-
cited, we see that one gets the same prediction for
g in this theory when the nucleon-form-factor ef-
fects play a role. These, of course, may in turn
be due to internal structure, but the internal
degrees of freedom need not be fully excited.

For more general structure functions G,&„,
where the state a is a bound state of a nucleons,
a similar analysis can be carried through. One
finds in this case

g =2T(A —a) —1

where T =1, 2, or 3 depending upon the theory

(21)

which reflects the increased softness of the poten-
tial.

Model C. As a final and perhaps most relevant
example, consider a nucleon-nucleon interaction
mediated by the exchange of vector mesons, such
as p's and (d's, with a monopole form factor at
each vertex (vector dominance would assume such
a behavior to fit the dipole nucleon form factor).
One finds

(1, 2 a 2)1-n(y 2 a 2)-2n

where the masses in the form factors and/or
gluon propagators are chosen to be the same
for simplicity. The final result is

as discussed earlier.
Now that it is clear that one can differentiate

between theories of the nucelon force by extract-
ing values of g from the data, let us turn to a more
detailed discussion of the probability functions. "
The G's that will be considered here are all of the
form [see Eci. (1V)1

X2(x)x(1 —x)'
a/A(' ~ T

[/~ 2+M2(«)I 2[/~ 2+M (2)xj g1 1

(25)

where N(x) is a slowly varying function of x, and

M'(x) = (1-x)a'+ xo'-x(1 x)A2,

M, '(x) = M'(x) + &'.

For large values of A, g is large, and the second
term in the denominator controls the falloff in k~-'.

For small /"~', G becomes
2G~e-R k~

where

2 2 g —1
m'(x) M, '(x)

For x —x„one expects R-A' ', the normal nucleo:
radius, and hence M, '(x,)-A'/'. This is then a
restriction on the behavior of the parameter 6'
introduced before. In any case one can fit it di-
rectly from the above relation.

The general form for G that we have adopted,
Eci. (24), has several properties that are worth
noting:

G is peaked at k~=0 and the transverse-mo-
mentum distribution falls more and more rapidly
as A increases.

G is peaked at x-a/A. The most likely mo-
mentum configuration is that one in which the nu-
cleons share equally the total momentum of the
nucleus.

The power g which controls both x-1 and large
k~ is very simple to characterize in terms of the
basic binding interaction and the number of con-
stituents.

The shape of G in the nonrelativistic limit does
not restrict the behavior for x-1 for general mod-
els (although they are strongly correlated in our
simple models). A measurement of G for x-1 is
new information that is not accessible to conven-
tional nuclear theory.

V. HIGH-ENERGY LIMIT

In order to get simple predictions that can easily
be compared with experiment without extensive
numerical calculation, we will first analyze the
situation in which the energy per nucleon is large
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compared to the nucleon mass. The kinematics
for this regime is quite simple:

S =Xys
q

t' =yt,

u =xu

Cf = Xy S +y t+ Xuy

ut
C

S

The condition d'& 0 restricts the range of x and y
that contribute for fixed values of s, t, u.

Projectile-fragmentation region. When t is
fixed (and s,u large), one finds

t+u
1 —x =1+F

dx d'k rG, &~(x, kr)
ab 0

1

x dy d lrG~ts(y) I r) Ec

All inclusive basic processes of interest to us
here will be parametrized as

1 f

Ec d, =E(s')(1 —~x~ ~)"e " "'~

(26)

and exclusive processes as

Ec, =E(s')6[(k+l —C)' —d']e " "~, (30)

where k'r =Cr- kr- tr and E(s') is assumed rather
slowly varying. H will be assumed to be constant,
but a dependence on transverse momentum can
easily be included.

Since the exponentials are strongly peaked in
k~', we can approximate the k~ and l~ integrals
by replacing kp' and l p' in the G's by the mean
value X' which should be of the order of C~'. The
inclusive cross section is then proportional to

&'(y)y(1 —y)'s
[X2+~'(y)]2[+2+M, '(y)] -' (

(31)

Note that the distribution for the target G,&„has
integrated out in this limit, and that R depends on
A through its normalization only.

If Cr' &M, '(x,), and if xz is not small compared

yt+xu
1 XF 1 +

Xys

and hence xz—=xz/y. The condition d') 0 becomes
y)x~. In this regime formula (6) becomes

to xp then -the main variation in the inte grand is
from the factors of (1 —y) and (1 —xz/y). The first
factor cuts off the integrand near y = 1 and the
other near y = xF. If only their variation is re-
tained, and the denominators taken constant, we
have

dy(1 —y)'&(1 —x~/y)",
xF

(I x )gs+B+1
(32)

cfo'E, =E(s')5[x(s —A' —B')(x~ —b, —y)]e " ~r,

where the shift & has to be calculated using more
exact kinematics. At high energies ~ -0.

Again the x integral is not restricted and the full
inclusive cross section is

R ~ Gets(x~ —&,K')—do
(34)

the quasielastic peak should occur at x~ =C/B+b, .
This is slightly larger than the naive expectation
C/B, the most likely momentum in the state B.
The shift will be included in all our numerical cal-

A more accurate treatment is possible but the
above will suffice for our purposes. In the target
fragmentation region, where u is fixed and s, t
large, the above arguments can be repeated with
the result that

(I ~x )g~+0+1

where g~ is the power behavior of the target dis-
tribution function G,». This result could also
have been achieved by simply interchanging the
target and beam particles in the previous result.
These predictions will be compared to data in a
later section.

One can estimate the range of validity in xF of
the above formulas by a simple argument. The
momentum fraction xF must be large enough so
that the particle is out of the "quasielastic" peak
where the denominator factors in Eq. (31) are
rapidly varying. The average momentum fraction
xs of particle B is (xs) =1/B. The average x re-
tained by the detected particle of Eq. (29) is rough-
ly =I/(H+2). Therefore, the behavior given by

Eq. (32) should hold reasonably well for xz ~ I/B(H
+2). For example, for the process deuterons
-w, this limit is x~ 1/(2 x 5) =1/10, and most of
the xF range is covered.

For an exclusive basic process, which yields
a familiar quasielastic reaction, the calculation
is also quite simple. Using Eq. (30) and expanding
the arguments of the 6 function for the case b+N
-C+N, where b and C are nucleons, one finds
that a reasonable approximation is
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culations. Equation (34) can be interpreted as a
relativistic generalization of the Glauber approxi-
mation but with a more precise definition of the
covariant wave function.

Although for simplicity we have discussed in de-
tail the kinematics of the high-energy region only,
it can be shown that our results should be quite
accurate at lower energies. For example, one
important conclusion of our analysis was that the
lower limit of the y integral is equal to x~. This
comes from the condition (k+l —C)' )d'. We have
calculated this equation more exactly, assuming
small transverse momenta and (x) =d/A, and found
that the corrections are small for the range of en-
ergies of the experiments we want to analyze here
(kinetic energies per nucleon =1 or 2 GeV). At the
quasielastic peak, for example, we find

IO

lo 2

O

(D

lOl

E

bc, loo

lo l

I I I

ucleus = vr +X
GeV/nuc leon

Be target
C target
Cu target
Pb target

6 = 0.07 (dC —PX),
4 = 0.05 (CC —PX),
b, =0.075 (CC-HeX)

(35)

lO I

2
I

6
and these shifts show clearly in the experimental
data (see Figs. 7 and 8). The values were calcu-
lated assuming a specific internal process. For
example, in the case CC -HeX, the internal pro-
cess was HeP-HeX. Another possibility could
have been He+He -He+X, but this gives a shift at
the qua. sielastic peak that does not agree with the
experimental data. The position of the quasielastic
peak is determined by the nature of the fragment
b arising from the beam. The kinematical shift ~
then determines the fragment, a, arising from the
target. Additional subsidiary peaks or shoulders
in the data could be due to more than one basic
process being important. These can be identified
using the above procedure even if the dominant
ones change with angle.

k ~ (GeV/c)

FIG. 3. Scattering from selected targets according to
Ref. 2 to illustrate A. independence of the shape of the
x spectrum.

cross section. The point is that near threshold,
the integration over x (the target longitudinal mo-
mentum variable) does not go from 0 to 1 and ac-
tually the allowed interval shrinks to a point for
x~-1. Now k' is negative for most values of x,
and for x„-1 some of the energy for the reaction
must be extracted from the Fermi motion in the
target.

The basic reaction P+P —r +X will be param-
etrized as

VI. PION PRODUCTION
R' =R,(1 —x')e 4"~e "'"r' .F (36)

As the first application of the model, we shall
consider ~ production in several different reac-
tions. The data in Fig. 3, taken from Papp et al. ,

'
clearly supports a prediction of .the model that
the cross section does not depend upon the target
except for an overall factor (which goes as A'~'
due to the circumferential nature of the scattering)
except very near threshold.

A propertreatment of these kinematic effects is
necessary in certain kinematic regions. For ex-
ample, one expects that in the fragmentation re-
gion of processes such as P+A. -& +X, the cross
section will be the same as for P+P- vr +X. This
is not so at the lower energies because of a kine-
matic effect that is essentially the same for all
targets (A~2) and which changes the shape of the

This is a reasonable representation to the data of
Akerlof et al."and Qellert. " We will treat neu-
trons and protons the same in order to keep the
treatment simple.

Reaction pC- ~ . Using the R' given above, and
calculating numerically using exact kinematics, we
get the result shown in Fig. 4. %'e have not com-
puted the normalization (this would require a care-
ful treatment of absorption) and have normalized
our calculation to the data. ' For energies in the
range of interest, one finds that R scales (for dif-
ferent energies) and for fixed (small) f, that

R ~ (1 —x~)',
which is not very different from Eg. (36) except
near x~ =1. Note that a change in the power by 1
is a factor-or-two difference at x~ =0.6 if nor-
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I04
I

p+C = 77. +X
IO

IQ

IQ
2

CJ

IQI
C3

~$

IOO

E

b ~ID

p
IO

~ I.05 GeV z 2.66 GeV—
l.73 GeV & 3.5 GeV

0 2. I GeV & 4.2 GeV

IO

PO

IOI

~(f)
IOO

E
10

b

-2
lo

GeV/'nucleon

GeV/nuc leon

x,)'

10
IO

I04
0

I i

0.2 0.4
!

0.6

xF=
(ko)max

I i

0.8 I.O

I04 I I I I I

0 0.2 0.4 0.6 0.8 I .0
~ii

xF=
(i*„) „

FIG. 4. The xz spectrum compared to the carbon data
illustrating scaling.

FIG. 5. The prediction for T=3 compared to the data
of Ref. 2 for a deuteron beam.

malized at x~= 0.2. This form does not depend
upon the specific target distribution function and
hence is the same for all the different counting
rules. The properties of the target wave function
do not enter except in the overall normalization
constant.

For backward scattering, i.e., u fixed, the re-
sult depends strongly on the theory of the target
wave function. We find (A =12)

R - (1+x~)',
where b =23, 45, 67 for the three possible theories
(A, B, C, respectively) of Sec. IV.

reaction, dC —m . From the analysis of the pre-
vious section, we know that H =3. The prediction
for A should, now depend upon the deuteron wave
function. For t fixed, we find

R - (1 —x~) ~,
where f= 5, 7, and 9 for the three theories. If we
compare with experiment, ' Fig. 5, the value 9 is
clearly favored. Recall that this is the theory of
vector-meson exchange (~'s or p's) with monopole
form factors. These counting rules are the same
as quark counting, i.e., T=3.

For backward scattering, u fixed, one finds

It -(1+x,)',
where b =25, 47, 69 for the respective theories.

A'eactioe IIeC- m . This reaction clearly shows,
see Fig. 6, the effects of strong correlation in the
initial wave function since pions are observed with
one-half of the incident-alpha-particle momentum.
The predictions are

It-(1-x )', (39)

VII. PROTON PRODUCTION

Now let us consider inclusive proton production.
First, some examples will be discussed outside
the quasielastic peak, that is, xz)1/B. Then
quasielastic scattering will be treated. As we have
stressed before, this is a test of the wave function
in the relativistic regime, whereas the quasielastic
peak depends upon the most likely nucleon configu-
ration which can be adequately described by a non-
relativistic wave function.

where f=9, 15, and 21. The data' of Fig. 4 shows
that f is definitely between 17 and 25, and 21 is a,

good fit. This data again favors model C, T =3.
In the backward direction, we find

8 - (1+x~)'

where b =25, 47, and 69.
We have also compared our predictions for for-

ward scattering from beryllium and the agreement
with the data of Ref. 4 is quite satisfactory.
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FIG. 6. The prediction for &=3 compared to the data
of Ref. 2 for an alpha-particle beam

As explained before, the effective internal cross
section should include some kinematical effects
arising from the target due to the low energy but
this will be neglected here. From PP -PX data,
we conclude that H, « -—-I [recall Eqs. (29) and

(30)].
Reaction dC-P. For this case, the prediction

follows just as in the pion case and one finds in
the forward direction

(xF)a

5
0.1 0.2 0.3

10

1.05

(xF) He

03 04 05
I 1

GeV/nucleon

10" = 0 2C+C 0 p

O 4He

FIG. 7. The prediction for inclusive protons from a
deuteron beam for Z'=3. The full curve is a fit to the
quasielastic peak using the theory in the text. The curve
is asymptotic to (1. -&z) but is steeper near the quasielas-
tic peak as discussed in the text.

a-(I —x,)', (40)
oo

0
where f= I, 3, or 5 for the three theories. The
data does not extend very far above the quasielastic
peak. In Fig. '? the prediction for f=5 is graphed.
The data' seems to indicate that f is between 4 and
5. This is again consistent with theory C. The full
curve in Fig. 7 will be discussed shortly.

For backward scattering, the prediction is

R —(1+x~)'

10

10
b C

101 =

(
I- xF)

(( „)47

where b =21, 43, and 65.
Reaction CC-P. Just to see how far our model

can be pushed, consider this reaction. Obviously,
the predicted powers are going to be very large
but nevertheless are susceptible to analysis. The
consistency of this model can at least be tested
and its trend as the nucleon number increases. In
this case, the forward and backward predictions

10O I I 1 I

5 6
k 1ag (GeV/c)

1

8

FIG. 8. Two inclusive processes for a carbon beam
illustrating the counting rules and the positions of the
quasielastic peaks.
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are the same and one finds

(41)

where f=21, 43, or 65. The data from Ref. 3 in
Fig. 8 seems to indicate a large value of f, with
65 being a quite acceptable fit, but more data is
needed for a definitive test.

Reaction CC-'He. The predictions for f are 15,
31, or 47 if the intermediate state b is an alpha
particle. In Fig. 8 the curve for f=47 is consis-
tent with the data. ' The other possibilities are
nowhere near the experimental curve.

Quasielastic reactions. We have computed quasi-
elastic scattering for one sample process, dC -PX.
The deuteron wave function was chosen from model
C, so that @=5 and, in order to get a reasonable
rms radius, ~'=200ae. Setting K'=C~' in Eq.
(34), one gets the curve shown in Fig. 7. The
agreement is quite good throughout the peak re-
gion and above. The excess rate at low x~ must
be due to multiple scattering in the nucleus which
we have made no attempt to calculate.

We have compared predictions of the above
type for beryllium-target data4 and the fit is satis-
factory.

VIII. CONCLUSIONS

The model we have presented here is quite gen-
eral and can be applied to many differerit types of
reactions. Although in our presentation we have
analyzed only the case of strong interactions, ap-
plications to deep-inelastic electromagnetic and
weak interactions in nuclei are also possible.

The effects of absorption were completely ne-
glected in the present treatment, and this is a
very important omission that must be remedied
if one wishes to compute the absolute normaliza-
tion of the reactions discussed here.

In conclusion, we feel that the general approach
used here to describe the high-energy scattering
of heavy ions has many advantages over the con-
ventional approach using Schrodinger wave func-
tions and standard scattering theory. Some as-
pects of our model that are worth mentioning are
the following:

(1) We have presented a fully relativistic formu-
lation of the scattering of bound states. The for-
malism has a very simple physical interpretation.
The relativistic wave functions are shown to be
simple related to familiar nonrelativistic choices.
The relativistic situation is described in terms of
distribution functions G(x, kr), which can be ex-
plicitly measured, and which. have a simple prob-
abilistic interpretation.

(2) We have developed counting rules that allow
one to predict in a simple way the general be-
havior of the reaction cross sections. These

counting rules are expressed in terms of the basic
short-range behavior of the nucleon-nucleon force.

(3) Good agreement with several experiments is
attained for one simple model. This model has as
its basic force the exchange of vector mesons with
monopole form factors at each vertex. The agree-
ment with experiment holds for both meson pro-
duction and proton inclusive processes. Once the
force is given, there are no parameters (except
for normalization) outside the quasielastic peak,
and even this needs 6' only. It i.s important to add
that w'e have checked several other reactions not
included here, and all are consistent with the pre-
diction of the counting rules for the same simple
model.

(4) The force model that fits experiment is shown
to have the same counting rules as the quark di-
mensional- counting model discussed by Brodsky
and Chertok. " Since the reactions discussed here
are certainly at too low an energy to fully excite
the quark degrees of freedom, the agreement be-
tween the quark model and the elastic deuteron
data can perhaps be more easily understood in
terms of our model. Evidently, the theory is much
smoother than one would expect a Priori in its con-
nection between very high energies (excitation of
quark degrees of freedom) and the range of ener-
gies we have discussed here.

(5) Our results scale in the sense of being a func-
tion only of x~, independent of the energy. This is
clearly shown in the data. It is interesting to note
that this is true even when all the effects of masses
are included, as we checked explicitly by com-
puting the cross section for the case (P+C-m +X)
numerically.

(6) The model used here provides a simple yet
relativistic description of quasielastic scattering.
It contains the standard Glauber theory and the
standard impulse approximation in the low-energy
limit.

(7) Predictions are easily made and a,re given for
as-yet-unmeasured processes which can serve as
a more severe test of our model (backward scat-
tering, for example).

(8) The model allows one to simply describe a
region of the wave function that cannot be described
sensibly in the nonrelativistic approach. The ex-
perimental data is thus exploring a new regime of
nuclear physics and providing new tests of nuclear
theory.
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