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We examine the prediction of the Lorentz-contracted geometrical model for proton-proton elastic scattering at
small angles. The model assumes that when two high-energy particles collide, each behaves as a geometrical
object which has a Gaussian density and is spherically symmetric except for the Lorentz contraction in the
incident diréction. It predicted that d o/dt should be independent of energy when plotted against the variable
B?P, 20, (5)/(38.3 mb). Thus the energy dependence of the diffraction-peak slope (b in an e % plot) is given
by b(s) = A’B%0,,(5)/(38.3 mb), where B is the proton’s c.m. velocity and A is its radius. We used recently
measured values of o,(s), and obtained an excellent fit to the elastic slope in both ¢ regions [—¢ < 0.1
(GeV/c)’ and 0.1 < —t < 0.4 (GeV/c)?] at all energies from s = 6 to 4000 (GeV)’.

Recent measurements of hadronic scattering
cross sections at the CERN ISR and at Fermilab
have given considerable support to geometrical
models for very-high-energy scattering. The
basic assumption of all geometrical models is
that hadrons are objects with a size of about 1
Fermi and that this size determines many proper-
ties of the scattering cross sections. Such models
have been studied for many years. Serber’s! opti-
cal model for elastic scattering was probably the
first geometrical model and it was soon followed
by the models of Krisch,? Van Hove,® Wu and
Yang,* Durand and Lipes,® and many others. Mod-
els with at least some geometrical aspects have
been applied to inclusive reactions by Van Hove,®
Krisch,”®7 Huang,® Yang ef al.,° Feynman,'° and
others.!! The geometrical nature of Feynman’s
prediction that E d®¢/dP® would be energy-indepen-
dent when plotted against x and P, has been dis-
cussed earlier.”!?

In this paper we will examine the Lorentz- con-
tracted geometrical model’s prediction about the
“shrinkage” of the p-p elastic diffraction peak. In
1966 Krisch® suggested that the p-p elastic cross
section should depend only on the variable g*P, 2.
The slope b in an e~?'*! plot should then be propor-
tional to 8%, where B=v/c is the c.m. velocity of
each proton. In fact the proton-proton elastic
cross section was predicted to have the form

dot

— = 9007108 P2 0, 7473 158" P2

+0.0029¢"1-438° P, (1)

(where do'/dt is in mb/(GeV/c)? and P, is in
GeV/c), a universal curve in the variable g2P,?
with three distinct regions corresponding to three
spatial regions with different sizes. This curve
fitted all data available at that time.

Leader and Pennington'® and others!* have shown
that in the diffraction peak this prediction was
fairly well verified by ISR and Fermilab data.
However, Mellissinos and Olsen'® have pointed
out that there was some deviation above s=1000
(GeV)?. Equation (1) also predicted the large-
@P,? behavior of p+p—p+p. Major deviations
were first found by Allaby ef al.'® in the range
BP,2=1-3 (GeV/c)®. These deviations were dis-
cussed by Giacomelli.’” In fact it now appears
that the second region of this model, the e=3-458°P,
term, may be due to potential scattering rather
than diffraction scattering and that it may fall as
1/s and thus disappear at ISR energies.

There are additional problems at large angles
due to particle-identity effects near 90°. The dag-
ger in Eq. (1) refers to an attempt to deal with
these.® However, they are very sensitive to the
spin dependence of p-p elastic scattering, which
is apparently quite significant at large P,* up to
12 GeV/c.'®* We will thus concentrate here on the
diffraction peak and study the large-g°P,* behavior
later.

More recently Krisch'? proposed modifying the
variable from §*P,? to

2p 20tot(S)

FP TS @)
This modification allows for the energy depen-
dence of the radius associated with a changing
0.0¢(S). This explained much of the energy depen-
dence of the diffraction-peak slopes in 7*-p, K*-p,
and p-p elastic scattering. For some of these re-
actions o,,, was already known to have a strong
energy dependence. At that time it was generally -
believed that, above s=40 (GeV)?, 0,,(p-p) was
energy independent and equal to about 38.8 mb.
Thus the formula given for the p-p elastic slope
(b in e~bl tl)

3287



3288

o'tot (S)

b(s)=10.50" 55" b

3)
did not exactly fit when o,.,(s) was taken to be
38.8 mb at s above 1000 (GeV)2. We now know that
0.0t(S) grows with increasing energy and that this
growth may cause some of the “shrinkage” of the
elastic slope. This relation between o, and slope
has been stressed recently by Dias de Deus e/ al.'®
under the name of geometric scaling.

The Lorentz-contracted geometric model thus
predicts that do/d¢ should behave as

do_0y,°
dar 167w

242 2Utot(s)}

{Z a exp[—A,- BT } 4)
Since 0,,,(s) increases with energy, its value at
s= is clearly unknown. Thus we must choose
some other s, where o0,,, is well measured. In
Fig. 1 are plotted the measured values®*?¢ of o,
for proton-proton scattering. We choose s,=100
(GeV)? near the minimum where o, is taken to be
38.3 mb.

Since most experimenters plot their elastic dif-
ferential cross sections against #, it is useful to
relate ¢ to our variable which we will call p,?

t=-2P, . %(1-cosf,.),
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p2=2 0ot (S)
s 3837

(6)
[] Tyot(S)
"E‘:EZP)‘ 38.3
These allow one to directly calculate p,? for each
data point when s and / are given.

We will first calculate the energy dependence of
the slope b in a conventional ¢ plot. In the diffrac-
tion peak do/dt is assumed to have the energy-in-
dependent form of Eq. (4) '

p.|_2=82lt|<1

do 252 zotot(s)jl
a-[-OCexpl:—A B2P, 383 | (7)
The slope of a / plot is by definition
d do
b(S) —-EZ [ITI<E>] . (8)

Substituting Eq. (6) into Eq. (7) and differentiating,
we obtain

2(¢t)

b(s)=A%p" -s_4m2>’

9

0tof:(s) (1
38.3mb

where (#) is the average value of [¢|. The final
term comes from the kinematic difference between
the variables ¢ and P 2. At high s this term is

s a2 2010t(S) very close to 1 for small /. For example at s
pf=B P P ®) =100 (GeV)? and || =0.1 (GeV/c)? it equals 0.999.
() However, at larger angles the factor is quite
=B m. P2 SIN%0, 1 ?:08"3 . significant; in fact at 90° |¢|=2P% and b(s) is
exactly zero.
Some useful relations are In addition to the three regions of Eq. (1) it is
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FIG. 1. The measured values of gy, for proton-proton scattering are plotted against s. The curve

is a smooth hand-

drawn fit to the data. The corresponding values of oy, /38.3 mb are given in Table I.
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now well known that there is another very forward
region in the p-p elastic diffraction peak. This
was first suggested by Carrigan.?” The two re-
gions in the diffraction peak are approximately
given by

J

s 0.1
11.3582 3‘;*-3(13]0 (1 - ) (GeV/c)2,
b(s)=
0.5
10.0582 ;;*g‘iib (1 - ) (GeV/c)2,

We have taken 0.10 and 0.50 to be twice the average
value of [¢| in each region. The parameters 11.35
and 10.05 were chosen to fit the data. They corre-
spond to sizes of about 1 F and 0.9 F.

In Figs. 2 and 3 we plot Eq. (11) along with the
experimentally measured slopes® for proton-pro-
ton elastic scattering at various energies. We
have plotted all data we could find in compila-
tions?*3° or in the recent literature "% except
that we excluded the old low-energy data with
large errors which were specifically excluded by
the authors of a compilation.?® In general the fit
looks quite good. However, the quality of the fit
is somewhat obscured by significant disagree-
ments between different experiments at nearby s
values. This disagreement is not surprising as
the plot represents many different experiments
done during the past 20 years using véry different
techniques.

To improve the test of the model, we averaged
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. e 2t _<0.1 (GeV/c)?
o { (10)

aadred
dat e 10-sltl 0. 1<_$<0.4 (GeV/c)?

at high energy. The conventional {-plot slopes in
these two regions are given by Eq. (9) to be

—1<0.1 (GeV/c)?
(11)
0.1<-7<0.4 (GeV/c)?.

—
different measurements at nearby energies. This
removed some of the systematic errors. We
typically grouped 3 to 10 different measurements
into a single s bin, as indicated in Table I. From
each measurement, ¢, we obtained the experimen-
tal slope, b;, and the experimental error in this
slope, A;. These are shown in Figs. 2 and 3. We
then calculated b(s), the average of the » values
of b; in each s bin, from

2 (1/4)?

i=

-

We took s to be the unweighted average of the n
values of s; in each bin. There are two ways of
estimating the error in each 5(s). One is to as-
sume that the errors quoted by the experimenters
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FIG. 2. The measured slope, b in e™®'¢, is plotted against s for proton-proton elastic scattering at ~£<0.1 (GeV/c)2.
Also plotted is Eq. (11). The references at different s values are indicated in Table I.



3290 P. H. HANSEN AND A. D. KRISCH 15

T T T L T T T T T T T
L . p
—
‘T‘ 10 —
—_
3 L
~—~
> -
L
o —
— =
S
o ' p+p—>p+p ]
L 0.0 < -t <04 (GeV/c)? .
- -
1 I—IIAlll 1 1 Illl\ll 1 i Illlll‘ I,I 1
2 10 100 1000

s (GeV?)

FIG. 3. The measured slope, b in et is plotted against s for preton-proton elastic scattering at 0.1<—£<0.4
(GeV/c)?. Also plotted is Eq. (11). The references at different s values are indicated in Table I.

TABLE 1. The averaged values of the measured slope b(s) for proton-proton elastic scattering are listed for different
s bins with average value s. The value of b at each s is calculated from Eq. (11) using o4, /38.3 mb from Fig. 1.

|#] Smin Smax Number of s b(s) £A(s) Otot beate(s)
(GeV/c)* (GeV)? measurements References (GeV?) [{(GeV/c)? 38.3 mb [(GeV/c)? X2
<0.1 3.85 4.01 3 31,32 3.94 0.66+0.20 0.585+0.010 0.54 +0.17 0.21
7.4 11.0 4 33,34 8.7 7.64+0.18 1.164+0.012 7.72+0.08 0.17
11.3 17.8 5 33, 34, 35,36 14.5 8.71+0.23 1.057+0.005 9.00+0.05 1.52
18 31 5 33, 36,37 24 9.77+0.13 1.034+0.005 9.97 +£0.05 2.06
37 49 4 36, 37 44 10.56 +0.05 1.013+0.005 10.55+0.05 0.02
54 70 5 37,38 61 10.724+0.04 1.005+0.005 10.73+0.05 0.02
76 86 3 37 81 10.91+0.04 1.003+0.005 10.88+0.05 0.22
94 108 8 36,37, 38,39 99 10.99+0.10 1.001+0.005 10.95+0.06 0.12
110 148 9 36,37,38,39 130 11.20+0.10 1.002+0.005 11.06+0.06 1.44
190 192 3 36,39 191 11.18+0.114 1.004+0.005 11.18+0.06 0.00
225 280 5 36,39 257 11.384+0.10 1.008+0.005 11.28+0.06 0.74
306 380 5 36,39 347 11.41+0.10 1.016+0.005 11.41+0.06 0.00
446 462 2 36,40 454 11.60+0.11 1.023+£0.005 11.52+0.06 0.41
504 695 4 36 608 11.80+0.07 1.034+0.015 11.67+0.18 0.45
750 960 3 36,40,41 886 11.83+0.15 1.047+0.015 11.84+0.18 0.00
2000 2808 4 40,41 2405 12.68+0.14 1.114+0.017 12.63+0.19 0.05
=743
0.1-0.4 4.13 4.30 3 42,43 4.23 0.46+0.18 0.629+0.010 0.32+0.10 0.46
4.40 5.00 10 42,43,44 4.67 1.87 +£0.35 1.060+0.015 1.49+0.20 0.89
5.08 6.33 9 42,43,45,46 5.71 5.02+0.11 1.238+0.020 3.68+0.25 24.07
6.77 7.66 5 34,43,45 7.28 5.95+0.24 1.178+0.010 5.31+0.17 4.74
8.56 9.47 3 34,45,47 8.95 6.82+0.24 1.115+0.010 6.17+0.14 5.47
11.3 14.3 4 34,48,49 12.8 7.30+0.18 1.066+0.005 7.35+0.10 0.06
17.1 22.1 5 50,51,52,53 19.2 8.20+0.26 1.043+0.005 8.29+0.08 0.11
22.4 25.8 4 51,52,53 24 .4 8.61+0.31 1.031+0.005 8.65+0.06 0.02
29.6 46.8 6 16,52, 53 37.9 9.09+0.13 1.019+0.005 9.16+0.05 0.05
95.7 133 3 39,54 108 9.71+£0.10 1.000+0.005 9.67+0.05 0.13
170 330 4 39,54 234 10.13+0.07 1.013+0.005 10.00+0.05 2.28
377 552 4 40, 54,55,56 480 10.12+0.17 1.023+0.005 10.20+0,05 0.20
930 2013 3 40,56 1279 10.74 +£0.19 1.073+0.015 10.75+0.16 0.00
2808 3844 2 40,55 3326 10.82+0.14 1.137+0.017 11.42+0.17 3.30

>3 =41.78
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are exactly correct and to take

1
n 1/2

B

Another way is to average the deviations of each
b, from the average value b(s)

n
S i1

2(n-1)§(1/zs,>2 \

A'(s) = (13)

[bi_ b(s)]z/Aiz 21/2
A*(s)= .

(14)

The correctness of using A’ or A* depends on *
each experimenter’s accuracy in estimating his
systematic errors. This clearly may vary from
experiment to experiment and there is no objec-
tive way to judge this. Therefore we took the
error in b(s) to be the average of A’ and A* for
each s bin

A(s) = G{[aN() P+ [ax(s) /2. (15)

We believe that this gives a fair estimate of the
true uncertainty in b(s) for each bin. The values
of b(s) and A(s) are listed in Table I along with
information about the experiments from which
they were obtained. They are listed for both ¢
ranges in the diffraction peak. These slopes are
plotted in Fig. 4 against s along with the predic-
tion of Eq. (11).

The excellent agreement of the model with the
measured slopes is now quite clear. The aver-
aging procedure has removed many of the experi-
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mental fluctuations seen in Figs. 2 and 3. In Fig.
4 one can see that Eq. (11) agrees with the data in
both ¢ regions of the diffraction peak at all ener-
gies from s=4m,? to 4000 (GeV/c)®. The value of
Eq. (11) for each s bin is given in Table I. Also
shown is the y* for each s bin and the total ¥* for
each ¢ region. In calculating the uncertainty in
b ea1o(s) we included the estimated error in o, (s)
indicated in Table I and an uncertainty of +0.2(¢)
in (#). Inthe 0.1<[{|<0.4 (GeV/c)? region ¥ is
41.8 for 14 points, which is somewhat high, but
24.1 of this comes from one very low s point.
There does seem to be a 10-20% deviation near
s=6 (GeV)% In this large-/ region the relation
between ¢ and P,® given by Eq. (9) is very sensitive
to the value of (#). A more likely problem is that
particle-identity effects® are not negligible at —¢
=0.4 (GeV/c)? since that is not so far from 90° at
s=6 (GeV)2. In the small-¢ region both effects be-
come negligible at a much lower s and the ¥? is
7.4 for 16 points.>” This is more than acceptable
since there is only one free parameter, the radius.
Plotting the slope against s is probably the most
precise way to demonstrate numerically the quality
of the fit. However, it may be even more inter-
esting to demonstrate that the experimental differ-
ential cross sections are totally independent of
energy when we plot

do/dt against
Teol(5)/167 28

as suggested by Eq. (4).

2p 2 0ot (S)

+38.3 mb (16)

This avoids the kinematic
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0.1
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FIG. 4. The averaged value of the measured slope, b in ¢~?!#!, is plotted against s for proton-proton elastic scatter-
ing in both ¢ regions of the diffraction peak. Equation (11) is also plotted for both regions. The references at each s

value are given in Table I.
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FIG. 5. The measured (Refs. 16, 34, 45, 47, 52—55) proton-proton elastic differential cross section do/dt divided
by [044(s)1%/167 is plotted against 2P %0, (s)/38.3. At each s value oy (s) is taken from Fig. 1. The line shown is

exp(—10.05 B2P 200t/ 38.3).

contortions of transforming from 7 to p,* and the
corresponding 1 - 2(#)/(s — 4m?) term. In Fig. 5
we have plotted a variety of P,,, values as indi-
cated. To avoid crowding we have not plotted all
available data; but have chosen a sample of widely
varying energies and used the measurements with
small errors whenever possible. There are clear-
ly some normalization differences between differ-
ent experiments but they are surprisingly small.
As might be expected from our knowledge of Fig.
4, the fit in Fig. 5 is excellent. The data below
3.5 GeV/c begins to deviate at large p,®, possibly
because of 90° particle-identity effects. But the
data shown from P,,, of 3.65 to 2000 GeV/c has

no observable energy dependence. All variations
seem to be experimental fluctuations independent

universal energy-independent curve.

Since the variable B2P %0, (s)/38.3 does appear
to lead to a universal energy-independent curve
for proton-proton elastic diffraction scattering, it
might be useful to discuss why this variable was
originally suggested.? ¢ 712

The Lorentz-contracted geometrical model as-
sumes that when two protons collide, the elastic
scattering cross section is determined by the “in-
teraction probability density” p(R). This p(R) de-
pends on R, the distance between the two protons
at the instant they interact. In some sense p(ﬁ) is
similar to a potential, but it is defined by the fact
that its Fourier transform is exactly the elastic
scattering amplitude

2
of Py,,. Thus the p-p elastic diffraction cross sec- do/dt « [f(B)]2= fdsRei'P'eﬁ =1
Tdo/an- = p(R)| amn
tion appears to be a single universal function of (do/dl), | |

the variable B2P, %0, (s)/38.3.

One should notice that Fig. 5 is a rather ex-
panded graph which gives a very sensitive test of
universality. This sensitivity can be best demon-
strated by plotting a selection of the same data
against the variable suggested in the “geometrical
scaling” model,'® ¢o,.,(s)/38.3. This is plotted in
Fig. 6. This figure clearly shows that while the
variation in 0, (s) removes some of the energy
dependence at high P,,, it does not result in a

The scattering amplitude is sometimes assumed
to be proportional to the product of the densities
of the “stuff” in each of the two protons.>® Here
we assume that a proton has a structure function
¢(¥) which depends on T, the distance from its
own center. We also assume that p(R) is obtained
by folding together the two ¢(¥) functions.

()= [aROE - R/20(R +R/2). (18)
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FIG. 6. Some of the measured (Refs. 34, 52—55) proton-proton elastic differential cross sections are plotted against

the geometric scaling variable —toyy(s)/38.3.

The function ¢(¥) describes the shape of each
protocn as measured by the p-p elastic scattering
cross section. We assume that in its own rest
frame each proton is a Gaussian sphere of radius
Al

B (T¥) cc o~ WHEwH2k2) [ 402 (19)

In the c.m. system, where the interaction occurs,
the Lorentz contraction squashes down each sphere
by a factor y=E_ . /m, in the direction of motion,
z*. Then ¢(¥) in the c.m. is given by

- y x2 492 22
o=t -~ )

The normalization is chosen so that
fd%f d(r)=1. @)
The interaction probability density p(ﬁ) is ob-

tained by substituting (20) into (18) and integrating.
This gives

(20)

=\ Y X2+ Y2 A
o hprese [ S g @

The Fourier transform of p(ﬁ) is defined by Eq.
(17) to be the elastic scattering amplitude f(P).

fB)= [ aret®Ro®

=exp[~3A2(P2+ P2/+?)]. (23) .

For p-p elastic scattering in the c.m. the following
simple kinematic relations hold:

P[|2=P2_Pl2’
B2=1-1/%*, (24)
P2=62'}/2m1,2,

where m, is the proton mass. Using them we can
write the elastic amplitude as

f(ﬁ)=e-A'2(32PL2-82m,,2)/2 K (25)

The elastic cross section is then given by Eq. (17)
to be

a=(G)oem. (26)
The B2*m,? term has no angular dependence and
was therefore absorbed into (do/dt),, whose s de-
pendence we do not predict.

Finally we assume that the energy dependence of
Oi,¢ i5 caused by the proton radius A’ increasing
with energy. If we define A to be the proton radius
at some energy s,, where o, has the value
040t(Sy), then the radius at another energy s is
given by

otot(s)

A= AR _tot 27
Gtot(so) ( )

The cross section then has the form
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iO_'_O'totz(S) 2,2 2°toc(3)]
dt = 167 exp[_A e Orot(Se) ]’ (28)

where A is an energy-independent radius param-
eter.

Thus using a very simple geometrical model we
easily derived a universal formula which fits all
the measured p-p elastic diffraction cross sec-
tions. The quality of the fit in the diffraction peak
strongly suggests that the Lorentz-contracted

geometrical model must contain a core of truth.
Then the variable 2P %0, (s)/38.3 should also be
useful for large-¢ data. Plotting the large-angle
data against this variable does remove much of
the energy dependence but it .does not remove it
all.®!? Obtaining an exact fit at large angles will
probably require an exact knowledge of particle-
identity effects.® This will require either mea-
suring the p-p spin dependence near 90° or trying
to guess its nature.

*On leave from Randall Lab. of Physics, University of
Michigan, Ann Arbor, Michigan 48109.
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