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%e set up an explicit dual multiperipheral model, which is similar to the models of Huan Lee, Veneziano, andChan and Paton, but explicitly takes into account the deferred thresholds arising from the production of
resonance clusters. %e assume that there are two such clusters, one with (mass)' 0.5 GeV' (p, m e . .) and& ~ ~ Jthe other with (mass)' 1.5 GeV' (f, B,D, A2, . . .). At lower energies only the first plays any role, and we find
that the total vacuum-state cross section a ~ s & ' on the average, where a, 0.85. For s 50 GeV', on the
other hand, the second cluster also comes in, and o. flattens out. This behavior has all the features of the
experimental data and is thus a completely satisfactory alternative to the conventional description in terms of
the P and f. In addition, all of the parameters describing our vacuum singularities can be calculated a priori
in our model, and are in reasonably good agreement with the data.

INTRODUCTION

During the past several years, multiperipheral
models have been used extensively in describing
high-energy phenomena —either directly, or as
first-order terms in more elaborate schemes.
Most of these models have been either purely
phenomenological ol based on single-pion ex-
change. ' Those of the latter type, however, have
had considerable difficulty in generating output

pegge trajectories with sufficiently high inter-
cepts. ' It is clear that Reggeon exchanges a]so
play an important role in high-energy production.

One of the most promising approaches to an

understanding of high-energy scattering is the

dual multiperipheral model. This was originally
proposed by Huan Lee, ' Veneziano, and Chan
and Pa.ton. ' Recently, more detailed calculations
have been made by Chan, Paton, Tsou, and Ng, '
who also made additional duality assumptions.
They find semiquantitative agreement with ex-
periment, and, in particular, are able to explain
the small slope of the Pomeron trajectory in a
natural way. Qne problem with all these ap-
proaches, however, has been that the f trajec-
tory is not generated in the vacuum state along
with the Pomeron (P).' We shall see, however,
that if we take into account the thresholds result-
ing from the production of more than one reso-
nance cluster, we generate a set of complex
singularities whose net effect is to give a cross
section very similar to the one given by the con-
ventional P+f description below CERN ISH en-
ergies. Some of our results were presented
earlier. ' In this paper we discuss them in more
detail and at the same time present additional
results.

In Sec. II we review briefly the dual multiperi-
pheral approach and in Sec. III we write down a

specific model. In Sec. IV, the self-consistency
requirement that the Beggeon be correctly repro-
duced is used to fix the parameters of our model.
In Sec. V we use our model to generate the Pom-
eron in the case where only one type of cluster is
produced; this gives a description which is valid
only at moderate energies. In Sec. VI we con-
sider a two-cluster version which is applicable
at much higher energies. In Sec. VII we study
the effect of the deferred threshold for the produc-
tion of a higher-mass cluster; we find a cross
section similar to one which is given by the con-
ventional P+f In Sec.. VIII we estimate the effect
of diffractive corrections at moderate energies
and find that, although this changes the overall
magnitude of our cross section, it does not change
its energy dependence. Finally, in Sec. IX we use
our model to calculate the overall magnitude of
the vacuum-state contribution to the pp cross sec-
tion.

II. THE DUAL MULTIPERIPHERAL APPROACH

As in any multiperipheral scheme, we shall
assume that the amplitude for the production of
clusters is given by diagrams of the type shown in
Fig. 1. By using multiparticle unitarity we obtain
from these a two-body absorptive part given by
the sum of ladder diagrams of Fig. 2. In the sim-
plest multiperipheral models the horizontal lines

0 ~
j&TTTV 7

I'IG. 1. Multiperipheral model for the production of
clusters.
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FIG. 2. Two-body absorptive part given by Fig. 1.

are single-Regge exchanges n, . In a dual multi-

peripheral model, on the other hand, they are
always linear combinations of exchange-degener-
ate sets of Regge exchanges. According to the

usual rules of quark-duality diagrams, two kinds

of diagrams can now arise':
(a) If we are interested in generating Reggeons

we only have uncrossed (planar) quark-duality
diagrams of the type shown in Fig. 3. The ex-
changes then correspond to Regge propagators

~-i &n~(t) ~ o~(t) (2.1)

This would arise, for example, if we have ex-
change-degenerate p +f exchange.

(b) If we are interested in generating the Pom-
eron we must also have crossed (nonplanar) loops
of the type shown in Fig. 4. According to the usual.
quark-diagram rules, the two Reggeons in a given
loop must be either both uncrossed or both crossed.
In the la, tter case we then have a Reggeon propa-
gator

(2.2)

This would arise, for example, if we took the
difference of exchange-degenerate p and f ex-
change, a combination which would arise in the
exotic I =2 state of m~ scattering. In the ap-
proaches of Chan et al. ' and Chew and Bosen-
zweig' the uncrossed loops are summed first,
and then used as inputs in sums over crossed
loops to generate the Pomeron. In the present
paper we shall sum over the uncrossed and crossed
loops simultaneously so that we have essentially
a two-channel problem.

FIG. 4. Nonplanar quark-duality diagram with crossed
and uncrossed loops.

We will only consider the simple case of iso-
spin symmetry (say, vv scattering). The crossed
and uncrossed loops can then be written in terms
of the Chan-Paton factors' as P, C and (P, +P, )U,
where p„P,are t-channel isospin I, = 0, 1 projec-
tion operators and C and U are loop integrals
involving the factors (2.1) and (2.2), which are
independent of internal quantum numbers. Note
that the crossed diagram contributes only to J, =0
whereas the uncrossed diagrams contribute to both
isospin states.

The above picture of the Pomeron is, of course,
somewhat oversimplified. A more systematic
approach would incorporate SU(3) and be based on
the 1/N expansion of Veneziano. " We do not ex-
pect our results to be changed very much by this,
however.

In order to obtain an additional constraint on
our model, we shall make the assumption that the
clusters (the vertical lines of Fig. 2) are dual in
a finite-energy-sum-rule (FESR) sense to Regge
behavior (see Fig. 5). This sort of constraint on
sums of ladder graphs was first used a number
of years ago in a pion-exchange model, "and has
recently been applied to the dual multiperipheral
model by Chan, Paton, Tsou, and Ng. ' lf I' rep-
resents the coupling of the cluster to the external
Reggeon lines of Fig. 5, it leads to a relation of
the form

FESR

~ ~ ~

FIG. 3. Uncrossed (planar) quark-duality diagram.

(b)

FIG. 5. Average duality relation between cluster (a)
and Reggeon (b).
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where g, and g, are triple-Regge couplings and F
is a purely kinematic factor. We shall argue in

Sec. IV that F is an approximately universal fac-
tor, which is independent not only of the external
Reggeon lines but also of t] t2 t] t2 We can there-
fore set F =E(t). This means that I' factorizes,
which permits us to simplify considerably the
problem of summing the diagrams of Fig. 2.

Although Eq. (2.3) gives a relation between I'
and g jg 2 it should perhaps be emphasized that it
does not actually correspond to replacing Fig.
5(a) by 5(b), as was done in Refs. 6 and 7. We
find that the latter approximation is too crude
and, in particular, leads to a somewhat different
output singularity structure than the one obtained
by our model.

III. A MULTIPERIPHERAL MODEL

The model we will consider is a standard multi-
Regge model similar to that of Chew, Goldberger,
and Low' but applied to the production of clusters.
Specifically we assume that the absorptive part
A(t, s) of the process 12-1'2' is given by Fig. 6.
If we assume that, except for the end clusters R
and Q, only one type of narrow-resonance cluster
of mass )js, is produced, A(t, s) is built up by link-
ing the graphs of Fig. 5(a), which gives a. contribu-
tion

From Eqs. (3.1) and (2.3)

V(t,j ) =g(t, t, t) g(f', f', t)F, ()t) s, ' (3.4)

K(t, j) =
J RRRR, (3.7)

where R is given by Eq. (2.1) or (2.2). It has a
logarithmic branch point atj =a, (f) =2o., (—,

'
f) —I,

corresponding to double-Regge exchange. If we
approximate this by a pole atj =o, (t), we then
have

We will consider the t-channel isospin I, = 0 state,
where g is the n, a, -f-triple Regge coupling.
Since Eq. (3.4) factorizes, the diagrams of Fig.
6 are separable in the usual high-energy approxi-
mation and

A(t,j ) = y», &(t) ss ' 'Fs(t) B(f,j ) F&(t) s& ' ~y», &(t)

(3.5)

where y», &
and y», f are the 11'f and 22/f Regge

couplings, ~s~ and ~sz are the masses of R and

Q, and

B(ttj ) =K(t jj ) +K(ttj ) F, (t) s, ' K(t,j ) + ~ ~ ~,

(3 6)

as can be seen from Fig 7an. d Eq. (3.4). The
function K(f, j) has the general structure

V(t, s) =&,5(s -s, ) . (3.1) K(t,j) = . X(t)"d"' '
j -o, (t)

(3.8)

We will take s, =0.5 GeV', which corresponds to
the p, ~, e, . . . , peaks, and assume that the hori-
zontal lines of Fig. 6 correspond to the exchange
of a single effective Reggeon with trajectory

The factor x"~ ' is an effective threshold term,
as can be seen by taking the inverse Mellin trans-
form of Eq. (3.8), which gives

n, (t) =0.25+t. (3 2)
K(f, S) =k(t) S "d&' 8(s -x), (3.9)

(Here and throughout we use GeV units. ) This can
be thought of as some kind of average of the pion
and the leading Reggeon with trajectory n =0.5+t,
both of which would contribute in a more realistic
description.

The problem simplifies considerably if we take
the Mellin transform of A,

where (9 is the usual step function. It arises from
the fact that the momentum transfers of the Regge
exchanges are limited. This is shown explicitly
in Appendix A for the specific case of pion ex-
change (n, =0) but is actually true for a broad class
of models. The function k(t) has the form

k(t)= f dt'dt' (—k) '/'k(-k)tt'('t', t", t)/t(t', t"),
A(t, j) = dss ' 'A(f, s) .

0

k/UUUl U((Uil (Nt/UUUUUU

0 a
~ ~ ~

U)RR/k U)j)N )~
(3 3)

2'

(3.10)

where A =t +f/ +f"' —2(tt'+tt" +t't'), andX de-
pends on the signature factors.

Because of t,„effe tsc, Eqs. (3.9) and (3.10) are

~ ~ ~

FIG. 6. Absorptive part A arising from the produc-
tion of a-clusters.

FIG. 7. Function B obtained after factoring out end-
clusters as in Eq. (3.5).
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D(t, q) =1 s, i -'F, (-t)-Z(t, )) .

The function B will have a pole atj =o((t) if

(3.12)

actually a simplified version of the true behavior
of K(t, s), which is more complicated for small
s. However, since this complicated region is
relatively small, it should be a reasonable aver-
age approximation if x is treated as an adjustable
quantity, at least for the purpose of obtaining the
Mellin transform. This will be discussed in more
detail elsewhere.

Equation (3.6) can be explicitly summed to give

(3.11)

where

Equations (3.13) and (4.4) are therefore conditions
only on the internal couplings of the model and

would be the same irrespective of the external
lines in Fig. 6. From Eq. (4.4) this in turn means
that ss "t 'Fs(t) is a universal function indepen-
dent of the external lines. In particular, if the
external lines are themselves Reggeons (as in Fig.
5) rather than ordinary particles, this means that

Fs(t) must be independent of t„t„t'„t,'.
Since ss x 'Fs(t) is independent of the external

lines there is no loss of generality if we restrict
ourselves to mm or Reggeon-Reggeon scattering, for
both of which' =a.

(A) In the case of v)( scattering, a conventional
first-moment finite-energy sum rule (FESR) gives

D(t, n(t)) =0.

The corresponding residue is then

(3.13)
A(t, s) v dv = y«t iV& '

/((x& +2),
0

(4 5)

If(t, n)
sD(t, (x)/sn

' (3.14)

From Eq. (3.5) the corresponding residue of A(t,j )
1s

where v = —,'(s —ii) = s + .'t, and N is—apoint halfway
between resonances. If we restrict ourselves to
a, single narrow resonance at s =s, (= rn~ '), A(t, s)
is given by Eq. (3.1) and a comparison with Eq.
(2.3) gives

5» A/2 (t) = r lg ii(t) r,; (t) (3.15) I,(t) =(s, + ,'t) 'iV"~"—/((x~+2), (4.6)

where

r „
(t) = r (t) " 'F (t) c (t),

and similarly for y», ~.

(3.16)

IV. SELF-CONSISTENCY CONDITION FOR REGGEONS

y(tp ty) i r(a&(t ) -a&(i"))c y p
(4.1)

in Eq. (3.10). Now triple-Regge fits" suggest that

g(t, t, 0)=constant for small t We will go. further
and assume that@(t', t", t)=constant. We can then
evaluate the integral (3.10) by changing variables
to u and z, where

t', t" =u+ 4t~z (ut)'t', (4.2)

so that —~& u&0 and -1&a &1. Since the approxi-
mationg'=constant in fact breaks down for large
momentum transfers we will put in a, straight cut-
off inu atu= —~. For small t, Eq. (3.10) then
gives

k(t) =k, (t)=k, [1+,'vrt+O(t')]. — (4.3)

We will fix k, and q. , as well as x(0) and x'(0),
by the requirement that Eqs. (3.13) and (3.16) are
satisfied with o. =o.

&
=0.5+f and y», „=y», f Note

that y», t then cancels in Eq. (3.16), giving

s + 'F (t) =cz '(t) . (4.4)

If we are interested in generating Reggeons, only
the propagators (2.1) come in and so F (t) = s "c ' N ~"/(()i —o., + 1), (4. 7)

with iV =2s, if we set v=s. This time we obtain
k„=1.92, z =0.39, x(0) =5.4, and x'(0) =0.69x(0).
We will see that our final results will not depend
too much on the prescription we use.

V. POMERON PARAMETERS IN THE ONE-CLUSTER
MODEL AND MODIFIED f/P UNIVERSALITY

If we wish to generate the Pomeron in the t-
channel, we must include the nonplanar graphs
of Fig. 4 in addition to the planar graphs of Fig.
3, and so, from Eqs. (2.1) and (2.2),

X(tr trt) —I + im(~(i') -~(i")) (5.1)

in Eq. (3.10). If we make the same assumptions
as in Sec. IV, Eq. (3.10) then gives

k(t) =kv(t) =ko[2+ ~((rt+O(t')], (5.2)

where k, and ~ as well as x(0) and x'(0) are the
same as in Sec. IV.

The Pomeron (P) trajectory is now given by Eq.

with X =2s, + —,t, the point halfway between the p
and f resonances. If we now impose the conditions
(3.13) and (4.4) with a = cia and R =a, we obtain

ko =2.50, )- =0.54, x(0) = l. l, and x'(0) = 1.73x(0).
(8) For n, -ct, scattering (Fig. 5) we used an

approximate version of an FESR in which we es-
sentially integrated over the external momentum
transfers and dropped logarithmic terms. We
then have
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Yi f(t) ='Y ~q(t)s~ I' FR(t)cf (t) ~ (5.3)

(3.13) with o =o p and the corresponding coupling
by Eq. (3.16), which gives

QeV'. Suppose now that we have a second cluster
of (mass)'=s, =1.5 GeV', which corresponds to
the f, B, D, andA, resonances. We must then
replace Eq. (3.1) by

In the case of mm scattering, for example, where
R =a, the prescription (4.6) gives V(t, s) -I',6(s —s,) + I', 6(s —s,), (6.1)

o~(t) = 0.83+ 0.37t+ O(t') (5.4)
which in turn means that we must make the re-
placement

y "I'(0) =I 41' "g (0) .

Prescription (4.7), on the other hand, gives

o.;(t) =0.87+0.37t+O(t')

(5.5)

(5.6)

y„-'(t)=1.50[1 —0.79t+O(t')]y, '(t) . (5.7)

These results are fairly close to each other.
Equations (5.5) and (5.6) both give trajectory

slopes which are much smaller than those for
the Beggeon. This result is one of the main suc-
cesses of the dual multiperipheral model and fol-
lows from the relative t dependences of Eqs. (4.3)
and (5.2). Previous multiperipheral models gave
excessively large Pomeron slopes.

There is only one real solution to Eq. (3.13) with

n =a~ &O. This means that we do not generate an
output f trajectory along with the Pomeron. On the
other hand, the latter has an intercept at o z (0)
=0.85 rather than at o p (0) = l. It must therefore
be considered as some kind of average of the con-
ventional P and f. The extensive phenomenological
fits of Dash and Bali'~ show that this kind of trajec-
tory is quite capable of accounting for the data at
modexate energies. It fails, of course, at highex'

energies, but we shall see that other effects come
in in this region.

If we combine Eqs. (5.3) and (4.4) we obtain

s, ' 'F, (t)-s, ' 'F, (t)+s, ' 'F, (t) (6.2)

(6.3)

(B) If we follow the same procedure for Reggeon-
Beggeon scattering we have, instead

s ct&~t~[(4s )+ +c+1 —(2s )+-ac+1]
F, (t) = ' ', I

' (6.4)

We will see in Sec. VII that the second cluster
(5) does not contribute at intermediate energies.
We therefore expect the one-cluster results of
Sec. IV for the parameters k„q., x(0),x'(0) to con-
tinue to apply, since Beggeons are important only
at those energies. On the other hand, both clus-
ters must be included if we want to calculate the
Pomeron (p) at very high energies. If we there-
fore takeR =a, and use Eqs. (3.13), (3.16), (5.2),
and (6.2) with o. = o.~, and Eqs. (4.7) and (6.4) for
F, and F, [prescription (B)], we obtain

in Eqs. (3.4), (3.6), and (3.12).
The factor F, (t) can also be calculated by con-

sidering either vm or Beggeon-Beggeon scattering.
(A) If we take the difference between an FESR,

(4.5), with N =4s, + ,'t, whic—h is midway between

f and g resonancesq and one with X = 2sg + ptq which

is midway between the p and f resonances, we
obtain

(s, + ,'t) '[(4s-, + ,'t) "f"—(2-s, + ,'t) "f"]-

np(t) =0.98+0.38t+O(t2) (6.5)

a result which is independent of Fs(t). Since c~/c
is independent of the external lines, Eq. (5.8) is m
effect a generalized version of f/p universality";
in the conventional version the factor s„p"f does
not come in. We can therefore obtain the P/f ratio
from the corresponding x'atio for zv scattering,
where R =a. Thus

Y«p (t) = I 50[1 0 79t+o(t )]Y«f (t) (6.6)

for nm scattering. It is straightforward to show
that a modified f/P universality continues to hold,
with

Yzrz (t)/yavy(t) =(&&/&.)" "~r «~ b«& ~ (5.9)
y„,p(t)/y„,~(t) =(s„/s.) f "Py„~/y„~ (6.7)

For pp scattering the cluster R is presumably
the nucleon and so s~ = m~~.

VI. POMERON PARAMETERS IN THE TWO4:LUSTER
MODEL

Up to now we have only considered the production
of a single type of cluster of (mass)2=s, =0.5

instead of Eq. (5.9). Equation (6.7) then permits
us to calculate the p/f ratio for any other process.

In the above calculation we continued to assume
that there is only one end cluster A. . At high en-
ergies, we may expect more. If so, we must make
the replacement

s ' 'F (t)-Qs„' 'FR(t)
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and similarly for Q. This would change our cou-
plings but not our trajectory o.~.

The trajectory intercept in Eq. (6.5) is higher
than in the one-cluster case, although the slope
is not very different. It should be emphasized,
however, that this trajectory is only relevant
asymptotically. In the next section we will in-
vestigate what happens at finite energies for pp
scattering.

VII. THRESHOLDS OF THE POMERON

Bp B~
P

P

"[PA& JUV

Bw
P + ~ ~ ~

FIG. 8. Function B=BP for a- and b —cluster produc-
tion in terms of the function B=Bp for a -cluster pro-
duction.

B=B&(t,l)= . x p-'.ci '(t) (7.1)

The factor x & ' was inserted to guarantee that
the threshold of B(t, s) occurs at s =x, as required
by Eqs. (3.6), (3.8), and (3.9).

(b) In the two-cluster model, additional thresh-
olds arise from the production of b clusters. We
shall see that the first such threshold occurs in a
region where a Regge description is normally used
and where any oscillations arising from the a
clusters have already damped out. We shall also

Up to now we have only considered the leading
(real) j singularities generated by our models.
However, because of factors like (s, x) ' in the

D functions, we also have an infinite set of com-
plex poles in the j plane. These in turn lead to
oscillating cross sections at intermediate ener-
gies, as discussed by Chew, Snider, and Koplik. "

(a) In the one-cluster model, an alternative way
of seeing how oscillations arise is to directly take
the Mellin transform of Eq. (3.5) with B given by
Eqs. (3.6) and (3.8). The individual terms in the
expansion (3.6) then lead to thresholds in A at
s = s~'x, s~'x's. . . corresponding to the pro-
duction of 0, 1, . . . a clusters. Since s, is small,
the resulting oscillations damp out fairly ra.pidly
as we go up in energy and should be negligible in

the region where Regge phenomenology is nor-
mally applied. It is therefore a good approximation
to keep only the leading singularity, so that

A(t j) =y»t (ss ) Fs (t)BJ(t f) (7 2)

where R is a baryon, and B~ is given by the dia-
grams of Fig. 8. If we again apply the duality
relation (2.3) (Fig. 5) we have

B (t,j ) =B.(t,j)
+ B - (t,j ) F (t) s, ' 'Bp (t,j ) +

(7 3)

If we now make the approximation (7.1) for the
one-cluster function Bp, and use Eq. (5.3) we

obtain

A(t, j) = y„-'(t) (ss'x) f' '

j —Qp

(s 2x2 s )12

+|I(t) (. )2
+' ' '

(7 4)

where

q(t) =c (t)s, "~ 'F, (t).

The Mellin transform of Eq. (7.4) gives

(7.5)

see that it does have an important effect on the
energy dependence of the cross section. The oscil-
lations arising from any subsequent thresholds will
be seen to be negligible, however.

In the case of pp scattering, we must replace
Eq. (3.5) by

A(t, s) =y»p'(t) s i [e(s —ss'x) +tl In(s/s„2x2s, ) 8(s —ss2x's, )+ ~ ~ ~ ], (7 6)

so that we have thresholds at s =s~ x, s~'x's„.. .
corresponding to the production of 0, 1, . . . g

clusters.
In Fig. 9 we plot the total cross section o

=s 'A(0, s) obtained from Eq. (7.6). The solid
line corresponds to taking sR= mp' and using Eqs.
(4.6) and (6.3) [prescription (A)] whereas the
dashed line corresponds to taking s~=1 GeV' and
using Eqs. (4.7) and (6.4) [prescription (B)]. These
are compared with the experimental —', (n»+g22), a
combination which is essentially the vacuum-state

contribution to the pp cross section and would con-
ventionally be described by P+f We see that o. ur
description is equally acceptable. For s & s~'x's,
(=45 GeV'), gccs ~'" ' with n~ (0)=0.87 which
lies between the conventional n~(0) and n&(0),
whereas for s &s„'x's,we have a cross section
which is well approximated by its asymptotic be-
havior o ~s"~ '~ ' with ns(0) =0.98 [using prescrip-
tion (B)]. It should perhaps be emphasized that
the rather sharp threshold in our model is not an

essential feature of our approach and would be
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Pc

~ fthm. Z
N N

JMJN.
Pc

P,

q~f) SJ'

(b)

FIG. 10. Diffractive contributions to the absorptive
part.

0
I

4 IO

FIG. 9. The vacuum-state contribution to the PP total
cross section. The solid curve corresponds to prescrip-
tion (A) of the text; the dashed curve corresponds to
prescription (8). The dotted curve is obtained instead
of the solid curve if a third cluster c is included. These
are compared with the experimental & (opp + 0'pp ) .

VIII. DIFFRACTIVE CORRECTIONS

Up to now me have only considered the multi-
peripheral component of the Pomeron and have
completely ignored the effect of diffractive cor-
rections. A complete treatment of this mould have
to involve the full machinery of the Veneziano I/N
expansion. " At intermediate energies, homever,
one can get a reasonable estimate of such effects
from the usual diffractive diagrams of Fig. 10,
where P, is in fact the final corrected effective
Pomeron for the energy range being considered.

For pp scattering the intermediate vertical lines
in Fig. 10 represent nucleons and N~ resonances,

smoothed out in a more realistic model, e.g. , one
with additional end clusters, or clusters mith some
spread in their mass.

We could always add in a third cluster c in our
model, mith s, =2.5 GeV', which mould correspond
to the g, t)', A» and +(1675) peaks. It is not clear
that this mould be a valid procedure, however,
since such a state is presumably already included
in some average may in the aa state and double
counting may occur. " If we nevertheless include
it, me obtain the dotted line of Fig. 9 instead of
the corresponding solid line.

In Fig. 9, the overall magnitude (or y»~') was
fitted to the data, but the shape is completely pre-
dicted in our model. In Sec. IX me will also cal-
culate this overall magnitude.

as mell as background effects. We mill use aver-
age duality to replace one of these by Regge ex-
change. In our model this mould just be P, ex-
change so that we finally have the diagram of Fig.
11, which mould be the dominant correction at
moderate energies and corresponds to single dif-
fractive dissociation (double diffractive dissoci-
ation is not expected to contribute until me reach
much higher energies). This diagram is governed

by the P, P, P, triple-Regge coupling and gives a
contribution to the total cross section of

G(t)
dtd M'

s 2nP (t)

3f
+c (t)f 2)o~ (O) (8.2)

Here M'= M'-mp'- t, M,' is the corresponding
threshold value (so M,' = 0), and G (t) is propor-
tional to the P, P,P, triple-Pomeron coupling. We
took G(t) from the phenomenological fit made by
Dash to the pp-pX data in the triple-Regge re-
gion. '~ This gave G(t) =2000e~'.

From Eqs. (8.1) and (8.2) we obtain

(8.8)

where L is an integral over G(t) and ha, s the value
L, =62.9. We therefore see that the diffractive
contribution cannot change the energy dependence
obtained from the multiperipheral contribution but
does increase the overall magnitude.

In the above calculation me applied local duality

FIG 11. Triple-Pomeron contribution to the absorptive
part.

gD =2 dM dt (8.1)

where the factor of 2 arises from the fact that both
right- and left-hand clusters can be replaced by
P exchange, sr &M' corresponds to the region of
validity of the triple-Hegge description (we take
x =0.2), and
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down to very low subenergies when we replaced
the N and N* with Regge behavior. We repeated
the calculation with Fig. 10(a) evaluated directly
and only Fig. 10(b) replaced with Regge behavior.
The latter contribution is then given by Eq. (8.1)
but with M,' taken at the mp threshold, which lies
roughly halfway between the N and N*(1236) reso-
nance. We found that the results were almost
identical with the ones obtained in the previous
paragraph.

IX. OVERALL MAGNITUDE OF THE VACUUM-STATE
CONTRIBUTION TO THE CROSS SECTION

was its assumption that the p resonance dominates
in the region s ~1 QeV, whereas it is known that
the e peak is also important in this region. One
way of rectifying this situation is to apply our
FESR in the s-channel I, =1 state, where the &

is then absent, rather than in the I, =0 state. The
Regge term on the right-hand side of Eq. (4.5)
must now include p exchange as well as f exchange.
If we assume that y,„~and y„&are related by ex-
change degeneracy, however, we again obtain

y, +,+z, and hence y„~,from Eq. (5.7). This gives

yppz 4 y + + p = 105, which is in good agreement
with the above empirical value of yppp 110.

We will now use our model to calculate the over-
all magnitude of a„=-,'(g»+g»), which is essentially
the vacuum contribution to the pp cross section.
Breaking this up into the multiperipheral and dif-
fractive components we have, from Eq. (8.3),

o„=(y»p +L) s p (9.1)

for s &s~'x's, . If we compare this with the data
at, say, s =20 GeV', we have y»p'=110 (in GeV
units) if we take np(0} =0.87. We will now cal-
culate ypp~

' from two different starting points.
(1) We will first calculate y»p2 from o = —,'(o~~

—o»), which is dominated by ~ exchange. Ex-
change degeneracy then gives

2snf(0) -x
(x~ (Tf yppf (9.2)

At s =20 GeV', for example, 0~=7.5 mb, which
gives y»&'=84. From Eqs. (5.7) and (5.9) with

ss/s, =m~ jm~, we then obtain y»~'- 92.4, which-
is in fairly good agreement with the empirical
value obtained above.

The above calculation assumes that the m trajec-
tory is unmodified by the inclusion of crossed
loops. This is in fact the case in the limit of
exact SU(3).' If SU(3} is broken, it is no longer
exactly true but the modification of the & still
appears to be small compared with that of the f.
This is true, for example, in the Chew-Rosen-
zweig model of Ref. 7. Our procedure should
therefore continue to be reasonable, at least in

some approximate sense.
(2) We will next calculate y~~ from the p reso-

nance with our model and then use the quark mod-
el to relate this to y»~. If we use the finite-energy
sum rule (4.5) in the I, = 0 zw state with N = 2s, and
assume that A(t, s) is dominated by the p resonance
with width 0.15 GeV, so that A. is given by Eq.
(3.1), we immediately obtain y, +,+f(0). From Eq.
(5.7) we then obtain y„+,+I,'=31.2. If we now use
the quark-model result 0 P =

4
p"', we obtain y»~'

=
~ y + + z = 70.2, which is somewhat small com-

pared with the above empirical value.
The most dubious aspect of the above calculation

X. CONCLUSION

We have used a dual multiperipheral model to
calculate a Priori the parameters of the vacuum
singularities. We first used a description in
which only a single low-mass cluster with (mass)'
=0.5 is produced. This gives a behavior which
can be described on the average by a single ef-
fective vacuum singularity at n~ =0.85, and is
valid below the threshold for the production of
higher clusters. We found that if we included a
second cluster with (mass)'=l. 5, we obtained
a cross section which flattened out for s ~50 GeV'.
We thus have a parameter-free cross section which
is very similar to the one given by the conventional
P+f description.

The model we have used is, of course, an over-
simplification. In a complete picture we would
presumably have more than two clusters produced,
as well as some spread in the mass of each. This
would mainly have the effect of smoothing out the
thresholds we obtain, but is not expected to change
our main conclusions about the energy dependence
of the cross section. Another simplification was to
approximate our Reggeon exchanges with a single
effective trajectory z, =0.25+t. In a more correct
treatment we should have a Reggeon with cy =0.5+t
and a pion with n =t coming in explicitly.

We have used a rather simple-minded multi-
peripheral model in which threshold effects had
to be put in by hand through a factor x '. In a
more complete treatment they would arise natur-
ally. This happens, for example, in the pion-
exchange model (see Appendix A), and would also
occur in any other model in which the momentum
transfers are limited.

We have neglected antibaryon production in our
model, which may play an important role for s
~200 GeV'. Duality schemes generally have prob-
lems when they are applied to baryons, however,
and so our framework may have to be modified in
this energy region.
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Then, if s, »v q, q 2, we can make the approximation

e ""&'2'=v' 7-0-r ls

Equation (A3) can now be solved exactly and gives

A~(v„w,) = v, (Tg, T2) jDq,

where

1 dT'
y F

16s'(A. +1) „(m '-v')'
(A I)

APPENDIX A: THRESHOLD FACTORS IN AN EXPLICIT
PION-EXCHANGE MODEL

We will nom see explicitly how threshold factors,
such as the one in Eq. (3.8), arise in the case of
the Amati-Bertocchi- Fubini-Stanghellini- Tonin
(ABFST) pion-exchange model. ' " Similar factors
are expected to arise in a Reggeon-exchange mod-
el.

It is possible to partially diagonalize the ABFST
equation by using the transform

V, (~„~,) =v(~, ) v(r, )s, ' '(v'-~, 4-~, ) ".
(A8)

v(~) =v, |)(7 +T), (A9)

mhere 8 is the usual step function. If me neglect
m, , Eq. (A7) then reduces to

The simplest kind of off-shell behavior we can
have which at the same time limits '7y and p2 corre-
sponds to taking

&).(7'»'ra) = ds e-(k+1) 9(s, ~&, r&)g (s
2 1 2

2 -1
Vo Sa a

16s'(X+ I) X T
(A10)

(A1)

of the formard off-shell mv scattering amplitude
A(s, 7 „~,). where v~, and v~, are the off-shell
pion masses and

This basically has the structure of Eqs. (3.12) and

(3.8) if we identify )). with j, except for the extra
factor of X in the denominator, which arises only
because we set m, '=0. Another possible form is

-e(S

(s -~, -v, )+[(s -7, —T,)' —4r 7. ]'~' '

v(~) = v, e'~'

If we again neglect o&, 2 me obtain

vo's. 'r()).) s,
16)) (X+1) T

(A11)

The forward ABFST equation then takes on the
form

Ak( 1 ~2) ~A(~1~2)

1 ' d7'
167)'(X+ I) „(m,' —q-')~

which also has the same kind of structure as Eqs.
(3.12) and (3.8).

APPENDIX 8: ALTERNATIVE CALCULATION OF I'

x V,(~„~)A, (~, ~, ).

If me assume the production of a single cluster,
Eq. (3.1) gives

V(s, ~„~,) =v(7, ) v(v, ) 5(s -s,), (A4)

assuming faetorization, which, as me saw from
Eq. (2.3), is demanded by duality.

Suppose me assume that the off-shell behavior is
such that the T y 7'2 ar'e limited. This would be true,
for example, with a Benecke-DGrr off-shell fac-
tor, which works so well in accounting for pion
production in the single-pion-exchange model.

We mill now present an alternative calculation
in which me first sum over the uncrossed loops
to obtain the amplitude Af of Sec. IV, which is
dominated by f exchange at high energies. We
then treatA,

&
itself as a cluster linked by the

crossed propagators of Eq. (2.1). This is simi-
lar in spirit to the treatment of Chan et at. ' We
do not, however, go to the ultimate duality limit
of actually replacing A& by a Reggeon. We have
already seen that the resonance nature of the clus-
ters plays an inlportant role in determining the
nature of the behavior of the cross section.

If we apply Eqs. (3.5), (3.8), (3.10), (3.11),
(3.12), and (5.1) to vv scattering, we can write
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(Bl)

where K~ and K& are given by Eq. (3.8) with k =k~
and kf corresponding to Eqs. (4.3) and (5.2), and

Az is given by Eqs. (3.8), (3.10), (3.11), (3.12),
and (4.1). If we expand the denominator of Eq.
(Bl) we obta. in the diagrams of Fig. 12. The Az
now play the role of generalized clusters which
are linked by crossed Beggeon lines giving the
(Kp -Kf) factors.

Chan et al. essentially replaced A& by a simple
Regge pole. This approximation is rather crude.
To take better account of the structure of A.

&
we

assumed instead that it is dominated by an a clus-
ter for s & 1 GeV' and by f exchange for s ~ 1 GeV'.
Using Eq (2.3.), we then have

(B2)

Af A ~ ~ ~

FIG. 12. Absorptive part with crossed loops linking
the functions A& generated by summing all uncrossed
diagrams.

and iV=1 GeV'. Equation (Bl) now gives rise to
an output pole at the point j =a~ where the de-
nominator vanishes. If we calculate the corre-
sponding residue y„~'we obtain o p(0) =0.88 and

y«p~/y«& (0) = 1.54 with Eq. (4.7) for F, [prescrip-
tion (B)j. These results are almost identical with

Eqs. (5.6) and (5.7).
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