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Note on mobon in the Schwarzschild field
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We reassert, against Janis s criticism, that the speed V of a freely falling test particle in the Schwarzschild

field approaches the speed of light as it approaches the Schwarzschild radius (rs ——2m) if measured in a
reference system S at rest with the source. Janis's result, i.e., V & 1 for a freely falling test particle even for
r ~2m+ (in particular, V & 1/3 if V = 0 at r ~~), holds only with respect to a system S* a general point of
which moves with V ~1 when it approaches the Schwarzschild radius.

The radial motion of a test particle in a Schwarz-
schild field was treated by some authors" who
reached the same conclusion that the particle vel-
ocity V approaches the light velocity when the dis-
tance ~ between the test particle and the source
approaches the Schwarzschild radius 2m. This
result is obtained in a reference system S at rest
with the source.

In an earlier paper' we considered not only the
"renormalized" velocity (i.e., the velocity mea-
sured by local real clocks and meter sticks) but
also the "semirenormalized" velocity (local me-
ter sticks but far clocks or, equivalently, ideal
clocks unaffected by the gravitational field) and
completely "unrenormalized" velocity (which
should be measured by ideal clocks and meter
sticks unaffected by the gravitational field). When
the test particle approaches the SchwarzschQd
radius, all the above three velocities approach the
corresponding light velocity (either renormalized,
semirenormalized, or unrenormalized, respec-
tively).

In a recent paper Janis first criticized all the
preceding results, and then by some coordinate
transformations he obtained in a particular ref-
erence system S*a velocity which does not ap-
proach the light velocity when the test particle ap-
proaches the Schwarzschild radius. Obviously
one can choose any system one wants and we ac-
knowledge that S* is more convenient for parti-
cular purposes. However, we do not agree with
Janis's criticism against the results obtainable
in S. In particular we assert that it is just S* and
not S that locally (for r-2m) approaches the light
speed with respect to the source. Let us examine
some details of the problem.

First Janis says, writing the line element as

ds'=(1-2m/~)dt'-(1-2m/~) 'dr'

r'(d 8'+ sin'8 dP'), —

"it is clear that an observer at rest at the
Schwarzschild radius, x =2m, must move with
the speed of light, " and then "the reason a test
particle's speed approaches the speed of light is
that it is measured by a family of observers
whose speeds approach the speed of light. "

We are not discussing here the behavior of the
particle for any value of r &0. On the contrary,
we treat only a much more simple and restricted
problem in order to avoid doubts of interpreta-
tion. Precisely we limit our reasonings to the
region

r&2m,

where the Killing vector field is timelike, and thus
one.has a stationary geometry.

Let us consider a radius issuing from the source
and, for ~ & 2m, a succession of coordinate clocks
(considered as pointlike particles) each at rest
with the source. Obviously their trajectory in
space-time has dh =d8 =dg =0 and then the proper
time registered by them is given by

ds'= (1-2m/r)dt',
where x gives the position of the clock.

The time rates of such coordinate clocks be-
come slower and slower as the clocks approach
the Schwarzschild radius, and the limit for
x-2m' would be ds'=0. But this does not mean,
as Janis infers, that the clocks are moving with
a velocity increasing from one to another and
tending to the velocity of light. On the contrary,
each clock is at rest (for r & 2m) and only their
time rates change. Moreover, we do not have a
family of observers (one for each clock) but a
single observer (the single coordinate system
which has all the above-mentioned clocks) at rest
with the source.

Let us now consider the other objection on the
test particle velocity. Janis3 obtains for the ob-
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server S at rest with the source his Eq. (4)

V' = [a' —(1-2m/r)] /a', (4)

where a is a finite positive constant depending on
the initial conditions. In the case-of a particle
coming from infinity with initial speed dr/dt = -v,
[that is when a = (1- v,') ' '), Eq. (3) gives our re-
normalized velocity [given by Eq. (4) of Ref. 2].
It is clear that V-1 as r -2m'. Janis observes
that g&, t "t "=1 for r& 2m (t"=dx"/ds). Strangely
enough, from this fact, which implies the tra-
jectory to be timelike, he infers that the particle
velocity cannot approach the'light velocity (as r
approaches 2m) even in S. However, g„„t"t" is a
discontinuous function of V; it is equal to 0 for a
lightlike world line but it is

lim g„„t"t' =1 .
V

(5)

Consequently there is no contradiction between
(4} and (5}; i.e., the paxticle velocity can tend to
the light velocity for r -2m'.

On the contrary, Zanis considers (4) and (5) in
contradiction and as due to a nonconvenient choice
of the coordinates. Consequently Janis performs
two successive transformations.

First he transforms from the coordinate system
(t, r, 8, Q) to the advanced Eddington-Finkelstein
coordinates (v, r, 8, Q), where

v =t+r+2mln(r —2m) . (6)

Then he transforms from (v, r, 8, p) to his coordi-
nates (x', x', x', x') defined by'.

-m(8 ——,'~)2-~2

1

-m(8 ——,'v)' -my'
(7)

x' =r(8 — ~),
x'=ry .

In such a reference frame S*, the particle vel-
ocity is

V'-(2a' —1)'/(2a'+1)', (8}

which is less than unity for every finite positive
value of a (which depends on the initial conditions).

This fact is not due to the absence of singulari-
ties atr =2m for S*. Indeed, as noted by Janis
himself, even the use of the advanced Eddington-
Finkelstein coordinates (which do not present dif-

ficulties at r = 2m) leads to V-1 for r-2m'.
In our opinion the reason lies in the fact that the

coordinate system of S* is in motion with respect
to the source, and its velocity approaches the
light speed when approaching the Schwarzschild
radius.

That the reference system S is at rest while it
is S* that moves with respect to the source, can
be proved by the following reasoning. I.et us c31-
culate the curvature invariant':

3=It.,„,ft"~' =46m'/r'. (9)

Notice that for a point fixed with respect to S (i.e.,
r =const), the relevant Q is constant, i.e., it does
not depend on t. This fact, for r & 2m (where one
has a stationary geometry), is a confirmation that
S is actually at rest with the source.

Since Q is an invariant in value, to find its ex-
pression as a function of the coordinates in S* we
only have to transform r in (6). The relationship
betweenr and the coordinates x', x', x', x'of S*can
be obtained by Eq. (7) and it is

o x'+x'.—(x'+x ') = 4m 1+v'2 V2 r -dz

(10)

Then, if we take a point at rest with respect to
S*, i.e. , if we fix x', x', and x', in this case Q
is no longer independent of the time coordinate
since it depends on x'. Since the source is as-
sumed to be constant, the dependence of Q on x'
means that S* is moving in a real sense with re-
spect to the source.

Now that it is proved that for r & 2m, S is at rest
while S* is moving, let us calculate the relative
velocities. One of the two systems (S*)is not
rigid, thus the relative velocities change from point
topoint. Letustake apoint Pat rest withS, i.e.,
whose coordinates r, 8, and Q are constant. For
simplicity let it be 8 = —,'v and Q =0. The point P is
observed by S*as moving with a speed dx'/dx'.
Taking r as a parameter we obtain by (6) and (7)
that

1m 0 1 ~

dx'
+ Wax

This means that the points at rest with the co-
ordinate syste'm S* are moving with an increasing
speed as they approach the Schwarzschild radius
and that such speed tends to the light speed.

Now that such results have been stated, it is not
at all surprising that Janis finds for a freely faQ'-
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ing test particle a speed with respect to 5* which
does not approach the light speed. Let us make
this simple example. A point particle A is moving
with a speed approaching the light speed. From A
we shoot a point particle B with a velocity & 1 with
respect to the first one. For the rest observer
both A and B do approach the light speed. In our
case, A represents a general point at rest with
8* while B is the test particle.

What is interesting in Janis's treatment (i.e. , in
chosing S*) is the possibility of discriminating be-
tween the different approach to unity according to
the different initial conditions.

However, in conclusion, we can just reverse
Janis's statement after his Eq. (1) and say that the
reason a test particle's speed in S*does no t approach

the speed of light is that it is measured by an ob-
server the points at rest of whom approach the
speed of light wit;h respect to the gravitational
source.

We again emphasize that we have not studied the
behavior of the particle in the region ~& 2m (where
the Killing vector field is spacelike and one cannot
have a stationary geometry) In. this paper we only
considered' the region r & 2m.
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~However, in passing we give a hint for solving a
puzzling problem relevant to the crossing of r =2m.
The paths of both a massive particle and a photon can
be continued through the Schwarzschild radius and into
the interior region. Geodesic motion preserves the
character of the respective tangent vectors, timelike
and null. In this invariant sense, the particle and the
photon move differently not only outside the Schwarzs-

c'hild radius but also at that radius and within it. Now,
if the velocity as measured by $ for x&2m is such that

then any extension to (or across) r=2m will necessar-
ily be discontinuous. The explanation is pimple in
terms of $ and $~. The material framework $ (with
relevant clocks) cannot be at rest for r & 2 m where the
geometry is no longer stationary. There is a discon-
tinuity for the material parts pertaining to $. On the
contrary, there is no such discontinuity for $* which
always judges the massive particles to bpve a speed
lower than the light speed. In this sense $* is more
convenient for studying the crossing of the Schwarzs-
child radius. However, this has nothing to do with the
fact that, for r &2m, $ (and not $*) is at rest with the
source and that, for $, a freely falling particle has a
speed tending to unity when w 2 m' .


